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Abstract
Differential privacy provides a way to get useful information about
sensitive data without revealing much about any one individual. It
enjoys many nice compositionality properties not shared by other
approaches to privacy, including, in particular, robustness against
side-knowledge.

Designing differentially private mechanisms from scratch can
be a challenging task. One way to make it easier to construct
new differential private mechanisms is to design a system which
allows more complex mechanisms (programs) to be built from
differentially private building blocks in principled way, so that the
resulting programs are guaranteed to be differentially private by
construction.

This paper is about a new accounting principle for building dif-
ferentially private programs. It is based on a simple generalisation
of classic differential privacy which we call Personalised Differ-
ential Privacy (PDP). In PDP each individual has its own personal
privacy level. We describe ProPer, a interactive system for imple-
menting PDP which maintains a privacy budget for each individual.
When a primitive query is made on data derived from individuals,
the provenance of the involved records determines how the privacy
budget of an individual is affected: the number of records derived
from Alice determines the multiplier for the privacy decrease in Al-
ice’s budget. This offers some advantages over previous systems,
in particular its fine-grained character allows better utilisation of
the privacy budget than mechanisms based purely on the concept
of global sensitivity, and it applies naturally to the case of a live
database where new individuals are added over time.

We provide a formal model of the ProPer approach, prove that it
provides personalised differential privacy, and describe a prototype
implementation based on McSherry’s PINQ system.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications–Specialized application lan-
guages

General Terms Design, Languages, Theory

Keywords differential privacy, provenance
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1. Introduction
Differential privacy is a relatively new notion of privacy [5–7]. The
theory shows that by adding the right amount of noise to statistical
queries, one can get useful results at the same time as providing
a quantifiable notion of privacy. Its definition does not involve a
syntactic condition on the data itself, but rather it is a condition
formed by comparing the results of a query on any database with
or without any one individual: a queryQ (a randomised function) is
ε-differentially private if the difference in probability of any query
outcome on a data-set only varies by a factor of eε (approximately
1 + ε for small ε) whenever an individual is added or removed.

Research on differential privacy has developed a variety of
query mechanisms that provide differential privacy for a useful
range of statistical problems. A few works have focussed more on
composition principles that allow new differential private mecha-
nisms to design a system which allows more complex mechanisms
(programs) to be built from differentially private building blocks in
principled way, so that the resulting programs are guaranteed to be
differentially private by construction [12, 17, 24]. PINQ [17] is the
starting point for the present work.

PINQ-style Global Privacy Budget PINQ is an implmentation
of interactive differential privacy which ensures, at runtime, that
queries adhere to a global privacy budget. Third-party client code
freely decides how sensitive data sets should be processed and
queried. The run-time system ensures that this does not break a
specified privacy budget ε. PINQ builds on a collection of stan-
dard differentially private primitive queries, together with simple
composition principles – mathematical properties enjoyed by the
definition of differential privacy. One central principle is that mul-
tiple queries (e.g. with differential privacy ε1 and ε2 respectively)
have an additive effect (ε1 + ε2) on the overall differential privacy.
Another central idea is to track sensitivity of functions to measure
how much a change in the input might affect the value of the data.
Together, these components allow the system to track how much
to deduct from the global privacy budget on each invocation of a
primitive query.

Limitations of the Global Privacy Budget In a batch system
where all computations are described up-front as a monolithic pro-
gram, a global budget is reasonable. In an interactive system, how-
ever, there are several limitations to this style of accounting. Imag-
ine a scenario involving a large data set of individuals – a cross-set
of the population – containing various information about health and
lifestyle. Let us suppose, further, that we aim for ε-differential pri-
vacy for some specified value of ε. On Monday the analyst selects
all the people from the database who have a particular blood type,
AB-negative, and constructs an algorithm which extracts informa-
tion about them as part of medical research. Since just 0.6% of the
population have this blood type, the proportion of the database in-
volved in this study is relatively small, but the database is known to
be big enough for it to be meaningful. Let us suppose that the cost



of this analysis, according to the system, is ε1. Now on Tuesday the
analyst gets a new task, to extract information about the lifestyle of
smokers, towards an advertising campaign for nicotine gum. This is
a significantly larger portion of the database, possibly overlapping
Monday’s research group. The analyst has ε − ε1 left to spend. If
ε1 is large, the analyst has blown the budget by analysing the small
group, even though that study did not touch the data of the larger
part of the population. PINQ offers a way around this problem by
adding nonstandard database primitives. Here we would partition
the data into (AB−, not AB−) and perform the two studies in par-
allel, with cost being the maximum of the cost of the two studies.

This leads to a batch-style reasoning and an unnatural program-
ming style. But it also has another limitation. What if the database
is live – we obtain new data over time, or if data is continually being
added? A global budget forces us to be unnecessarily pessimistic
about new as-yet unexploited data.

Personalised Differential Privacy This paper addresses these is-
sues by offering a simple generalisation of differential privacy
called personalised differential privacy (PDP) which permits each
individual to have a personalised privacy budget. The definition
supports generalised versions of the composition principles upon
which systems like PINQ are based (§2), and moreover enjoys a
number of properties which allow for less wasteful compositional
principles (§3). For example, any query about the drinking habits of
adults offers 0-differential privacy for Adrian, aged 13, as it does
for any records of individuals which enter the database after the
query has been made.

From these principles we design a system, in the style of PINQ,
called ProPer (Provenance for Personalised Differential Privacy-
§4). The ProPer system maintains a personal budget for every
record entering the system. Instead of using sensitivity, ProPer
tracks the provenance of every record in the system, and uses the
exact provenance to calculate how a query should affect the bud-
gets of the individuals. Unlike PINQ, the system is described as an
abstract formal model for which we prove personalised differen-
tial privacy. This is important because the correctness of ProPer is
not obvious for two reasons. Firstly, the individual budgets become
highly sensitive and how we handle them is novel. More specifi-
cally, if a query involves records that would break the budget of an
individual they are silently dropped from the data set upon which
the query is calculated. In the example above, Tuesday’s analysis of
smokers will automatically exclude data derived from any diseased
individuals as soon as the cost of the queries exceeds their budgets.
Secondly, it is necessary to restrict the domain of computations over
data sets to a class which guarantees that the provenance of any de-
rived record is affine (zero or one record), otherwise the number
of records which might get excluded due to a small change in the
input might be too big to give privacy guarantees.

The approach is suitable for integration with other systems,
since we assume the existence of basic primitives providing clas-
sical differential privacy. We have implemented a prototype of the
ProPer approach which extends the PINQ system (§6) with person-
alised budgets and the ability to input live data. We compare the
performance of our provenance-based implementation with PINQ
to show that the runtime overhead is not significant.

We conclude with a discussion of related work (§7), a sum-
mary of our contributions (§8), and the current limitations of the
approach as well as directions for future work.

2. Differential Privacy
We begin by reviewing the classic definition of differential privacy,
and its simple composition principles that allow the construction of
new differentially-private algorithms from existing components. In
this work the ”data sets” will abstract representations of databases,

modelled simply as multisets over some unspecified set of records.
When we say thatA andB differ on at most one record, also written
A ∼ B, we mean that they are either identical, or one can be
obtained from the other by adding a single record.

Definition 2.1. A randomised function Q provides ε-differential
privacy if for all data sets A ∼ B, and any set of possible outputs
S ⊆ range(Q), we have:

Pr[Q(A) ∈ S] ≤ Pr[Q(B) ∈ S]× eε

Thus the likelihood of a given output to a queryQ only changes
by a quantifiable amount with or without any individual. The
smaller the ε the better the privacy guarantee for the individual. The
literature contains many examples of differentially private aggre-
gate operations on data, achieving an appropriate balance between
privacy and utility by the principled use of statistical noise. In this
work we take the existence of such building blocks as given.

We will adopt the convention of writing Qε to denote an ε-
differentially private query. Queries will be algorithms rather than
just abstract mathematical functions, so we assume that the range of
Q is finite and moreover the result of a query forms a discrete prob-
abilistic distribution. Given this, we can simplify the conditions of
the form Q(A) ∈ S to Q(A) = v for any value in the range of Q.

Definition 2.1 satisfies a number of useful properties that serve
as building blocks for systems enforcing differential privacy [17],
which we outline informally here.

