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Abstract. This paper proposes an extensional semantics-based formal specification
of secure information-flow properties in sequential programs based on representing
degrees of security by partial equivalence relations (pers). The specification clarifies
and unifies a number of specific correctness arguments in the literature and connec-
tions to other forms of program analysis. The approach is inspired by (and in the
deterministic case equivalent to) the use of partial equivalence relations in specifying
binding-time analysis, and is thus able to specify security properties of higher-order
functions and “partially confidential data”. We also show how the per approach can
handle nondeterminism for a first-order language, by using powerdomain semantics
and show how probabilistic security properties can be formalised by using probabilis-
tic powerdomain semantics. We illustrate the usefulness of the compositional nature
of the security specifications by presenting a straightforward correctness proof for a
simple type-based security analysis.
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1. Introduction

1.1. MOTIVATION

You have received a program from an untrusted source. Let us call it
company M. M promises to help you to optimise your personal financial
investments, information about which you have stored in a database
on your home computer. The software is free (for a limited time),
under the condition that you permit a log-file containing a summary
of your usage of the program to be automatically e-mailed back to
the developers of the program (who claim they wish to determine the
most commonly used features of their tool). Is such a program safe to
use? The program must be allowed access to your personal investment
information, and is allowed to send information, via the log-file, back
to M. But how can you be sure that M is not obtaining your sensitive
private financial information by cunningly encoding it in the contents
of the innocent-looking log-file? This is an example of the problem of

* This is an extended version of the paper from the Proceedings of European
Symposium on Programming’99 [41].
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determining that the program has secure information flow. Information
about your sensitive “high-security” data should not be able to propa-
gate to the “low-security” output (the log-file). Traditional methods of
access control are of limited use here since the program has legitimate
access to the database.

This paper proposes an extensional semantics-based formal speci-
fication of secure information-flow properties in sequential programs
based on representing degrees of security by partial equivalence rela-
tions (pers'). The specification clarifies and unifies a number of specific
correctness arguments in the literature, and connections to other forms
of program analysis. The approach is inspired by and, in the deter-
ministic case, equivalent to the use of partial equivalence relations
in specifying binding-time analysis [19], and is thus able to specify
security properties of higher-order functions and “partially confidential
data” (e.g. one’s financial database could be deemed to be partially
confidential if the number of entries is not deemed to be confidential
even though the entries themselves are). We show how the approach
can also be adapted to handle nondeterminism in a first-order lan-
guage, and illustrate how the various choices of powerdomain semantics
affect the kinds of security properties that can be expressed, ranging
from termination-insensitive properties (corresponding to the use of
the Hoare (partial correctness) powerdomain) to probabilistic security
properties, obtained when one uses a probabilistic powerdomain.

1.2. BACKGROUND

The study of information flow in the context of systems with multiple
levels of confidentiality was pioneered by Denning [9, 10] in an extension
of Bell and LaPadula’s early work [5]. Denning’s approach is to apply
a static analysis suitable for inclusion into a compiler. The basic idea
is that security levels are represented as a lattice (for example the
two point lattice PublicDomain < TopSecret). The aim of the static
analysis is to ensure that information from inputs, variables or processes
of a given security level only flows to outputs, variables or processes
which have been assigned a higher or equal security level.

1.3. SEMANTIC FOUNDATIONS OF INFORMATION FLOW ANALYSIS

In order to verify a program analysis or a specific proof of a program’s
security one must have a formal specification of what constitutes secure
information flow. The value of a semantics-based specification for secure

! A partial equivalence relation is symmetric and transitive but not necessarily
reflexive.
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information flow is that it contributes significantly to the reliability of
and the confidence in such activities, and can be used in the system-
atic design of program analyses. Many approaches to Denning-style
analyses (including the original articles) contain a fair degree of for-
malism but arguably are lacking a rigorous soundness proof. Volpano
et al. [48] claim to give the first satisfactory treatment of soundness
of Denning’s analysis. Such a claim rests on the dissatisfaction with
soundness arguments based on an instrumented operational semantics
[35] or denotational semantics [32], or on “axiomatic” approaches which
define security in terms of a program logic [3] without any models to
relate the logic to the semantics of the programming language. The
problem here is that an “instrumented semantics” or a “security logic”
is just a definition, not subject to any further mathematical justifica-
tion. McLean points out [30] in a related discussion about the (non
language-specific) Bell and LaPadula model:

One problem is that ... they [the Bell LaPadula security properties|
constitute a possible implementation of security, ..., rather than
an abstract specification of what all secure systems must satisfy.
By concerning themselves with particular controls over files inside
the computer, rather than limiting themselves to the relation be-
tween input and output, they make it harder to reason about the
requirements, ...

This criticism points to more abstract, extensional notions of sound-
ness, based on, for example, the idea of noninterference introduced by
Goguen and Meseguer [12]. In the setting of information flow properties
of programs—rather than other abstract models of computation—the
earlier work of Cohen [6, 7] is the true predecessor to the present
article, since it also aims to provide semantics-based characterisations
of Denning-style information-flow properties. Cohen’s formalisation of
information flow properties of sequential deterministic programs is dis-
cussed in Section 2.4.

1.4. SEMANTICS-BASED MODELS OF INFORMATION FLoOwW

The problem of secure information flow, or “noninterference” is now
quite mature, and very many specifications exist in the literature—see
McLean’s tutorial [31] for an overview. Many approaches — including
those of Goguen and Meseguer and McLean have been phrased in
terms of abstract trace-based models of computation. These models
are typically based on nonstandard notions of automata. One criticism
of these abstractions is that they are not always well-motivated from
the point of view of the kinds of systems that they are intended to
abstract. For example, Goguen and Meseguer’s machines described only
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deterministic systems; McCullough’s nondeterministic version focused
on defining security via communication [28, 13], but computation is
modelled as a globally clocked synchronous system, which in retro-
spect is not well suited to modelling properties of distributed systems.
Even when “standard” models are used e.g., Moskowitz and Costich’s
use of classical automata [33], they have still been typically based on
traces, and lack information about deadlock and branching behaviours
(the way that nondeterminism is resolved). Only more recently have
attempts been made to rephrase and compare various security condi-
tions in terms of well-known semantic models specifically designed for
modelling concurrent systems e.g. the use of labelled transition systems
and bisimulation semantics by Focardi and Gorrieri [11].

In this paper we consider the problem of information-flow proper-
ties of sequential systems. The systems are those concretely realised
by programs, and we use the framework of denotational semantics as
our formal model of computation. Qur approach is based on standard
semantic models rather than ad hoc nonstandard extensions specific to
the problem of information flow — c.f., the addition of special “security
variables” as found in the work of Banétre et al. [4], or the “trust” tags
in the nonstandard dependence models used by Orbak [36].

Along the way we consider some relations to specific static analyses,
such as the Secure Lambda Calculus [15] and an alternative semantic
condition for secure information flow proposed by Leino and Joshi [25].

1.5. OVERVIEW

The rest of the paper is organised as follows.

Section 2 shows how the per-based condition for soundness of binding-
time analysis is also a model of secure information flow. We show how
this provides insight into the treatment of higher-order functions and
structured data.

Section 8 shows how the approach can be adapted to the setting of
a nondeterministic imperative language by appropriate use of a power-
domain-based semantics. We show how the choice of powerdomain
(upper, lower or convex) affects the nature of the security condition.

Section 4 focuses on an alternative semantic specification due to Leino
and Joshi. Modulo some technicalities we show that Leino’s condition—
and a family of similar conditions—are in agreement with, and can be
represented using our form of specification.
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Section 5 considers the problem of preventing unwanted probabilistic
information flows in programs. We show how this can be solved in the
same framework by utilising a probabilistic semantics based on the
probabilistic powerdomain [21].

Section 6 shows how the probabilistic security specification satisfies
compositionality properties which facilitates straightforward proofs of
correctness for compositional analyses. We illustrate the usefulness of
the compositional nature of the security specifications by presenting a
straightforward correctness proof for a type-based security analysis.

Section 7 concludes.

2. A Per Model of Information Flow

In this section we introduce the way that partial equivalence relations
(pers) can be used to model dependencies in programs. The basic idea
comes from Hunt’s use of pers to model and construct abstract inter-
pretations for strictness properties in higher-order functional programs
[18, 17], and in particular its use to model dependencies in binding-
time analysis [19]. Related ideas already occur in the denotational
formulation of live-variable analysis [34].

2.1. BINDING-TIME ANALYSIS AS DEPENDENCY ANALYSIS

Given a description of the parameters in a program that will be known
at partial evaluation time (called the static arguments), a binding-
time analysis (BTA) must determine which parts of the program are
dependent solely on these known parts (and therefore also known at
partial evaluation time). The safety condition for binding-time analysis
must ensure that there is no dependency between the dynamic (i.e.,
non-static) arguments and the parts of the program that are deemed
to be static. Viewed in this way, binding-time analysis is purely an
analysis of dependencies.?

Dependencies in Security In the security field, the property of absence
of unwanted dependencies is often called noninterference, after Goguen
and Meseguer [12]. Many problems in security come down to forms of
dependency analysis. For example, in the case of confidentiality, the

2 Unfortunately, from the perspective of a partial evaluator, BTA is not purely a

matter of dependencies; it was shown [16] that the pure dependency models [24, 19]
are not quite adequate to ensure the safety of partial evaluation.
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aim is to show that the outputs of a program which are deemed to
be of low confidentiality do not have any dependence on inputs of a
higher degree of confidentiality. In the case of integrity (trust), one
must ensure that the value of some trusted data does not depend on
some untrusted source.

But what is the precise meaning of the phrase “does not depend”?
This is formalised by asking whether variation in high input can ever
cause variation in the low output [7]. If no variation can be conveyed,
then there is no information flow from high inputs to low outputs. Put
more simply, if we change high security inputs, the low security output
is not affected. In the remainder of this section we show how these
ideas can be conveniently expressed using partial equivalence relations
to model the concept of variation, and we compare with Cohen’s early
formalisation of the problem [7].

Some intuitions about information flow Let us consider a program
modelled as a function from some input domain to an output domain.
Now consider the following simple functions mapping inputs to outputs:
snd : D x E — FE for some sets (or domains) D and E, and shift and
test, functions in N x N — N x N and N x N — N, defined by:

snd(z,y) =y
shift(z,y) = (z+y,y)
test(z,y) = ifx > 0thenyelse y+1

Now suppose that (h,[) is a pair where h is some high security infor-
mation, and [ is low, “public domain”, information. Without knowing
about what the actual values h and ! might be, we know about the
result of applying function snd to (h,[) will be a low value, and, in the
case that we have a pair of numbers, the result of applying shift will be
a pair with a high first component and a low second component.

Note that the function test does not enjoy the same security property
that snd does, since although it produces a value which is constructed
from purely low-security components, the actual value is dependent on
the first component of the input. This is what is known as an indirect
information flow [9].

It is rather natural to think of these properties as “security types”:

snd : high X low — low
shift : high x low — high x low
test : high X low — high

But what notion of “type”, and what interpretation of “high” and
“low” can formalise these more intuitive type statements? Interpreting

hosc.tex; 2/03/2001; 11:01; p.6



A Per Model of Secure Information Flow in Sequential Programs 7

types as sets of values is not adequate to model “high” and “low”. To
track degrees of dependence between inputs and outputs we need a
more dynamic view of a type as a degree of variation. We must vary
(parts of) the input and observe which (parts of) the output vary.
For the application to confidentiality we want to determine if there is
possible information leakage from a high level input to the parts of an
output which are intended to be visible to a low security observer. We
can detect this by observing whether the “low” parts of the output vary
in any way as we vary the high input.

The simple properties of the functions snd and shift described above
can be captured formally by the following formulae:

Vz,',y.snd(z,y) = snd(z’, y) (1)
Vz,z',y.snd(shift(z,y)) = snd(shift(z’, y)) (2)

Indeed, this kind of formula forms the core of the correctness arguments
for the security analyses proposed by e.g., Volpano and Smith et al.
[48, 43], and also for the extensional correctness proofs in the core of
the SLam calculus [15, 1].

High and Low as Equivalence Relations We show how we can interpret
“security types” in general as partial equivalence relations. We will
interpret high (for values in D) as the equivalence relation Allp, and
low as the relation Idp where for all z,2’ € D:

z Allp «'
zldpz <— z=1

For a function f : D — E and binary relations P € Rel(D) and
Q € Rel(E), we write f : P — Q iff

Vo, €e D.x Pz' = (f z) Q (f 2)
For binary relations P, () we define the relation P x @ by:
(z,y) PxQ (z'y) <= z P2’ & yQy
Now the security property of snd described by (1) can be captured by:
snd: Allp x Idg — Idg
and (2) is given by:
shift : Alin X Idn — Alln x Idn

An intuition for the relations All and Id is that they represent the
perspective of the “low” user (the user who does not have access to
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the high information). The low user can see the difference between
distinct low data elements, but one high datum is (or rather should
be) indistinguishable from any other. This perspective is important
when considering more complex lattices of security properties than just
the simple two point lattice of low and high security levels. In the
multi-level case one would model the perspective of a user at some
security level k£ by using the relation Id for all data of security class
less than or equal to k, and by All for all other classes—representing
the indistiguishability of data items which are not classified as being
visible at level k.

2.2. FROM EQUIVALENCE RELATIONS TO PERS

We have seen how the equivalence relations All and Id may be used to
describe security “properties” high and low. It turns out that these are
exactly the same as the interpretations given to the notions “dynamic”
and “static” by the per-based model of BTA [19]. This means that
the binding-time analysis for a higher-order functional language can
also be read as a security information-flow analysis. This connection
between security and binding-time analysis is already folklore (see e.g.
a comparison [45] of a particular security type system and a particular
binding-time analysis, and an investigation [8] which shows how the
incorporation of indirect information flows from Denning’s security
analysis can improve binding-time analyses).