Query Composition If we apply two queriesQε1 and thenQε2 to
a data set, then the combined result is ε1 + ε2 differentially private.
This result holds even if Qε2 is chosen in response to the result of
Qε1 . Although useful, the sequential query composition principle
can be very wasteful. If two queries are applied to disjoint sets of
data then the privacy loss is the maximum of the privacy losses of
the two queries. This observation prompted McSherry to include
this as a nonstandard parallel query operation in PINQ.

Pre-processing and Sensitivity What if we transform data before
applying a query? A key compositionally concept is the sensitivity
of a function [5] (it is also a key concept in the design of primitive
differentially private operations [8], although that is not our focus
here). Roughly speaking, a function f has sensitivity c (also known
as stability c [17]) if whenever the distance between two inputs is n,
the distance between the results of applying f is at most c× n. For
(multi-)sets, the distance between A and B is just the size of their
symmetric difference. Not all functions have a bounded sensitivity.
For example consider the cartesian product of two data sets: adding
a record to one data set can add unboundedly many elements to the
result – it depends on the size of the other argument.

We dub the following property the sensitivity composition prin-
ciple:

If data-set transformer F has sensitivity c, then Qε ◦ F is
(ε · c)-differentially private.

The proof of this follows easily from the following scaling property
of differential privacy: if data sets A and B differ by k elements,
then

Pr[Q(A) ∈ S] ≤ Pr[Q(B) ∈ S]× e(k·ε).

Post-processing A very simple – perhaps obvious – property is
that a differentially private query is robust under post-processing:

For any function F , F ◦Qε is ε-differentially private.

This means that post-processing the result of a query cannot extract
more private information than the query itself released. This is also
the case when F is chosen in response to other queries – or the
result of other “side knowledge” about the data set.



3. Personalised Differential Privacy
Now we turn to the main concept introduced in this paper, Per-
sonalised or “big epsilon” differential privacy, and its analogous
compositionality properties.

Definition 3.1 (Personalised (Big Epsilon) Differential Privacy).
We say that data sets A and B differ on record r, written A r∼ B,
if A can be obtained from B by adding the record r, or vice-versa.

Let E be a function from records to non-negative real numbers.
A randomized query Q provides E -differential privacy if for all
records r, and all A r∼ B, and any set of outputs S ⊆ range(Q),
we have: Pr[Q(A) ∈ S] ≤ Pr[Q(B) ∈ S]× eE (r)

Personalised differential privacy allows each individual (record)
to have its own personal privacy level. This may turn out to be a
useful concept in its own right, but its main purpose in this work
is as a generalisation that permits a more fine-grained accounting
in the construction of classical differentially private mechanisms,
and one which plays well with dynamic databases. The following
proposition summarises the relation to “small-epsilon” differential
privacy:

Proposition 3.2.

(i) If Q is ε-differentially private, then Q is λx.ε-differentially
private.

(ii) If Q is E -differentially private, and sup(range(E )) = ε then
Q is ε-differentially private.

Now we consider the composition principles analogous to those
above. We keep the presentation informal since we will not apply
these principles directly in our formal developments – rather they
provide an intuition behind the approach. Most of the principles
above generalise to personalised differential privacy.

Query Composition In the sequential composition of queries, if
Q1 and Q2 are E1 and E2-differentially private, respectively, then
applied in sequence they yield a λx.E1(x) + E2(x)-differentially
private query. For parallel queries let us be a little more precise:

Let {Ri}i∈I be a partition of the set of all records, and
{Qi}i∈I be a set of queries. we define a parallel query P (A) =
Πi∈IQi(A∩Ri) where Π is just the n-ary cartesian product of
sets. Now we have the following natural generalisation of the par-
allel query principle:

If Qi is Ei-differentially private then P is E -differentially
private, where E (r) = Ei(r) if r ∈ Ri.

Now we introduce the first specialised principle which takes advan-
tage of the fine-grained nature of personalised differential privacy,
the selection principle:

For setA, define selectA(x) = x∩A. IfQ is E -differentially
private, thenQ◦ selectA is E [r 7→ 0 | r 6∈ A]-differentially
private.

Here E [r 7→ 0 | r 6∈ A] denotes the function which maps
every element outside A to 0, and behaves as E otherwise. In
simple terms, a query which operates on A is perfectly private for
individuals outside of A. In contrast, the composition principle of
ε-differential privacy has nothing helpful to say here: the sensitivity
of the selection function is 1.

How does this help us? It can show how the sequential compo-
sition principle for E -differential privacy gives greater account-
ing precision. Specifically, parallel composition is simply no
longer necessary to give a reasonably accurate estimate of pri-
vacy cost. Suppose we compute P (A) by sequentially computing
Qi ◦selectRi . Then the sequential composition principle calculates

the cost of this iterated sequential composition as

λx.Σi∈I(if x ∈ Ri then Ei(x) else 0)

which is precisely the cost calculated for the parallel query.

Sensitivity Composition The sensitivity composition principle
also lifts into the world of personalised differential privacy:

If data-set transformer F has sensitivity c, and Q is
E -differentially private, then Q ◦ F is λx.(E (x) × c)-
differentially private.

The proof analogously follows easily from the following scaling
property: If data sets A and B differ on elements C, then

Pr[Q(A) ∈ S] ≤ Pr[Q(B) ∈ S]× exp(Σr∈CE (r)).

The Personalised Sensitivity Principle A key feature of person-
alised differential privacy is that it supports a fine-grained compo-
sition property for a large and important class of functions, namely
functions that are union preserving. A function F from multisets
to multisets is union preserving if F (A ] B) = F (A) ] F (B),
A]B denotes the additive union of multisetsA andB. In standard
relational algebra, for example, all functions are union preserving
in each of their arguments, with the exception of the (multi-)set
difference operator which is not union preserving in its second ar-
gument. Complex union-preserving functions may be built from
simple ones as they are closed under compositions. You will read
more about supported compositions in section 4.3.

The characteristic property of union preserving functions is that
their behaviour can be completely characterised by their behaviour
on individual records. This gives us a completely precise way
to compute the influence of a single record on the result of the
function, since F (A ] {r}) = F (A) ] F{r}. This leads us to
the following.

Lemma 3.3. If F is a union-preserving function and Q is E -
differentially private, thenQ◦F is (λx.Σs∈F{x}E (s))-differentially
private.

Proof. Follows easily from the scaling property.

Taking E = λr.ε yields the following useful corollary which is
the core of our approach to combining existing differentially private
mechanisms with our personalised approach:

Corollary 3.4. If F is a union-preserving function and Q is
ε-differentially private, then Q ◦ F is (λx.size(F{x}) × ε)-
differentially private.

4. ProPer: Provenance for Personalised Privacy
In this section we provide an abstract model of the ProPer system.
The ProPer system encapsulates sensitive databases and manages
computations over them via an imperative API. It guarantees (as
we shall prove) E -differential privacy for the records which enter
the system.

Descriptive vs Prescriptive Systems The principles described in
the previous section are a guide as to how we can build a system
that allows non-expert analysts to compose new differentially pri-
vate algorithms from differentially private components. In principle
such systems can be of two kinds: descriptive, or prescriptive. In a
descriptive system we can apply the principles to compute and re-
port on the level of privacy achieved by a given run of a program. A
prescriptive system, on the other hand, is given a goal – an amount
of privacy that is to be achieved, and the system must use the prin-
ciples and ensure that the privacy stays within the bound.1 In a dy-

1 In an approach based on static analysis, such as the type-system of Fuzz
[12], one could say that these two approaches are unified.



namic system like PINQ, however, it is more natural to describe
a prescriptive system – one which does not violate a preconceived
level of privacy.

In a prescriptive system the desired amount of privacy can be
thought of as a budget, and in the literature it is often referred
to as such. For ProPer this is an amount of privacy per record
as described by some function E . But the principles described
above know nothing of budgets – they are purely descriptive. It
is therefore important to design a mechanism which is private
even when the program fails to meet the intended goals. With
personalised differential privacy this is a crucial question – because
the budget itself is clearly a sensitive object. In a nutshell, the
ProPer approach involves tracking the provenance of each record
in any intermediate table (on which sensitive input record does it
depend), and by silently dropping records from the arguments to
statistical queries if the presence of those records would break the
privacy budget of some individual. The provenance information is
used to make that link.

We begin with an informal overview before describing the sys-
tem in formal terms.

4.1 Overview of ProPer
The ProPer system is described in terms of two main components:
the protected system which stores all sensitive data and its deriva-
tives, and mediates all computation over that data, and the client
program which queries the sensitive data, requests computations to
be performed over the sensitive data, and drives the inclusion of
new input records into the protected system. An illustration of the
architecture is given in Figure 1.

Table Environment 

Noisy responses Inputs 

1 
2 
3 

Privacy Budget 

1 
1 
2 

3 
2 

 

Protected System 

API Client 
Program 

Configuration 

Queries 

Figure 1. ProPer System Structure

From the viewpoint of a client program, the system just stores
tables. Tables are referenced via table variables. A client program
will issue a command to the protected system phrased in terms
of table variables. These commands will represent transformations
such as “Select all females from table A and assign the result to
table B”, or “Input some new records and assign them to table C”,
or primitive differential-private queries such as “Return the number
of records in table C, with 0.5-differential privacy.”.

The records that are input are the subject of our privacy con-
cerns. We refer to those records as individuals. To provide E -
differential privacy for the individuals, the protected system needs
to maintain more information than just the mapping between table
variables and tables. For each individual r that has been input to the
system so far, a privacy budget for r needs to be maintained. Ini-
tially the budget will be E (r). As queries are performed over time
the budget for each individual may decrease.

There are two key issues that the system must address: (i)
how much should the budget for each individual be decreased

when a table is queried, and (ii) how do we prevent the budget
from becoming negative (which would imply that we have violated
privacy).

The solution to this is to track, together with each record, its
provenance. The provenance of a given record is just the individual
from which that record was derived (if any). Problem (i) is then
solved by noting that the cost for individual r is the privacy cost of
the query multiplied by the number of elements in the table which
have provenance r (c.f. Corollary 3.4).

Before we can provide the formal definitions of the above sketch
we need to define our basic domains and introduce some suitable
notation.

4.2 Preliminary Definitions and Notation
Given sets A and B, A ⇀ B denotes the set of partial functions
between A and B with finite domain. If f is (partial) function then
f [x 7→ y] denotes the (partial) function which maps x to y and
behaves as f for all other arguments. We will also write partial
functions (and updates) using a set-comprehension style notation,
e.g. [x 7→ x+ 1|x ∈ {−1, 0, 1}].

We assume an untyped set of records Rec, ranged over by
r, s, etc. We will work extensively with multisets, in particular
multisets of records. For a set A, we write mset(A) to denote the
set of multisets over A (isomorphic to functions A → N). More
specifically, the set of tables Table is defined to be mset(Rec).

It will be convenient to introduce some notation for working
with multisets. We use multiset brackets such as e.g. A = ⦃5, 5, 6⦄,
denoting a multiset A containing two copies of 5 and one 6. We
write multiset membership a

n
∈ A to mean that there are exactly n

copies of a in A, and a ∈ A means ∃n > 0. a
n
∈ A. Analogous

to set-comprehensions (set-builder notation) we will use multiset
comprehensions, with the ability to express multiplicities. For ex-
ample:

⦃x[n] | x
n
∈ ⦃5, 5,−5⦄ ∧ x > 0 ⦄ = ⦃5, 5⦄.

But note that multiplicities may “sum up” as in this example:

⦃0× x[n] | x
n
∈ ⦃5, 5,−5⦄ ⦄ = ⦃0, 0, 0⦄.

Given multisets A and B, we write A ] B to denote the additive
union, which is the least multiset such that whenever a

n
∈ A and

a
m
∈ B then a

m+n
∈ (A ]B)

Multi-Relations Binary relations are to sets as multi-relations are
to multisets. In other words a multi-relation is just a notation for a
multiset of pairs [13].

We will use the concept of multi-relation extensively to model
the records of a table together with their provenance. For example, a
table containing just three copies of a record r, two of which where
derived from individual Alice and one from individual Bob, will be
modelled by a multi-relation ⦃(r,Alice), (r,Alice), (r,Bob)⦄.

Before we show how we use this in practice we need some
notation to make reasoning with multi-relations more palatable.

Formally, given sets A and B we write A ↔ B to denote

mset(A × B). If R ∈ A↔ B then we write a
n

R b to mean a
is related to b, n times, i.e., (a, b)

n
∈ R.



Definition 4.1 (Operations on Multi-relations). Let R and S
range over X ↔ X for some X , let be T is a subset of X , and
U ∈ mset(X). We define the following operations involving multi-
relations:
Domain of a Relation dom(R)

def
= ⦃a[n] | (a, b)

n
∈ R ⦄

Relation Composition R ; S
def
= ⦃(a, c)[m·n] | a

n

R b ∧ b
m

S c ⦄
Application R • U def

= ⦃a[n·m] | a
n

R b ∧ b
m
∈ U ⦄

Right Restriction R� T
def
= ⦃(a, b)[n] | a

n

R b ∧ b ∈ T ⦄
Example 4.2. Given the following two multi-relations:

R = ⦃(x, y), (x,w), (x,w)⦄ S = ⦃(y, z), (w, z), (w, v)⦄

then dom(S) = ⦃y, w,w⦄, R ; S = ⦃(x, z)[3], (x, v)[2] ⦄, R �

{w} = ⦃(x,w)[2] ⦄, and R • ⦃w[2], y⦄ = ⦃x[5] ⦄.

The following properties are easily verified.

Proposition 4.3. For all multi-relations R, R′, S, and S′, and set
T ,
(i) Composition is ]-preserving in both arguments:

(R ]R′) ; S = (R ; S) ] (R′ ; S)

R ; (S ] S′) = (R ; S) ] (R ; S′),

(ii) restriction is ]-preserving in its first argument:

(R ] S) � T = (R� T ) ] (S � T ),

(iii) restriction and composition associate as follows:

(R ; S) � T = R ; (S � T ),

(iv) and finally:

dom(R� T ) = R • T

Note that, as in (iv), we will freely use sets as if they were
multisets without making the obvious injection operation explicit.

4.3 Provenance Tracing
As mentioned, we will track the provenance of each record derived.
The key idea to achieve personalised differential privacy is that the
provenance of a given record must be at most one record. We call
this affine provenance.

Supported operations As we explained, in this setting, records’
provenance should be affine. This is achieved by simply requiring
that all transformations are unary and ]-preserving i.e., transfor-
mations F for which F (A]B) = F (A)]F (B). This guarantees
that provenance can be tracked by observing the action of F on
singletons, and (ii) provenance will always be a single element.

To give a simple syntactic characterisation of a class of unary ]-
preserving functions, we can use a grammar of terms built from the
standard operations of relational algebra, used here over multisets.
The basic operators of relational algebra, transposed to multisets,
are the set operations (multiset union ], set difference −, cartesian
product ×), together with record selection σp, which selects all
elements satisfying property p, and projection πa which transforms
each row by retaining only the columns given by schema a. We
omit the details of the definitions and refer to [11] for definitions of
multiset variants of these standard operations.

Definition 4.4 (Affine Relational Terms). Let V range over sets
of variables and T over literal multisets. We define a family of
variable-indexed relational algebra terms AV by the following
grammar:

AV ::= x (∈ V ) | AV ]AV |AV −A{}|AV ×A{}|A{} ×AV
| σp(AV ) | πa(AV ) | T

Theorem 4.5. Any multiset transformation F defined by F (x) =
A{x} is ]-preserving.

The proof follows by induction on the definition of A{x} us-
ing the union-preserving properties of the operators. The restric-
tions imposed by the grammar are due to the facts that all the
operations preserve unions in each argument individually, except
for the second argument of set difference, and that ] preserves
unions across its arguments simultaneously, whereas × does not
(i.e. (A ]A′)× (B ]B′) 6= (A×B) ] (A′ ×B′) ).

Provenance Tables The fact that we will track affine provenance
leads us to define a provenance table as a table in which the affine
provenance of each element is recorded.

Definition 4.6 (Provenance Table). A provenance table is a multi
relation of type ProvTable

def
= Rec ↔ Rec⊥, where Rec⊥

def
=

Rec ∪ {⊥} for some distinguished non-record ⊥.

The underlying table T represented by a provenance table D is
obtained by simply taking the domain ofD, i.e. T = dom(D). The
provenance of each element r of the table T is given by the element
to which they are related, viz, if rDs then there is a copy of r in T
that has provenance s. If some record r is related to⊥ this signifies
that r is present in the table, but that it has no provenance (i.e. it
was not derived from any individual).