It is worth highlighting a few of the pertinent ideas from the per-
based treatment of BTA [19]. Beginning with the equivalence relations
All and Id to describe high and low respectively, there are two im-
portant extensions to the basic idea in order to handle structured data
types and higher-order functions. Both of these ideas are handled by
the analysis [19] which rather straightforwardly extends Launchbury’s
projection-based binding-time analysis [24] to higher types. To some
extent the per model [19] anticipates the treatment of partially-secure
data types in the SLam calculus [15], and the use of logical relations in
their proof of noninterference.

For structured data it is useful to have more refined notions of
security than just high and low; we would like to be able to model
various degrees of security. For example, we may have a list of records
containing name-password pairs. Assuming passwords are considered
high, we might like to express the fact that although the whole list
cannot be considered low, it can be considered as a (low x high)list.
Constructing equivalence relations which represent such properties is
straightforward—see reference [19] for examples (which are adapted
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directly from Launchbury’s work), and reference [17] for a more general
treatment of finite lattices of “binding times” for recursive types.

To represent security properties of higher-order functions we use a
less restricted class of relations than the equivalence relations. A partial
equivalence relation (per) on a set D is a binary relation on D which is
symmetric and transitive. If P is such a per let |P| denote the domain
of P, given by:

|Pl|={z€D|z P x}

Note that the domain and range of a per P are both equal to |P|
(so for any z,y € D, if x P y then z P z and y P y), and that the
restriction of P to |P| is an equivalence relation. Clearly, an equivalence
relation is just a per which is reflexive (so |P| = D). Partial equivalence
relations over various applicative structures have been used to construct
models of the polymorphic lambda calculus (see, for example, Abadi
and Plotkin’s paper [2]). As far as we are aware, the first use of pers in
static program analysis is that presented in [18].

For a given set D let Per(D) denote the partial equivalence re-
lations over D. Per(D) is a meet semi-lattice, with meets given by
set-intersection, and top element All.

Given pers P € Per(D) and Q € Per(E), we may construct a new
per (P — Q) € Per(D — E) defined by:

f(P=Q)g
—
Ve,2/ € D.z P12’ = (f z) Q (g =)
If P is a per, we will write z : P to mean z € |P|. This notation and

the above definition of P — () are consistent with the notation used
previously, since now

f:P—=Q
= [f(P=Q)f
< Vo,i'€D.z Pz = (fz)Q(f =)
Note that even if P and @ are both total (i.e., equivalence relations),
P — () may be partial. A simple example is All — Id. If f : All — Id
then we know that given a high input, f returns a low output. A

constant function Az.42 has this property, but clearly not all functions
satisfy this.
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2.3. OBSERVATIONS ON STRICTNESS AND TERMINATION
PROPERTIES

We are interested in the security properties of functions which are
the denotations of programs (in a Scott-style denotational semantics),
and so there are some termination issues which should be addressed.
The formulation of security properties given above is sensitive to ter-
mination. Consider, for example, the following function f : N; —
N,

f=Azx.if £ >0 then x else fz

Clearly, if the argument is high then the result must be high. Now
consider the security properties of the function g o f where g is the
constant function g = Az.2. We might like to consider that g has type
high — low. However, if function application is considered to be strict
(as in ML) then g is not in |AllN, — Idn | since L Alin, 1 but
g(L) # g(1). Hence the function g o f does not have security type
high — low (in our semantic interpretation). This is correct, since on
termination of an application of this function, the low observer will
have learned that the value of the high argument was positive.

The specific security analysis of e.g. the first calculus of Smith and
Volpano [43] is termination sensitive—and this is enforced by a rather
sweeping measure: all “while”-loop conditions must be low and all
“while”-loop bodies must be low commands.

On the other hand, the type system of the SLam calculus [15] is not
termination sensitive in general. This is due to the fact that it is based
on a call-by-value semantics, and indeed the composition go f could be
considered to have a security type corresponding to “high — low”. The
correctness proof for noninterference carefully avoids saying anything
about nonterminating executions. What is perhaps worth noting here
is that had they chosen a non-strict semantics for application then the
same type-system would yield termination sensitive security properties!
So we might say that lazy programs are intrinsically more secure than
strict ones. This phenomenon is closely related to properties of para-
metrically polymorphic functions [40]. From the type of a polymorphic
function one can predict certain properties about its behaviour—the so-
called “free theorems” of the type [49]. However, in a strict language
one must add an additional condition in order that the theorems hold:
the functions must be bottom-reflecting (f(a) = L — a = 1). The
same side condition can be added to make e.g. the type system of the
SLam calculus termination-sensitive.

3 Not forgetting that the use of pers in static analysis was inspired, in part, by
Abadi and Plotkin’s per model of polymorphic types [2].
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To make this observation precise we introduce one further con-
structor for pers. If R € Per(D) then we will also let R denote the
corresponding per on D without explicit injection of elements from
D into elements in D ;. We will write R; to denote the relation in
Per(D, ) which naturally extends R by L R L.

Now we can be more precise about the properties of g under a strict
(call-by-value) interpretation: g : (AllN)L — Idn,, which expresses
that g is a constant function, modulo strictness. More informatively we
can say that g : Allny — Idn which expresses that g is a non-bottom
constant function.

It is straightforward to express per properties in a subtype system of
compositional rules (although we don’t claim that such a system would
be in any sense complete). Pleasantly, all the expected subtyping rules
are sound when types are interpreted as pers and the subtyping relation
is interpreted as subset inclusion of relations. For the abstract interpre-
tation presented in [19] this has already been undertaken by e.g. Jensen
[20] and Hankin and Le Métayer [14]. This natural subtyping relation
also suggests a straightforward generalisation to arbitrary lattices of
security levels.

2.4. COHEN’S FORMALISATION OF FLOW PROPERTIES

In the case of information flow properties, the first programming-lan-
guage-based formalisation of (in)security was due to Ellis Cohen [6, 7].
This was based on the view of programs as state transformers, as given
by a denotational semantics (although there is no explicit discussion of
nontermination issues). In [7], Cohen also considers “proof rules” for
reasoning about flow properties of programs, and these are claimed to
correspond to Denning’s informal flow analysis conditions [10]. Here we
recount the key definition of strong dependency from Cohen, and the
related notion of selective dependency, and show how these notions can
be expressed easily in the per setting.

For the sake of simplicity, we adapt Cohen’s definitions slightly so as
only to consider information flow between the initial value of a variable
h, and the final value of some variable [. Assume that the computation
state s is simply a record containing values s.h and s.I for the variables
h and [ respectively.

The notion of strong dependency between h and [, for a program C,
written h >C [, is defined by:

h DC | <= ds1, 59 (Sl.l =s9.l & ([[C]]Sl)l 75 ([[C]]Sg)l)
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This states that C' conveys definite information flow from the initial
value of h to the final value of [. Negating this condition we see that

—|(h I>C l) <~ —|E|81,32 (Sl.l =89.l & ([[C]]Sl)l 75 ([[C]]SQ)Z)
= Vs1, 52 —|(81.l =s9.l & (HC]]Sl).l # ([[C]]SQ).Z)
= Vs1, 52 (S1.l = s2.l = (HC]]Sl).l = ([[C]]SQ).Z)

This corresponds to the expected noninterference condition. We have
argued that this condition can be expressed using pers. But what is
more interesting is Cohen’s notion of selective dependency—since this
can be used to model partial information flow.

Let us define the following strengthened form of non-dependency
(corresponding to the negation of the predicate defined in [7], Definition
3-4). Let ¢ be a predicate on the value of h. The selective independence
property, written h ,bg [, is defined by: h bg [ iff

V81,82 (¢(31h) & ¢(82.h) & Sl.l = 32.l — ([[C]]Sl)l = ([[C]]Sg)l)

The role of ¢ is to place a restriction on the initial value of h, so as
to ask whether, despite this constraint, there is information flow to .
Consider the program C' = if h > 0 then [ := h. If we know that, for
example, the value of h is negative, then we know that C' cannot leak
information, since the assignment [ := h can never be reached. This
fact corresponds to the statement

=

It is straightforward to express properties of this form using pers. The
basic idea is to define the relation All® to be the relation All restricted
to values satisfying ¢. Define u All® v <= $(u) & ¢(v).

If we assume that a state s is simply a pair of the values of A and [
respectively, then the information flow property h bg [ corresponds to

[C] : (All? x Id) — (All x Id) |

2.5. PARTIAL INFORMATION FLOW

The selective independence notation is used to make statements about
partial information flow. We conclude with such an example (from [7]),
and show how these statements can also be expressed (more) concisely
with pers.

Let D be the program [ := h mod 4. Clearly there is information
leakage, but the information leaked is only the two least significant bits

hosc.tex; 2/03/2001; 11:01; p.12



A Per Model of Secure Information Flow in Sequential Programs 13

of h. To express this using selective independence, Cohen suggests the
following. For each i € {0, 1,2, 3}, define the predicate

¢i(vp) <= i=wvp (mod 4)

Now the collection of predicates {¢i}z‘:0,1,2,3 can be used to define the
flow property of the program:

Vi€ {0,1,2,3}.h B3 1

Clearly we can make a similar “for all” statement using pers. In the
per setting this can be expressed as a single statement. Let ¢ denote
the equivalence relation formed by taking the set of states satisfying
each ¢; to be the equivalence classes of the relation. This corresponds
to the relation given by U;All%. Then we can express the selective
independence property as:

[D] : (¢ x Id) — (All x Id)

The equivalence of this statement to Cohen’s formulation follows from
the general fact that for any disjoint pers P and () we have that PUQ
is a per, and that

fiP>S& f: Q-85 << f:(PUQ)—S

3. Nondeterministic Information Flow

In this section we show how the per model of security can be extended
to describe nondeterministic computations. We see nondeterminism as
an important feature as it arises naturally when considering the seman-
tics of a concurrent language (although the treatment of a concurrent
language remains outside the scope of the present paper.)

In order to focus on the essence of the problem we consider a very
simplified setting—the analysis of commands in some simple imperative
language containing a nondeterministic choice operator. We assume
that there is some discrete (i.e., unordered) domain St of states (which
might be viewed as finite maps from variables to discrete values, or
simply just a tuple of values).

3.1. SECURE COMMANDS IN A DETERMINISTIC SETTING

In the deterministic setting we can take the denotation of a command
C, written [C], to be a function in [St; — St ], where by [D| — E|]
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we mean the set of strict and continuous maps between domains D |
and E | . Note that we could equally well take the set of all (trivially
continuous) functions in St — St , which is isomorphic. The fact that
St is no more than a flat domain (i.e., a domain of height two) will
be important in the technical development.

Now suppose that the state is just a simple partition into a high-
security half and a low-security half, so the set of states is the product
Sthigh X Stiow. Then we might define a command C' to be secure if no
information from the high part of the state can leak into the low part:

C is secure <—

This is equivalent to saying that [C] : (All x Id) — (All x Id), since
we only consider strict functions. Note that this does not imply that
[C] terminates, but that the termination behaviour is not influenced
by the values of the high part of the state. It is easy to see that the
sequential composition of secure commands is a secure command, since
firstly, the denotation of the sequential composition of commands is
just the function-composition of denotations, and secondly, in general
for functions g : D — E and f : E — F, and pers P € Per(D),
Q € Per(E) and R € Per(F) it is easy to verify the soundness of the
inference rule:

g:P->Q [f:Q—+R
fog:P—R

3.2. POWERDOMAIN SEMANTICS FOR NONDETERMINISM

A standard approach to giving meaning to a nondeterministic language—
for example Dijkstra’s guarded command language—is to interpret a
command as a mapping which yields a set of results. However, when
defining an ordering on the results in order to obtain a domain, there
is a tension between the internal order of St | and the subset order of
the powerset. This is resolved by considering a suitable powerdomain
structure [39, 44]. The idea is to define a preorder on the finitely gener-
ated (f.g.) subsets (those non-empty subsets which are either finite, or
contain L) of St in terms of the order on their elements. By quotient-
ing “equivalent sets” one obtains a partial ordering, each depending on
a different view of what sets of values should be considered equivalent.
Consider the following three programs (an example from Plotkin’s notes
on Domain Theory [38]):

(1) z:=1 (2) z:=1]loop (3) loop
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In the “Hoare” or partial correctness interpretation the first two pro-
grams are considered to be equal since, ignoring nontermination, they
yield the same sets of outcomes. This view motivates the definition of
the Hoare or lower powerdomain, P [St ].

In the “Smyth” or total correctness interpretation, programs (2)
and (3) are considered equal (equally bad!) because neither of them
can guarantee an outcome. In the general case this view motivates the
Smyth or upper powerdomain, Py[St, ] [44].

In the “Egli-Milner” interpretation (leading to the convex or Plotkin
powerdomain in the general case) all three programs are considered to
have distinct denotations.

A domain D is flat whenever it has a trivial partial ordering (Vz,y €
D.z Cy<= x=yorz=1). Examples of flat domains are N and
St . A discrete powerdomain is the powerdomain of a flat domain. We
give a formal definition of each powerdomain construction in turn, and
give an idea about the corresponding discrete powerdomain P[St ].

Lower powerdomain Let A <X, B iff Vx € A.Jdy € B.x C y. In
this case the induced discrete powerdomain P [St ] is isomorphic to
the powerset of St ordered by subset inclusion. This means that the
domain [St; — P[St_]] is isomorphic to all subsets of St x St—
i.e. the relational semantics. The Hasse diagram for the construction
isomorphic to P [N ] is:

0,1,2,... .4}

0,1,2"" "
o o'y oy

!