In the remainder of this section we introduce the notation and
techniques necessary to permit provenance to be traced across
computation.

How do we build and maintain provenance tables? We need a
way to create provenance tables from new tables, and we need a
way to construct the provenance table of a table produced by a
transformation applied to a (provenance) table.

When new records of individuals enter the system then their
provenance table has a simple form: the provenance of each record
is itself. When we create a new literal table (i.e. where the elements
do not depend on individuals) then each record has provenance ⊥.
The following notation for these cases will be useful:

Definition 4.7. For a set of records R, define the identity prove-
nance table

IdR
def
= ⦃(r, r) | r ∈ R ⦄.

For a table T define the constant provenance table

ConstT
def
= ⦃(r,⊥)[n] | r

n
∈ T ⦄.

The final building block is to show how to lift a function F
which computes over tables to a function F̂ which computes over
provenance tables so that (in particular) the following diagram
commutes:

D
F̂ //

dom

��

D′

dom

��
T

F
// T ′

Definition 4.8. Given a ]-preserving function F ∈ Table →
Table, define F̂ ∈ ProvTable→ ProvTable by

F̂ (D)
def
= F̃ ; D

where F̃ ∈ Rec↔ Rec is defined by t
n

F̃ s⇔ t
n
∈ F ({s})

The fact that the diagram above commutes is captured as fol-
lows:

Lemma 4.9 (functional correctness). dom(F̂ (D)) = F (dom(D))



Proof. First we show that the relational representation of F and the
relational application operator behave as expected:

F̃ •A = F (A) (1)

F̃ •A = ⦃a[m·n] | a
n

F̃ b, b
m
∈ A ⦄

= ⦃a[m·n] | a
n
∈ F ({b}), b

m
∈ A ⦄ (Def. 4.8)

= ⦃a[k] | a
k
∈ F (A) ⦄ (F preserves ])

= F (A)

Now we show:

dom(D ; D′) = D • dom(D′) (2)

dom(D ; D′) = dom(⦃(a, c)[m·n] | a
m

D b, b
n

D′ c ⦄)

= ⦃a[m·n] | a
m

D b, b
n

D′ c ⦄

= ⦃a[m·k] | (a, b) m∈ D ∧ b k∈ dom(D′) ⦄
= D • dom(D′)

Finally we calculate:

dom(F̂ (D)) = dom(F̃ ; D)

= F̃ • dom(D) (Eq. 2 )
= F (dom(D)) (Eq. 1 )

4.4 The System Model
The semantics of the overall system will be given by a probabilistic
transition system described by combining the client program with
the protected system.

Protected System The protected system is a collection of states
which encodes four pieces of information:

1. the set of individuals which have been input to the system so
far,

2. a privacy budget (a positive real) for each of these individuals
indicating how much of the personalised privacy remains,

3. a set of table variables TVar used to identify intermediate
tables computed, and

4. a table environment which maps each table variable to the
provenance table it represents.

The first two items are modelled by a partial function from indi-
viduals to budgets, and we assume that the set of table variables is
fixed (and at least countable). This leads us to the formal definition
of the states:

Definition 4.10 (Protected System States).

States
def
= (TVar→ ProvTable)× (Rec ⇀ R

+)

Client Program Model We work with an abstract notion of a
client program. A program is just a labelled transition system, sub-
ject to some restrictions, where the labels – the actions – represent
the imperative API through which the program interacts with the
protected system.

The program model, inspired by PINQ [17], is an imperative
program that computes with tables by requesting that the com-
mands a ∈ ProgAct are performed. ProgAct is specified in fig-
ure 2.

Here we assume that F ranges over an unspecified set denoting
]-preserving functions in Table → Table, and Qε ranges over

ProgAct ::= τ Silent step

| tv := Expr Assignment

| Qε(tv)?v Primitive Query returning v ∈ Val

Expr ::= tv Table variable

| F (tv1 ] · · · ] tvk) Transform

| T Table literal, T ∈ Table

| input Reference to the input stream

Figure 2. ProgAct: the labels of the transition system

an unspecified set of queries with the convention that Qε denotes
an ε-differentially private query. Note that we will not formally
distinguish the name of a function (as used here to define the set
of actions) from its denotation (as used in the specification of the
semantics of the system below).

The idea is that programs have no direct access to tables, but
make requests for the system to manipulate them on their behalf.
This includes making a request for the system to collect new in-
dividuals via an input action (and place them in a table variable).
The primitive query action is special. Firstly, it does not model a
request, but rather a request and its result all in one. The reason for
this is that it allows us to model value passing without needing to
introduce any specific syntax for programs. Secondly, the value re-
turned by the query is known to the program, and the program can
act on it accordingly. From the perspective of the program and the
protected system together, this value will be considered an observ-
able output of the whole system. We also model internal actions
of the program (and hence the passage of time) via the traditional
silent action τ . A program, then, is just a ProgAct-labelled tran-
sition system. However we impose some mild restrictions on the
transition system which model the fact that (i) the query operation
really is an input operation, so if the program issues a query, there
must be a transition for that query with every possible value, and
that (ii) the program is fully deterministic, so that at most one type
of action is possible in any given state, and the action determines
the next state.

Definition 4.11 (Client Program). A client program (a program
for short) is a labelled transition system 〈P,→, P0〉 whereP is the
set of program states with initial state P0 and transition relation
→ ⊆ (P × ProgAct × P), satisfying the following properties.
Firstly it is deadlock free – a program can always make a transition,
and secondly it satisfies the determinacy property:

For all states P , if P a−→ P ′ and P b−→ P ′′ then

1. if a = b then P ′ = P ′′,
2. if a is not a query then a = b,
3. if a = Qε(tv)?r then b = Qε(tv)?r′ for some r′, and for all s

there exists a Ps such that P
Qε(tv)?s−−−−−→ Ps.

Remark: Implicit parameters To avoid excessive parameterisa-
tion of definitions, in what follows we will fix some arbitrary client
program 〈P,→, P0〉 and some arbitrary personal budget E and
make definitions relative to these.

Configuration Semantics Now we can provide the semantics of
the combination of a program and the protected system – what we
will call a configuration:

C ∈ Config
def
= P× (TVar→ ProvTable)× (Rec ⇀ R

+)



We will write a configuration as a triple 〈P,E,B〉 where metavari-
able E ranges over the table environment and B ranges over the
budget.

The behaviour of a configuration will be a form of probabilistic
labelled transition system whose labels are the values of queries
made by the program, the silent transition τ , and the tables of
unique individuals which are input by the environment.

Definition 4.12 (Initial configuration). The initial configuration is
formed from the initial program state, the environment that maps
every variable to the empty provenance table, and the empty budget
table:

C0
def
= 〈P0, [tv 7→ ⦃⦄ | tv ∈ TVar], []〉

Definition 4.13 (Operational Semantics). The operational seman-
tics of configurations is given by a “probabilistic” labelled tran-
sition relation with transitions of the form C a−→p C

′ where a ∈
Act

def
= {τ} ∪Val ∪ 2Rec, and (probability) p ∈ [0, 1]. The defini-

tion is given by cases in Figure 3.

We put “probability” in parentheses because the relation is not
a priori probabilistic but something that must be proven; this is
established in Lemma 4.16. First we provide some explanation of
each nontrivial rule in turn.

[Input] The program requests an input to be made and assigned
to a table variable. The rule imposes a constraint on the records T
which are input: it must be a set of records, and this set must be
disjoint from the records previously input (the domain of B). This
reflects the idea that the input records are the subject of privacy and
represent unique individuals. The transition of the configuration is
labelled with T to record that the environment chose to input T .
The probability of the transition is 1, meaning that the choice of
input is treated nondeterministically. The configuration is updated
in two ways. Firstly, the table is converted to a provenance table by
recording that the provenance of each record is itself. Secondly the
budget for each new record is initialised from E .

[Assign] The program requests a transformation of existing data.
Here we apply the mechanisms developed in Section 4.3 to lift the
function (respectively, table) into the world of provenance tables.