Upper powerdomain The upper ordering on f.g. sets A, B, is given by:
A=yB <= VyeB.drcAzLCy

Here the induced discrete powerdomain Py[St ] is isomorphic to the

set of finite non-empty subsets of St together with St itself, ordered by

superset inclusion. The Hasse diagram for the construction isomorphic
to Py[N_] is:
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16 Andrei Sabelfeld and David Sands

Convexr powerdomain Let A <c¢ B iff A <Xy B and A <X, B. This
is also known as the Egli-Milner ordering. The resulting powerdomain
Pc[St ] is isomorphic to the f.g. subsets of St , ordered by:

ACc B <= either LA & A=B
orleA & A\{L}CB

The Hasse diagram for Pc[N ] is:

NOTE 1. The isomorphisms mentioned and depicted in the diagrams
above will be used implicitly in a number of constructions in this section
in order to give pointwise definitions and proofs about powerdomains.
(This is also the reason that the following development does not di-
rectly generalise from discrete to arbitrary powerdomains.) We will use
the subsets from the isomorphic constructions to represent elements of
the powerdomains P[St ] (the equivalence classes of f.g. subsets). In
the case of Pc[St ] (or Pc[NL]) it is straightforward—the equivalence
classes are singleton sets each containing an f.g. set (see the above
diagram for Pc[N_]).

A few basic properties and definitions on powerdomains will be
needed. For each powerdomain constructor P[—] define the order-pre-
serving “unit” map 7np : D — P[D] which takes each element a € D
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into (the powerdomain equivalence class of) the singleton set {a}. For
each function f € [D — P[E]] we define the extension of f, denoted
[*, where f* € [P[D] — P[E]] by:

fH(A) = Ugeaf(z)

For each powerdomain constructor P[—] the structure (P[D],np(z), *)
is a Kleisli triple or, alternatively, a monad, and thus satisfies the Kleisli
triple laws [27]:

Np = idp(p]
f=f"onp
groff=(g"0of)
This provides a canonical way of composing the semantics of pro-

grams. In the particular setting of the denotations of commands, it is
worth noting that [C;; Ca]] would be given by:

[C1;Co] = [Co]* o [C1]

3.3. PERS ON POWERDOMAINS

Given one of the discrete powerdomains, P[St | |, we will need a “logi-
cal” way to lift a per P € Per(St ) to a per in Per(P[St]).

DEFINITION 1. For each R € Per(D,) and each choice of power
domain P[—], let P[R] denote the relation on P[D ] given by:

APIR|B <= Vac A dbeB.aRb
& VbeB.da€ A.aRb

where we implicitly adopt the set-based representation of the elements
of the powerdomain (Note 1).

It is easy to check that P[R] is a per, and in particular that P[Idp | =
ldpp, ).

Henceforth we shall restrict our attention to the semantics of simple
commands, and hence the three discrete powerdomains P[St ].

PROPOSITION 1. For any f € [St. — P[StL]] and any R, S €
Per(St, ),

f:R—P[S] < f*:P[R] — P[5]
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18 Andrei Sabelfeld and David Sands

From this it easily follows that the following inference rule is sound:

[Ci] : P=P[Q] [Co] : @ — PIR]
[[Cl; CQ]] P — P[R]

3.4. THE SECURITY CONDITION

We will investigate the implications of the security condition under each
of the powerdomain interpretations. Let us suppose that, as before the
state is partitioned into a high part and a low part: St = Stjgs X St64-
With respect to a particular choice of powerdomain let the security
“type” C': high X low — high X low denote the property

[C] : (All x Id)| — P[(All x Id) ]

In this case we say that C is secure. Now we explore the implications

of this definition on each of the possible choices of powerdomain:

1. In the lower powerdomain, the security condition describes in a

weak sense termination-insensitive information flow. For example,
the program

if h = 0 then skip [ loop else skip

(h is the high part of the state) is considered secure under this
interpretation but the termination behaviour is influenced by A (it
can fail to terminate only when h = 0).

2. In the upper powerdomain nontermination is considered catastroph-

ic. This interpretation seems completely unsuitable for security
unless one only considers programs which are “totally correct” —
i.e. which must terminate on their intended domain. Otherwise,
a possible nonterminating computation path will mask any other
insecure behaviours a term might exhibit. This means that for any
program C, the program C || loop is secure!

3. The convex powerdomain gives the appropriate generalisation of

the deterministic case in the sense that it is termination sensitive,
and does not have the shortcomings of the upper powerdomain
interpretation.
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4. Relation to an Equational Characterisation

In this section we relate the per-based security condition to a proposal
by Leino and Joshi [25]. As before, assume for simplicity we have
programs with just two variables: h and [ of high and low secrecy
respectively. Assume that the state is simply a pair, where h refers
to the first projection and [ is the second projection.

Leino and Joshi [25] define the security condition for a program C
by:

HH;C;HH = C; HH

where “=" stands for semantic equality (the style of semantic spec-
ification is left unfixed), and HH is the program that “assigns to h
arbitrary values”—aka “Havoc on H”. We will refer to this equation
as the equational security condition. Intuitively, the equation says that
we cannot learn anything about the initial values of the high variables
by variation of the low security variables. The postfix occurrences of
HH on each side mean that we are only interested in the final value of
[. The prefix HH on the left-hand side means that the two programs
are equal if the final value of [ does not depend on the initial value of
h.

In relating the equational security condition to pers we must first
decide upon the denotation of HH. Here [25] we run into some potential
problems since it is necessary that HH always terminates, but never-
theless exhibits unbounded nondeterminism. Although this appears to
pose no problems in [25] (in fact it goes without mention), to handle
this we would need to work with non-w-continuous semantics, and
powerdomains for unbounded nondeterminism. Instead, we side-step
the issue by assuming that the domain of h, Stp;gp, is finite. Suppose
that Sty = {v1,...,vn}. Under this assumption, the definition of HH
can be given by the command:

hi=vi[---[|h:=vyp
and its denotation can be written:

[HH](L) ={L1}  [HH](h,)) ={(W,1) | ' € Sthign}

4.1. EQUATIONAL SECURITY AND PROJECTION ANALYSIS

A first observation is that the the equational security condition is
strikingly similar to the well-known form of static analysis for func-
tional programs known as projection analysis [50]. Given a function f,
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20 Andrei Sabelfeld and David Sands

a projection analysis aims to find projections (continuous lower closure
operators on the domain) « and S such that

Bofoa=pof

For (generalised) strictness analysis and dead-variable analysis, one is
given [, and « is to be determined; for binding time analysis [24] it is
a forwards analysis problem: given a one must determine some £.

For strict functions (e.g., the denotations of commands) projection
analysis is not so readily applicable. However, in the convex power-
domain HH is rather projection-like, since it effectively hides all infor-
mation about the high variable; in fact it is an embedding (an upper
closure operator) so the connection is rather close.