[Query] Here the program is requesting the value of a query
Qε(tv). To answer the query we must determine the eligible
records, L, from the table tv , which can safely be involved in
this query. To do this we first determine a Cost map C, which de-
scribes the privacy cost which would be inflicted upon individual r
by releasing the query Qε(tv); the cost of an ε-differentially pri-
vate query on tv to an individual r is ε multiplied by the number
of records in tv which have provenance r. Given the cost map,
we can determine A, the set of individuals for which this cost is
Acceptable – i.e. those who have sufficient budget. Finally we can
use A to determine L: it is the sub-table of records which depend
at most on records in A.

The probability of the transition is inherited from the probability
that the query returns that particular value.

4.5 Trace semantics
The transition system on configuration C a−→p C

′ is fully proba-
bilistic in thatC and the value of a uniquely determine p and, when
p > 0, C′. This makes it very straightforward to lift the single-step
semantics to a probabilistic trace semantics.

In what follows let σ range over traces, sequences of zero or
more actions Act∗. The empty trace is denoted by [] and aσ denotes
the trace starting with a and continuing with σ.

Definition 4.14 (Trace semantics). Define the trace transition re-
lation

⇒ ⊆ Config ×Act∗ × [0, 1]× Config

inductively by the following rules:

C
[]
=⇒1 C

C
a−→p C

′ C′
σ
=⇒q C

′′

C
aσ
=⇒p.q C

′′

We write C σ
=⇒p to mean C σ

=⇒p C
′ for some C′.

Although we have a trace-labelled transition system involving
numbers derived from probabilities, it remains to show in what
sense we have specified a probabilistic system. We begin with a
definition which describes when an input sequence is compatible
with a given trace.

Definition 4.15 (Input Compatibility). An input trace i is a se-
quence of mutually disjoint sets of records. We say that a trace t
is compatible with i, written t ` i iff the subsequence of inputs in t
is a prefix of i.

Now we can state the sense in which the transition system is
probabilistic: it can be viewed as a probabilistic function of the
input and the length of the trace observed:

Lemma 4.16 (Traces are Probabilistic). For all input traces i, and
all n ≥ 0,

Σ⦃p | C0
t

=⇒p ∧ t ` i ∧ size(t) = n ⦄ = 1

I.e. in response to a given input, the possible traces of a program
of a given length form a probability distribution.

Proof. (sketch) A key here is the following determinacy property:
whenever C a−→p C

′ and C a−→q C
′′ for p, q > 0, then C′ = C′′

and p = q. This can be established by cases according to the tran-
sition, and depends crucially on the assumption that the program
transitions are deterministic. From this it is straightforward to show
that C t

=⇒p C
′ and C t−→q C

′′ for p, q > 0, imply p = q and
C′ = C′′. The first clause(p = q) is easily established by cases
according to the rule inducing the transition, making use of deter-
minism assumption about programs; the second clause (C′ = C′′)
then follows easily from the first. Armed with these two properties,
the proof follows by induction on n.

So whenever C σ
=⇒p, p is the probability of observing σ among

traces of the same length and for which the input sequence is the
same. We thus write Pr(C σ

=⇒) = p to mean C σ
=⇒p.

5. ProPer Provides E -Differential Privacy
In this section we establish the main theorem for the system, which
states that the trace semantics is an E -differentially private function
of its input. In order to state this in a convenient way we introduce
some notation.

Definition 5.1 (r-difference). For any record r and any tables T
and T ′, we write T

r
@ T ′ to mean that T ] ⦃r⦄ = T ′. We lift

this relation to traces, writing σ
r
@ σ′ to mean σ = σ1Tσ2 and

σ′ = σ1T
′σ2, for some σ1, σ2, T , T ′ such that T

r
@ T ′.

We will further lift T
r
@ T ′ to various structures containing

tables. In all cases we define the overloaded relation r∼ to be the
symmetric closure of

r
@, so T r∼ T ′ iff either T

r
@ T ′ or T ′

r
@ T .

So when σ r∼ σ′ then σ and σ′ differ in exactly one element, an
input set, and and their difference is exactly the record r.

Theorem 5.2 (E -differential privacy for all traces). If σ r∼ σ′

and Pr(C
σ
=⇒) = p then Pr(C

σ′
=⇒) = q for some q such that

p ≤ q · exp(E (r)).



Input
P

tv :=input−−−−−→ P ′ T ∈ 2Rec T ∩ dom(B) = ∅

〈P,E,B〉 T−→1 〈P ′, E[tv 7→ Id(T )], B[r 7→ E (r) | r ∈ T ]〉

Assign
P

tv :=e−−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E[tv 7→ D], B〉
where D =


F̂ (E(tv1) ] · · · ] E(tvn)) if e = F (tv1 ] · · · ] tvn)

Const(T ) if e = T

E(tv ′) if e = tv ′

Silent
P

τ−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E,B〉

Query
P

Qε(tv)?n−−−−−−→ P ′

〈P,E,B〉 n−→p 〈P ′, E,B[r 7→ B(r)− C(r) | r ∈ A]〉
where

C = [s 7→ ε.size(E(tv) • {s}) | s ∈ dom(B)]
A = {r | B(r) ≥ C(r)}
L = E(tv) • (A ∪ {⊥})
p = Pr(Qε(L) = n)

Figure 3. Operational Semantics

To prove the theorem (inevitably by an induction over the trace
length) we must establish an invariant relation over configurations
which generalises T

r
@ T ′. The most tricky and important of these

is the relation between provenance tables.

Definition 5.3. D
r
@ D′ ⇔ D ] (D′ � {r}) = D′

This says that whenD
r
@ D′, the table represented byD′ has all

the elements ofD, with the same provenance, and that the elements
of D′ which are not in D all have provenance r.

This relation will be used to express a key invariant in the
correctness proof, and can also be thought of (in the main proof)
as establishing the correctness of the provenance information. Now
we establish some basic properties of this relation on provenance
tables.

Proposition 5.4. D
r
@ D′ ⇒ dom(D′) = D′ • {r} ] dom(D)

Proof.

D
r
@ D′ ⇒ (D′ � {r}) ]D = D′

⇒ dom((D′ � {r}) ]D) = dom(D′)

⇒ dom(D′ � {r}) ] dom(D) = dom(D′)

⇔ D′ • {r} ] dom(D) = dom(D′) (4.3(iv))

Proposition 5.5. ∀i ∈ I.(Di
r
@ D′i)⇒

⊎
i∈I Di

r
@

⊎
i∈I D

′
i

Proof.

∀i ∈ I.(D′i � {r}) ]Di = D′i

⇒
⊎
i

((D′i � {r}) ]Di) =
⊎
i

D′i

⇒
⊎
i

(D′i � {r}) ] (
⊎
i

Di) =
⊎
i

D′i

⇔ (
⊎
i

D′i � {r}) ] (
⊎
i

Di) =
⊎
i

D′i (4.3(ii))

⇔
⊎
i∈I

Di
r
@

⊎
i∈I

D′i (def of
r
@)

The following establishes that computations over provenance
tables preserves

r
@.

Proposition 5.6. D
r
@ D′ ⇒ F̂ (D)

r
@ F̂ (D′)

Proof. Assume premise.

F̂ (D′) = F̃ ; D′ (def.)

= F̃ ; (D′ � {r} ]D) (premise)

= (F̃ ; (D′ � {r})) ] (F̃ ; D) (4.3(i))

= ((F̃ ; D′) � {r}) ] (F̃ ; D) (4.3(iii))

= ((F̂ (D′)) � {r}) ] F̂ (D) (F̂ def.)

Hence⇒ F̂ (D)
r
@ F̂ (D′) as required.

Definition 5.7 ((r, ε)-similarity for configurations). We define the
following similarity relations for (the components of) configura-
tions:

• E
r
@ E′ ⇐⇒ ∀tv . E(tv)

r
@ E′(tv) ∨ E(tv) = E′(tv)

• B
r,ε
@ B′ ⇐⇒ B[r 7→ ε] = B′ ∧ ε ∈ [0, E (r)]

• 〈P,E,B〉
r,ε
@ 〈P ′, E′, B′〉 ⇐⇒ P = P ′∧E

r
@ E′∧B

r,ε
@ B′

Finally, define C
r,ε∼ C′ iff C

r,ε
@ C′ or C′

r,ε
@ C.

The generalised version of Theorem 5.2 establishes the invari-
ant relation between configurations from which the Theorem is a
straightforward corollary.

Lemma 5.8. If σ r∼ σ′ and C0
σ
=⇒p C, then C0

σ′
=⇒q C

′ where
C
r,ε∼ C′ for some ε such that p ≤ q. exp(E (r)− ε).

The proof is given in Appendix A.

6. Implementation and Experimental Results
In this section we start by briefly describing the implementation
of ProPer. We continue with a small example to give a taste on
how the tool is used, and finally we present some experimental
results in terms of time and memory execution applied to a couple
of benchmarks, comparing ProPer with PINQ.

6.1 Description of the Tool
We have implemented our PDP approach into the tool ProPer. The
tool has been implemented in C#.

In order to interact with the tool, the user must be working on
a programming environment (e.g., C#) and needs to create an in-
stance of the ProPer class. After this, there are a number of con-
structs available thorough the ProPer API to initialise and manipu-
late data. ProPer is based on LINQ, and its interface has been de-
signed having PINQ as inspiration so not surprisingly the way a



user interacts with both tools is similar, modulo some syntactic dif-
ferences.

Despite similarities there are important differences in the way
PINQ and ProPer are implemented as explained below.

(i). When a new data set is given to ProPer, each record of the data
set is assigned a unique key and an individual privacy budget.
In PINQ records do not have a key and the privacy budget is
global.

(ii). ProPer performs provenance tracking using the above men-
tioned record keys. One feature of this provenance tracking is
that each record depends at most on one record from the input
set.

(iii). Some transformations are implemented differently: In ProPer
Where and Select are equipped with provenance tracking
mechanisms, but this is not the case in PINQ.

(iv). Though the dynamic updating of databases (adding records) is
possible in PINQ, the added records inherit the current global
budget and thus they can be used as many times in queries as the
old records. In ProPer, PDP guarantees that added records may
participate in as many queries as their individual budget allows,
not depending on others’ record budget (or global budget).

In what follows we elaborate on how ProPer works. Let us
assume the user has initialised a data set and wants to perform a
number of transformations in order to make some queries. In order
to do this, a ProPer object is first created, the data set is imported
into ProPer, the transformations are applied to this object, and
finally the user can then run arbitrary queries on that ProPer object.
The above description is a simplification as ProPer only supports
transformations where each resulting record depends on at most
one record. If other transformations not respecting this constraint
are neededthen a PINQ subroutine will be called, and treated like a
primitive query.

In more detail, in ProPer, sensitive data is stored in a pro-
tected object with the generic type of ProPer<T> (in PINQ sen-
sitive data is placed in a PINQueryable<T> object). When data
is manipulated using ]-preserving transformations, provenance in-
formation is also transferred and attached to the resulting records.
Two important supported transformations are Where and Select
representing the projection(π) and selection(σ) primitive opera-
tors in relational algebra. When it comes to aggregation, records
with sufficient privacy budget are selected and their privacy budget
is reduced. Also when a transformation with unsupported type of
provenance is issued, the data set may switch to classical differen-
tial privacy by calling AsPINQ(double epsilon). This reduces
the budget of each involved record by ε, and creates a protected
object of type PINQueryable<T>. From this point the resulting
PINQueryable<T> object can be used in other arbitrary transfor-
mations defined in classical differential privacy or contribute in
other ε-differentially private aggregations.

6.2 Example
As mentioned previously, PINQ introduces a special parallel com-
position operation for applying queries to disjoint parts of a data
set. We argued that personalised budgets implies that the analyst
does not need to construct parallel queries (§3) – it is just as ef-
ficient to pose sequential queries. But in situations where there is
no natural partition of data our approach is not only more conve-
nient, but also gives strictly better results. Let us assume a data set
on which we will perform three queries, each one with accuracy
ε, and such that the pairwise intersection of the intended domains
of these queries is nonempty but where we know that that the in-
tersection of the 3 queries is empty (see Figure 4). In the universe
where each person is allowed to have at most two roles, the queries

T

M

H

Figure 4. T=Teachers, M= Managers and H=Headmasters

Teachers, Managers and Headmasters are asking about individuals
in different roles. In this case, we cannot use parallel composition
(as in PINQ) since it would require that the queries are disjoint.
If we run them sequentially it would consume 3ε, whereas if we
use PDP we will consume 2ε. (Note, that in the case of 3 disjoint
queries, the PDP approach would consume the same budget as in
the parallel case (ε).) The above case may be generalised: Given
n queries such that each record is involved in at most g queries,
would give the following: parallel composition (à la PINQ) can-
not be applied, PINQ sequential composition would consume n · ε,
while PDP would consume g · ε.

As a simple example we demonstrate how this analysis can be
implemented in ProPer. We use the structure described below to
store an individual’s information, where each individual has at most
two different roles: role1 (e.g., Teacher), and role2 (e.g., Manager).

public struct Individual
{

public string name;
public string role1;
public string role2;

}

To initialise and populate our database with sample data we can
pass an array of type Individual as an argument to the constructor
method:

Individual [] population = new Individual []
{

new Individual{ name = "Alice",
role1 = "Teacher" ,
role2 = "Headmaster "},

new Individual{ name = "Bob",
role1 = "Manager" ,
role2 = "Teacher"},

...
}
var protectData = new ProPer <Individual >

(population.AsQueryable (),budget);

To construct a ProPer protected object that only stores information
about Teachers we can use the selection operation. Note that each
record in the resulting ProPer has a dependency relation with ex-
actly one record from the input data set:

var Admins = protectData.Where(person=>(
person.role1.Equals (" Teacher ") ||
person.role2.Equals (" Teacher ") ) );

Using the Select transformation we can modify an attribute’s
value or totally remove an attribute from a relation. For instance,
as you can see in the following code, we transformed the table
storing information about all Teachers into another table containing
the length of their names:

var NameLengths = Admins.Select (person =>
(person.name).Length );



Finally, to extract information from the above table we call the
method AsPINQ(epsilon) which will reduce the budget of each
individual record from the data set under consideration by ε, and
will create a PINQueryable object with total budget ε.

Now it is possible to run a classical differential privacy query;
the simplest one being to call an aggregation function with accuracy
ε, as shown in the code below.
Console.WriteLine (NameLengths.NoisyAverage(epsilon ,

x =>x /20) * 20 );

Similarly, the ProPer object can be converted into a PINQueryable
object as follows:
var pinqObj= NameLengths.AsPINQ(epsilon);

Note that PINQueryable objects can also be used in more compli-
cated transformations like Join and GroupBy, available in PINQ.

As we have previously mentioned, another distinct feature of
ProPer is its ability to deal with dynamic databases. For that, ProPer
has the following available methods: Update, Insert and Delete.
It is also possible for users to define their own methods to manip-
ulate data if needed be. A function to refresh the contents of the
database when it is called can be defined with the SetRefresh()
method. The defined function is called by the client program each
time Refresh() is called:
protectData.SetRefresh (obj=>(obj

.Remove(predicate=>true))

.Insert(newPopulation.AsQueryable () , epsilon)
);

protectData.Refresh ();

6.3 Experimental results
To have a space and execution time comparison we implemented
the k-means clustering algorithm both in PINQ and ProPer. This al-
gorithm only uses projection and selection primitives which makes
it a perfect candidate for comparison. The k-means algorithm ac-
cepts four parameters: a list of records, the number of centres, the
number of dimensions, and the number of iterations. For the pur-
pose of this research we fixed three of the parameters (Number of
dimensions = 4 , Number of centres = 4 , Number of iterations = 5),
and modified the number of records to see its effect on execution
time and memory usage.

The result of our experiments concerning time is shown in
Figure 5, where it is possible to see the effect on execution time
when varying the number of records. As it can be seen in the
figure, adding provenance tracking (ProPer) has a negative effect
on the execution time and slows down the system by around 15
percent. Concerning the memory usage, ProPer implementation of
the k-means clustering algorithm uses twice as much memory as
the PINQ implementation. This can be motivated by the fact that
each record has the type double, and for each record a key with
type int and a structure to keep track of privacy budget is needed.
This high memory usage is justifiable since these extra structures
(key and privacy budget) has almost the same size as the size of the
record. More generally the overhead in memory will be the ratio of
the size of the record with and without the provenance record key.