4.2. THE EQUATIONAL SECURITY CONDITION IS SUBSUMED BY
THE PER SECURITY CONDITION

Hunt [18] showed that projection properties of the form fo foa = fo f
could be expressed naturally as a per property of the form f : R, — Rjg
for equivalence relations derived from a and § by relating elements
which get mapped to the same point by the corresponding projection.
Using the same idea we can show that the per-based security condi-
tion subsumes the equation specification in a similar manner.
We will establish the following:

THEOREM 1. For any command C
[HH;C; HH] = [C; HH]

if
C : high X low — high X low

The idea will be to associate an equivalence relation to the function
HH. More generally, for any command C' let ker(C), the kernel of C,
denote the relation on St satisfying

s1 ker(C) s9 <= [C]s1 = [C] s2
Extend ker(C) to be the relation ker*(C) on P[St, ] given by:
A ker*(C) B« [C*A=[C]*B
Recall the per interpretation of the type signature of C.

C : high x low — high X low
<~
[C]: (All x Id), — P[(All x Id),]
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Observe that (All x Id), = ker(HH) since for any h,l,h',l' it holds
[HH](h,1) = [HH| (K1) iff | = 1" iff (h,1)(All x Id)  (K',1").

The proof of the theorem is based on this observation and on the
following two facts:

— Pl(All x Id) ] = ker*(HH) and
— [HH;C; HH] = [C; HH]| <= [C] : ker(HH) — ker*(HH).

Let us first prove the latter fact by proving a more general statement
similar to Proposition 3.1.5 from Hunt’s thesis [17] (the correspondence
between projections and per-analysis). Note that we do not use the
specifics of the convex powerdomain semantics here, so the proof is
valid for any of the three choices of powerdomain.

THEOREM 2. Let us say that a command B is idempotent iff [B; B] =
[B]. For any commands C and D, and any idempotent command B

[B;C; D] = [C; D] <= [C] : ker(B) — ker*(D)

Proof. (=) : Assume [B;C;D] = [C;D]. Let s;, so denote arbi-
trary states such that s; ker(B) so. We are required to show that
[C]s1 ker*(D) [C] s2- Now

[C; D]sy

= [B; C; D]s1 assn.

= [[C, D]]* o [[B]]Sl

= [C; D]* o [B] s2 ker(B) defn.

= [B; C; D] sz

= [[C, D]] §92.
Now [C; D]s1 = [C; D] s implies

[D1*([C1s1) = [PT*([CT s2)
[C]s1 ker*(D) [C] s2

as required.
(«<:) Assume [C] : ker(B) — ker*(D). Now [B]*([B]*A) = [B]*A
by idempotence, which implies

[B]*A ker*(B) A

= [C]*([B]*A) ker*(D) [C]*A assn.
< [DIM(ICT([B]*4)) = [DI*(IC]*A) defn. ker®(D)
— [B;C;D]*A =[C;D]*A O
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Corollary. Since [HH] is idempotent we can conclude that
[HH;C;HH]| = [C; HH] <= [C] : ker(HH) — ker*(HH)
It remains to establish the first fact.

THEOREM 3. P[(All x Id) ] = ker*(HH)

Proof. We reason “pointwise” using the implicit representation of A
and B as sets of states (cf. Note 1). (C): Suppose A P[(All x Id),] B,
we need to show [HH]*A = [HH]*B. Cases

1 e [HH]*A
— 1le€d HH 1-reflecting
— 1l€B
< 1 €[HH]*B
(h,l) € [HH]*A
<= Jhg.(ho,l) €A defn. (-)*
= 3Jhi.(h,l) €B
< Vh'.(W,l) € [HH]*B

(2): For the other direction assume [HH]*A = [HH]*B.

leA — 1l€B

(h,1) € A <= 3hy.(ho,l) € [HH]* A
= 3hy. (ho,l) € [HH]*B
< 3Jhi.(M,l) €B O

Thus, the equational and per security conditions in this simple case are
equivalent.

4.3. ABSTRACT VARIABLES

In a more recent extension of the paper, [26], Leino and Joshi update
their relational semantics to handle termination-sensitive leakages and
introduce abstract variables—a way to support partially confidential
data. Abstract variables h and [ are defined as functions of the concrete
variables in a program. For example, for a list of low length and high
elements, [ would be the length of the list and A would be the list itself.
In the general case the choice of h and [ could be dependent, so an
independence condition must be verified.

Abstract variables are easily represented in our setting. Suppose that
some function g € St — D yields the value (in some domain D) of the
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abstract low variable from any given state, then we can represent the
security condition on abstract variables by: [C] : Ry — P[(All x Id) ]
where s1Rgs0 <= gs1 = g so.

5. A Probabilistic Security Condition

There are still some weaknesses in the security condition when inter-
preted in the convex powerdomain when it comes to the consideration
of nondeterministic programs. In the usual terminology of information
flow, we have considered possibilistic information flows. The probabilis-
tic nature of an implementation may allow probabilistic information
flows for “secure” programs. Consider the program

h := h mod 100; (I := h [ | := rand(99))

This program is secure in the convex powerdomain interpretation since
regardless of the initial value of h, the final value of [ can be any value in
the range {0...99}. But with a reasonably fair implementation of the
nondeterministic choice and of the randomised assignment, it is clear
that a few runs of the program, for a fixed input value of h, could yield
a rather clear indication of its value by observing only the possible final
values of [, e.g.:

17,2,45,2,2,33,2,97,2,8,57,2,2,66, ...

—from which we might reasonably conclude that the value of h was
2. This observation is not new to this paper. It was first addressed in
an abstract setting by Gray [13]. The above example is adapted from
McLean [29]. In the setting of a concrete imperative language, Volpano
and Smith recently devised a probabilistic security type-system [47]
with a soundness proof based on an adaptation of Kozen’s probabilistic
operational semantics [22, 23]. They do not provide a definition of
what it means for a program to be secure, and the security condition
implicit in their correctness argument is not directly comparable—due
to the fact that they consider parallel deterministic threads and a non-
compositional semantics.

To counter the problem indicated by the example we consider proba-
bilistic powerdomains [21] which allow the probabilistic nature of choice
to be reflected in the semantics of programs, and hence enable us to
capture the fact that varying the value of h causes a change in the
probability distribution of values of [.
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5.1. PROBABILISTIC POWERDOMAIN OF DISTRIBUTIONS

In the “possibilistic” setting we had the denotation of a command C' to
be a continuous function in [St; — Pc[St_]]. In the probabilistic case,
given an input to C not only do we keep track of possible outputs, but
also of probabilities at which they appear. Thus, we consider a domain
&[St ] of distributions over St . The denotation of C is going to be a
function in [St; — &[St .]].

The general probabilistic powerdomain construction [21] on an in-
ductive partial order £[D] is taken to be the domain of evaluations,
which are certain continuous functions on Q(D) — [0, 1], where Q(D)
is the lattice of open subsets of D. We will omit a description of the
general probabilistic powerdomain of evaluations since for the present
paper it is sufficient and more intuitive to work with discrete power-
domains, and hence a simplified notion of probabilistic powerdomain
in terms of distributions. Evaluations rather than distributions would
be needed to give a probabilistic semantics to a concurrent language
based on the domain of resumptions [21]—but this is beyond the scope
of the present article.