6.4 Limitations
The restriction of ProPer to unary union-preserving transformations
means that in some cases we simply have to fall back to using PINQ
routines. For example, in the network analysis example of McSh-
erry and Mahajan [16] the first transformation of the dataset is to
group network requests by IP address. If the number of possible
IP addresses was small and statically known, then we could iter-
ate over this list to select the elements corresponding to each IP.
But since they are not, the list of groups clearly has multiple prove-
nances and is thus not supported by our method. So in this example
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Figure 5. Comparing PINQ and ProPer wrt execution time

we immediately fall back to using a PINQ subprogram, and appear
to get no benefit from personalised budgets. But potential benefits
from personalised budgets are not far away. For example, if one
decided to restrict analysis to a specific geolocation, then person-
alised budgets would ensure that we don’t waste the budget of the
rest of the world. Another example is if traffic data arrives contin-
uously over time, in which case we would automatically filter the
records which have an exhausted budget without requiring any vis-
ible bookkeeping at the level of the analyst code.

7. Related work
The literature on differential privacy, although only ten years old,
is already vast. For an overview we refer to Dwork’s surveys [6, 7].
We consider work related along four dimensions: general systems
which provide mechanisms for constructing differentially private
analyses, approaches to dealing with dynamic data, provenance
and its connection to privacy, and approaches to improving the
utilisation of privacy budget.

Systems Enforcing Differential Privacy As mentioned earlier,
the interactive style of our system is inspired by PINQ [17]. The
implementation of PINQ has a number of side-channels as pointed
out in [12]; these and other implementation weaknesses ([19]) are
certainly present in our implementation and it has not been our
goal to focus on those. Other systems of note include Airavat [24],
which is a MapReduce-based framework for constructing differ-
entially private programs. Untrusted client analysts construct map-
pers, and the system provides differentially private reducers. Note
that mapping is restricted in Airavat (by modifying the JVM) to
be a union-preserving operation (“only a single record is allowed
to affect the key-value pairs output by the mapper”), so it would
be interesting to explore personalised budgets in that setting since
it could potentially improve the budget utilisation over time, and
perhaps remove the need to statically decide and enforce the exact
number of elements produced by the mapper. Another line of work
developing the Fuzz and DFuzz prototypes [10, 12, 23] describes
non-interactive differential privacy in which the whole computation
over private data is described by a domain-specific functional pro-
gram, and a sensitivity-based static type system determines stati-
cally whether the computation will be within budget. This approach
would combine well with ours by using it as a (necessarily side-
effect free) query sublanguage.

Dynamic systems and data streams There are different senses in
which a system might support dynamic data. In one sense the users



are static, but their data arrive as a stream. One approach to pri-
vacy on streaming data is Pan-privacy [18], a stronger notion than
differential privacy which ensures that the entire state of the sys-
tem is private. Streaming PINQ is a version of PINQ that supports
this kind of data [26]. GUPT introduces a novel concept of privacy
which degrades over time. It seems that this is a feature that could
be added to ProPer by periodic increase in the budgets of records.

Tschantz, Kaynar, and Datta [25] build a model and proof
techniques for reasoning about interactive differential privacy
with records that are input over time. They introduce a specific
generalisation of differential privacy called differential noninter-
ference. Their formal model of noninterference has similarities
to ours, based on probabilistic transition systems. They develop
bisimulation-like proof methods and similar ideas could be useful
in our setting to refactor our main proof. In our setting the one
system we reason about is parameterised over any program which
uses the internal API. In the formal model of Tschantz et al the
queries are supplied by the environment. Thus the model of the
(malicious) analysis is the sequence of all possible queries (for all
possible input sequences). A question mark over this model is that
is does not capture the strategy of the user; for a probabilistic sys-
tems it is known from the noninterference literature that modelling
the user using nondeterminism rather than a strategy can hide the
presence of information leaks [20, 27]. One aspect of their model
is not captured in our system, they model bounded memory. This
causes an unexpected magnification in the privacy cost of compu-
tations, since addition of one record into an input stream will cause
a full memory to change by two records (the record itself and the
record that it displaces).

Provenance and Lineage The notion of provenance that we use
is more specifically called what provenance in the terminology of
Cheney et al [2]. More specifically it is the lineage notion from Cui
et al [3]. Union-preserving transformations are called dispatchers
in that work.

Our main principle is the tracking of data from input to the point
at which it is used in a query. Complementary to this, Birgisson,
McSherry and Abadi [1] show how to improve privacy budgets by
tracking from the result of a query to the final result of the (batch)
program; if the query is not used to produce the final result then
you don’t need to count it’s cost. In some sense this optimisation
is already built into systems like Fuzz. Our model assumes that
the results of intermediate queries are observed by the attacker, so
using this principle would require us to refine our model, but it can
be plugged straight into our implementation.

There are a number of other works which link the concepts
of provenance and privacy, although these are mainly connected
with answering queries about the provenance of data in a privacy
preserving manner, e.g. [4].

Improving the Budgeting Accuracy of Composition Many meth-
ods in differential privacy deal with improving the ε-bound that is
attributed to a given class of computations. Some of these are re-
lated to the deficiency of the sequential query composition princi-
ple, and are typically much more specialised (and therefore more
technically sophisticated) than the method of provenance tracing
described here – see for example [14, 15, 28]. Palamidessi and
Stronati [21] provide a compositional method for improving the
sensitivity estimation for relational algebra terms. It would be in-
teresting to investigate whether these ideas can be used alongside
our personalised approach.

Proserpio, Goldberg and McSherry [22] introduced wPINQ,
a framework for weighted datasets. In wPINQ, “problematic”
records (those inducing extra noise to preserve privacy) are spe-
cially treated. The idea is that in order to better preserve privacy
while not degrading the accuracy of the query result, the weight of

those individual records in an aggregate query is scaled down, in-
stead of scaling up the noise added to all records. Note that weights
in wPINQ are associated with each and every record, whereas bud-
gets in ProPer are associated just with individuals (the original
inputs). By making weights part of every record, the privacy of the
weights themselves will be protected by the requirements of the
definition of differential privacy. Weights are used to track sensi-
tivity at the level of each record level – similar to the fine-grained
accounting achieved by tracking provenance. But the number of
transformations that wPINQ supports is more than in PINQ. The
price to pay is that every primitive query must be implemented to
use the weights appropriately, and must be proven to be differen-
tially private. In ProPer the correctness argument for the system
itself has to be argued from first principles, but the method is able
to reuse arbitrary differentially private queries as sub-programs
without modification.

8. Conclusion
We have introduced a new concept of personalised differential pri-
vacy (PDP) that improves the bookkeeping regarding the cost of
composed queries, and makes it easy to include dynamic expan-
sion of the data base. We have realised this idea in the design of
ProPer, a system which enforces PDP for all (deterministic) client
programs that compute against a simple API. We have proved that
the ProPer model provides personalised – and therefore also stan-
dard – differential privacy.

On Limitations of Affine Provenance In our development of this
work, the implementation preceded the theoretical development
[9]. Our first implementation traced the provenance for a much
more general class of (SQL) functions, i.e. we traced provenance
across operations like join, which implies non affine provenance
(the provenance of a record may be more than one input record).
Through our formalisation we subsequently discovered that this in
fact violates differential privacy. Used as a descriptive mechanism,
where we record privacy debt rather than spend from a budget, this
approach is still sound since it never needs to exclude any records
from queries, but it is less clear how to deploy such a system. The
restriction to unary union-preserving functions, on the other hand,
limits the functionality of client programs, but seems no worse than
Airavat’s mapper restrictions. In section 4.3 you can see a list of
relational algebra operations that guarantee to have records with
affine provenance. In any case, when a subcomputation cannot be
expressed via a union-preserving transformation we can still plug
in any other black-box differential privacy mechanism. This was
further discussed in Section 6.4.

On Dynamic Data and Utility Perhaps the biggest advantage of
PDP is that it smoothly supports dynamic databases in a PINQ style
system – something that seems difficult to achieve in the presence
of a single global budget. Our prototype implementation shows a
15% slowdown compared to PINQ, requiring just a constant space
overhead per record.

Another potential advantage of PDP is precisely personalisa-
tion; each individual can set her own privacy budget. However we
are cautious in our assessment of this as a feature in its own right
rather than just a means to an end. What is missing in the theory
of PDP is a proper treatment of utility. The personal budget deter-
mines how quickly a record will be “used up”. This complicates the
understanding of the utility of the information returned by queries.
But even if we start out with every record being assigned the same
budget, if the analyst has no prior on the data then it can be hard to
say much about the utility of any given query.