If S is a set (e.g., the domain of states for a simple sequential
language) then we define the probabilistic powerdomain of S|, written
E[S.1] to be the domain of distributions on S, where a distribution p
is a function from S to [0,1] such that > ;- pd = 1. The ordering
on &[S, ] is defined pointwise by p < v iff Vd # 1. ud < vd. This struc-
ture is isomorphic to Jones and Plotkin’s probabilistic powerdomain of
evaluations for this special case.

As a simple instance of the probabilistic powerdomain construction
[21], one can easily see that £[S|] is an inductively complete partial
order with directed lubs defined pointwise, and with a least element
ns, (L), where g, is the point-mass distribution defined for an z € S|
by:

1, ifd==z
0, otherwise

UER (:C)d = {

To lift a function f : D1 — £[Dy] to type E[D1] — £[D3] we define the
extension of f by:

Py =Y f@)) pe)

x€D1

As in the case of the powerdomains for nondeterminism, the struc-
ture (£[D],np(x), *) is a Kleisli triple, and thus, similarly to Section 3.2,
we have a mechanism for composing the probabilistic semantics of any
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two given programs. Suppose f : Dy — £[Ds] and g : Dy — E[D3] are
such. Then the lifted composition (¢g* o f)* can be computed by one of
the Kleisli triple laws as g* o f*.

5.2. PERS ON PROBABILISTIC POWERDOMAINS

The next step towards the security condition is to define how pers work
on discrete probabilistic powerdomains. To lift pers to £[D] we need
to consider a definition which takes into consideration the whole of
each R-equivalence class in one go. The intuition is that an equivalence
class of a per is a set of points that are indistinguishable by a low-level
observer. For a given evaluation, the probability of a given observation
by a low level user is thus the sum of probabilities over all elements of
the equivalence class.

For a per R € Per(D) we define D/R to be the partition of | D| onto
R-equivalence classes. Given eg € D/R and a distribution x4 on D, let
p(er) be short-hand for 3°, .. p(x). Define the per relation £[R] on
E[D] for p,v € E[D] by:

pwE[R) v <= Ver € D/R. u(er) = v(er)

Naturally, p E[Id] v <= p = v and Vu,v € E[D]. u E[All] v.

As an example, consider E[(All x Id), ]. For two distributions x4 and
v on St; we have u E[(All x Id) ] v iff the probability of any given
low value [ in the left-hand distribution, given by -, pu(h,1), is equal
to the probability in the right-hand distribution, namely >, v(h,).

The probabilistic security condition is indeed a strengthening of the
possibilistic one—when we consider programs whose possibilistic and
probabilistic semantics are in agreement.

THEOREM 4. Suppose we have a possibilistic (convex) semantics [-]c
and a probabilistic semantics [-]¢, which satisfy a basic consistency
property that for any command C, if [C]gio > 0 then o € [C]ci.

Now suppose that R and S are equivalence relations on D. Suppose
further that C' is any command such that possibilistic behaviour agrees
with its probabilistic behaviour, i.e., 0 € [Cllci = [C]eio > 0. Then
we have that [Ce : R —&[S] implies [C]c : R — Pc[S].

Proof. For some a,b € D let y = [Clea and v = [C]eb. By [Cle :
R —&[S] deduce a R b = Vd € D.pu([d]s) = v(|d]s). What we need
to prove is a R b = [C]ca Pc[S] [C]cb. So, assume a R b and let us
show that

Vz € [Clca.3y € [Clcb-z Sy
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Take any z € [C]ca. By the agreement hypothesis yz > 0, since if z
is a possible output of program C run on data a, then the probability
of getting this output must be greater then 0. So u([z]s) > 0 and
therefore v([z]g) > 0. There must exist a y € [z]g such that vy > 0.
Thus, by the consistency property of the theorem’s assumption, y is a
possible output of program C run on data b, and y € [C]cb. The fact
that y € [z]s implies z S y. O

5.3. PROBABILISTIC SECURITY CONDITION FOR THE CASE OF TwO
VARIABLES

Let us derive the probabilistic powerdomain security condition for the
case of two variables h and [ and domain D = St . C is secure iff

[Cle : (All x Id), —&E[(All x Id),]

<> (in, 1) (All x 1d) 1 (i}, 9) = [Cle(in, i) E[(AlU x I1d) ] [Ce(3},,5;)
<~ V’ih,’ih,’l‘l. HCHg(ih,’il) 8[(All X Id)J_] [[C’]]g(z'h,zl)

Let p = HCﬂg(ih,’il) and v = [[C’]]g(zﬁl,zl)

<= V(on,01) € St 1. p([(on, 01)](auxid),) = v([(on,00)](auxra),)

= Vo, € Stipu-pl =vL & 35 cstyin #(0h00) = 2o, et Y (0h501)

So, a command C' is secure iff

[Cle(in,it) L = [Cle(in, i) L &

> [Clelin,i)(on, o) = Y [Clelit, i) (on, o)

0r,E€Sthigh 0r,E€Sthigh

for any i;,1p,4), and o;. Intuitively the equation means that if you vary
ip, the distribution of low variables does not change. The sums provide
projecting out the high variable.

Let us introduce probabilistic powerdomain semantics definitions for
some language constructs. Here we omit the £-subscripts to mean the
probabilistic semantics. Given two programs Cj,Cy such that [Ci] :
St; — &[Sty] and [C3] : St; — &[St.] the composition of two
program semantics is defined by:

[Ci;Colio= Y ([Ch] i s)-([Co] s o)

SEStJ_
The semantics of the uniformly distributed choice Cy [| Cy is defined by:
[[01 |:| 02]] 10= 0.5[[01]] 120+ 0.5[[02]] 10
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C ==skip | Id:= Ezp | C1;C2 | C1 [|p Ca
| if B then C else Cs | while B do C

Figure 1. Command syntax

In Section 6 we give the semantics of other language constructs.
Example. Recall the program

h :=h mod 100; (I := h [] I := rand(99))

Now we investigate the security condition by varying the initial value
of h from 0 to 1. Take ¢y = 0,7), = 0,4}, = 1 and o; = 0. The left-hand
side is:

3" [CIe(0,0)(0n,0) = 0.5 - 1+ 0.5 - 0.01 = 0.505
OhE[O,...,gg]

whereas the right-hand side is:

3" [Cle(1,0)(0n,0) = 0.5 -0+ 0.5 - 0.01 = 0.005
ohe[O,...,99]

So, the security condition does not hold and the program must be
rejected.

6. Analysis for Security Properties

The compositionality of the security condition can be fruitfully ex-
ploited when proving correctness of various compositional analyses.
Instances of such are type-system-based analyses. In this section we
investigate the compositionality properties of the security condition
and show how an example type system [46], compositionally extended
to handle probabilistic choice, can be proved correct with respect to
the probabilistic security condition of Section 5.