One particular case where utility guarantees may be easy to
give (without a prior) is the case when the rate at which new data
enters the database is sufficiently high relative to the rate at which



queries consume their budgets. Assume a stream of inputs with
flow rate f , queue size l and individual privacy budget of b. If
we apply ε-differentially private queries at an execution rate below
b×f
l×ε , then we can guarantee that ProPer can answer all queries
without excessive noise caused by blocking too many old records
from being used in queries. A more rigorous analysis of this idea is
appropriate for future work.
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A. Proof of Main Lemma (5.8)
Proof. Assume that σ r∼ σ′ and C0

σ
=⇒p C. We proceed by

induction on the length of the trace σ, and by cases according to
the last step of the trace.

Case 1: σ = []. Vacuous since we cannot have σ r∼ σ′ if there
are no inputs.

Case 2: σ = σ1a. Suppose that C0
σ1=⇒p1 〈P1, E1, B1〉

a−→p2

〈P,E,B〉 = C, and hence that p = p1p2. We split this into two
cases according to whether r is input on the last step, or earlier in
the trace:
Case 2.1: σ′ = σ1a

′ and {a, a′} = {T, T ∪ {r}}. Suppose
that a = T (the other case is argued similarly). Then we must have
P1

tv :=input−−−−−→ P for some tv , and hence:

C = 〈P,E1[tv 7→ Id(T )], B1[s 7→ E (s) | s ∈ T ]〉
C
′ = 〈P,E1[tv 7→ Id(T ∪ {r})], B1[s 7→ E (s) | s ∈ (T ∪ {r})]〉

= 〈P,E1[tv 7→ Id(T ∪ {r})], B1[s 7→ E (s) | s ∈ T ][r 7→ E (r)]〉



Hence C
r,E (r)∼ C′. Since the probability of the input transition is

1 we have p = q and hence p ≤ q. exp(E (r)− E (r)) as required.

Case 2.2: σ′ = σ′1a and σ1
r∼ σ′1.

The induction hypothesis gives us q1, P1, E′1, B′1 and ε1 such
that

C0
σ′
1=⇒q1 〈P1, E

′
1, B

′
1〉 (3)

E1
r∼ E′1 (4)

B1
r,ε1∼ B′1 (5)

p1 ≤ q1. exp(E (r)− ε1) (6)

From here we argue by cases according to the rule applied for
the last transition 〈P1, E1, B1〉

a−→p2 〈P,E,B〉. In every case
except for the query transition we will see that p2 = 1, and that
〈P1, E1, B1〉

a−→1 C
′ for some C′. In those cases it follows that

p ≤ q · exp(E (r)− ε) by taking ε = ε1 and using (6).

Case 2.2.1: Input. In this case a = T and P1
input−−−→ P . Hence

we have transitions

〈P1, E1, B1〉
T−→1 C

〈P1, E
′
1, B

′
1〉

T−→1 C
′

where

C = 〈P,E1[tv 7→ Id(T )], B1[s 7→ E (s) | s ∈ T ]〉
C
′ = 〈P,E′1[tv 7→ Id(T )], B′1[s 7→ E (s) | s ∈ T ]〉

Since r 6∈ T , it follows easily from 4 and 5 that C
r,ε1∼ C′.

Case 2.2.2: Silent. Similar (but simpler) argument to above – the
only change in the configuration is the program component, so it
follows directly from the IH.

Case 2.2.3: Constant Transformation. P1
tv :=T−−−−→ P and hence

〈P1, E1, B1〉
τ−→1 C and 〈P1, E

′
1, B

′
1〉

τ−→1 C
′ where

C = 〈P,E1[tv 7→ Const(T )], B1〉
C
′ = 〈P,E′1[tv 7→ Const(T )], B′1〉

and we reason as for case 2.2.1.
Case 2.2.4: Table variable. Similar to the previous case,

P1
tv :=tv′
−−−−→ P and hence 〈P1, E1, B1〉

τ−→1 C and 〈P1, E
′
1, B

′
1〉

τ−→1

C′ where

C = 〈P,E1[tv 7→ tv ′], B1〉
C
′ = 〈P,E′1[tv 7→ tv ′], B′1〉

and we reason as for case 2.2.1.
Case 2.2.5: F -Transformation. Here P1

t:=F (t1]...]tn)−−−−−−−−−−→ P ,
and so we have

C = 〈P,E1[tv 7→ F̂ (E1(tv1) ] · · · ] E1(tvn))], B1〉
C
′ = 〈P,E′1[tv 7→ F̂ (E′1(tv1) ] · · · ] E′1(tvn))], B′1〉

Since, from 4 we have E1(tv i)
r∼ E′1(tv i), i ∈ {1, . . . , n}, and

so from 5.6 and 5.5 it follows that F̂ (E1(tv1)] · · · ]E1(tvn))
r∼

F̂ (E′1(tv1) ] · · · ] E′1(tvn)) and hence we have that C
r,ε1∼ C′.

Case 2.2.6: Query. Here we have a rule instance of the form

Query
P1

Qε(tv)?n−−−−−−→ P

〈P1, E1, B1〉
n−→p2 C

and thus there is an analogous transition

〈P1, E
′
1, B

′
1〉

n−→q2 C
′

where

C = 〈P,E1, B〉 B = B1[s 7→ B1(s)− C(s) | s ∈ A]

C
′ = 〈P,E′1, B′〉 B′ = B′1[s 7→ B′1(s)− C′(s) | s ∈ A′]

C = [s 7→ ε · size(E1(tv) • {s}) | s ∈ dom(B1)]

C′ = [s 7→ ε · size(E′1(tv) • {s}) | s ∈ dom(B′1)]

A = {s | B1(s) ≥ C(s)} L = E1(tv) •A
A′ = {s | B′1(s) ≥ C′ (s)} L′ = E′1(tv) •A′

p2 = Pr(Qε(L) = n) q2 = Pr(Qε(L
′) = n)

Since the environments are unchanged in this transition, E1
r∼

E′1 follows immediately from the induction hypothesis. Suppose,
without loss of generality, that r is in C. Then it remains to show
that, for some ε′,

B
r,ε′

@ B′ (7)

p1 · p2 ≤ q1 · q2 · exp(E (r)− ε′) (8)

Let us first compare the respective cost mappings C and C′: E1

r
@

E′1 gives size(E1(tv) • {tv}) = size(E′1(tv) • {s}) whenever
s 6= r. Hence the only difference between C and C′ is a single
mapping:

C = C′[r 7→ ε · size(E1(tv) • {r})]. (9)

Now consider A and A′. Since C and C′ only differ on r, then if
B1(r) ≥ C(r) then A = A′ ] {r}. Otherwise A = A′. Consider
these cases in turn:
Case 2.2.6.1:A = A′. and henceL = L′, and hence p2 = q2. By
taking ε′ to be ε1, requirement (8) follows from the induction hy-
pothesis (6). Since the budget of r is unchanged in either transition,
then B

r,ε1∼ B′ follows from the induction hypothesis (5).

Case 2.2.6.2: A = A′ ] {r}.
L = E1(tv) • (A′ ] {r})

= E1(tv) •A′ ] E1(tv) • {r}
L′ = E′1(tv) •A′

= E1(tv) •A′

where the last step follows since r 6∈ A′ and E1
r∼ E′1. Hence

L = L′ ] (E(tv) • {r}) – i.e. the difference in the size of the
sets on which the respective queries are made is size(E(tv) • {r}).
SinceQε is ε-differentially private, it follows from the definition of
vanilla differential privacy that

p2 ≤ q2 · exp(ε · size(E(tv) • {r})) (10)

Combining this inequality with (6) we get

p1 · p2 ≤ q1 · q2 · exp(E (r)− ε1) · exp(ε · size(E(tv) • {r}))

Rearranging the exponents gives p1 · p2 ≤ q1 · q2 · exp(E (r)− ε′)
when ε′ = ε1 − ε · size(E(tv) • {r}). We complete the proof by

showing that this value of ε′ gives B
r,ε′∼ B′. From the induction

hypothesis (5) we have that B1 and B′1 agree on all values in their
domains except r, and from (9) we have that the same holds for C
and C′. Thus B and B′ only differ on r, for which

B(r) = B1(r)− C(r)

= ε1 − ε · size(E(tv) • {r})

and hence B
r,ε′∼ B′ as required.
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