6.1. A SIMPLE SEQUENTIAL LANGUAGE WITH PROBABILISTIC
CHOICE

Consider a very simple sequential language with probabilistic choice

(Ip), described by the grammar in Figure 1. The semantics of the
language is defined in Figure 2. The definition is an adaptation of
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[skip] = As.ns
[Id := Exp] = As.ny, where s' = [eval(Exp,s)/Id]s
[C1; Co] = [Ca]" o [C1]
[C1[p Col =p-[Ci] + (1 —p) - [C]
[if B then C; else Co]] = As.if eval(B, s) then [C}] s else [Cs] s
[while B do C] = fix f.\s.if eval(B, s) then (f* o [C])s else 7

Figure 2. Probabilistic semantics of commands

the probabilistic semantics of Jones and Plotkin [21]. The eval(Ezp, s)
function evaluates a boolean or arithmetic expression Exp in a state
s. A state is a tuple of variable values. Given an input state, executing
commands skip and Id := Ezp results in the point-mass distribution
for the input state (updated in the case of assignment Id := Exp).

The semantics of the sequential composition is defined using the
extension operator introduced in Section 5.1.

When running C; |, C2, command C is chosen for execution with
probability p and Cs is chosen with probability 1 — p. The existence
of the least fixpoint fix in the definition of the semantics for while is
guaranteed by the inductive partial order construction of Jones and
Plotkin [21].

Let us first establish the compositional nature of the probabilis-
tic security condition and then go on with a straightforward proof of
correctness of the type system.

6.2. HOOK-uP PROPERTIES

We start with a proposition that will be useful when reasoning about
sequential composition of security types.

PROPOSITION 2. For any f € [St; — &[St ]] and any R, S €
Per(St, ),

f:R—E&[S] < f*:&[R] — £[Y]

Proof. (=): Assume f : R — £[S]. It means s1 R ss = f(s1) &[S]
f(s2) or, using the law f = f*on:

s1 R sy =Ves € St /S.(f*ns,)es = (f*ns,)es-

Suppose p E[R] v. We need to show (f*u) E[S] (f*v) or, unwinding
the definition of the per £[S]: Ves € St /S.(f*un)es = (f*v)es. For
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any eg € St /S:

(f*u)es
rewrite #(x) = EeRESt_L/R Z’I‘EeR H(T‘) - T’T (:L.)
= (f*(ECREStJ_/R E'I‘EBR ,U/('r) . 771“))65
distributivity of - and + over f*
= (EeREStJ_/R ErEeR N(T) : (f*ﬂr))es
distributivity of - and +
= ZeREStJ_/R ErEeR ,u(r) ' ((f*nr)65)

lhs of proposition

= EeREStJ_/R ZTEeR M(T) ' ((f*l']’r‘o)eS)
for some ¢ such that [ro]r = er

= ZeREStJ_/R((f*nTO)eS) ) ErEeR :u('r)

Yerest, /r((fmo)es) - p(er)

use Veg. u(er) = v(er)

= Yegest, /r((fmmo)es) - v(er)

= (f"v)es

(«<): Suppose r1 R r3. Need to show f(r1) E[S] f(rs).

T R ]

= M1 E[R] Mr2

= f*(nr,) EIS] f*(9r,) rhs of proposition
= f(r1) €[S] f(r2) f=fTen O

Corollary. From this proposition it easily follows that the following
inference rule is sound:
[C\]: P—=£[Q] [Co] : Q—E[R]
[01;02]] P — S[R]

In the standard security terminology, the hook-up property [28] says
that if two programs are secure then their composition (sequential or
some other kind) is secure as well. We will investigate what kinds of
composition are allowed. These properties are important since they are
the key to the utility of the specification for the purpose of proving the
correctness of syntax-directed program analyses.

Recall the probabilistic powerdomain security condition for the case
of two variables A and [ and domain D = St . A command C' is secure
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iff
[Cle(in, i) L =[Cle(ip, i) L &
> [Clelin,it)(on,0) = Y [Clle(ih,it)(on, o)
0RESthigh 0RESthign

for any i4;, 4,4, and o;.

We will need some definitions to study various kinds of composition.
A (boolean or arithmetic) expression Ezp is low iff As.eval(Exp,s) :
All x Id — Id. Otherwise, the expression is high.

We cannot plug a secure program into an arbitrary context to ob-
tain a secure program. (Take, for example, any ground context that
is insecure.) The security property is preserved by secure contexts, i.e.
contexts built with secure components. Let [e] be a hole for a command.
A context Cle,e9] is secure iff it has one of the following forms:

Cle1, 9] :: =skip | h:= Exzp | | := Ezp (Ezp is low)

| [o1]; [02] | [01] I [o2]
| if B then [e1] else [o2] (B is low )
| while B do [e1] (B is low )

Suppose f : D — £[D). Define f’s i’th iteration f*: D — E[D] by:
fO =1np fn—|—1 — f* o fn
THEOREM 5 (Hook-up).

— IfCy, Cy are secure and Cley, 5] is a secure context, then C[C1, Cs]
18 secure.

— If Cley, @3] = if B then [e1] else [83] (B is high), then C[C1,Cs]

is secure provided

[[Cl]] ((All X Id)J_ —»8[(All X Id)J_]) [[02]]

— IfCley, ®3] = while B do [e1] (B is high), then C[C1,C5] is secure
provided

(1) Vi,j € N.[C1]F ((All x Id), —E[(All x Id).]) [CL]!

(i1) Vs.[C[Cy,Cq]] s L=0

Proof. Cases on C[C},C5] = C. In each case we inspect the behaviour
of the program fed with two low-equal input states s; and sy (the low
components of the states are the same but the high components are
possibly different).
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skip
Start with low-equal s; and so. With either state, the computation
of skip terminates in one step with the same states. So, the final
states are low-equal as well.

[:= Ezp (Ezp is low)
Since Ezp is a low expression, the computation of the command
with low-equal initial states s; and so terminates with the same
states that are still low-equal.

h:= Ezp
Ezp can be arbitrary. Computing the command will not change
the low component of the states.

GHE
We know that [C;] : (All x Id), —&[(All x Id),],7 = {1,2}.
Applying the inference rule of the corollary of Proposition 2 yields
[Co]* o [C1] : (All x Id); —E[(All x Id),]. Thus, C is secure.

Cillp Co
Trivial, as computation does not depend on h.

if B then C; else C (B is low)
Start with low-equal s; and sy. The low expression B has the same
value in either state. Thus, one step of computation will lead to
a configuration with the same command (C; or C5 in both cases)
and low-equal states. Cy and Cs are secure and, therefore so is C.

if B then C; else Cy (B is high)
Start with low-equal s; and so. Here the value of B might differ
for s; and sg, but, due to the assumption of the theorem, we
have [C;] (E[(All x Id),]) [C;] for 4,5 € {1,2}. This guarantees
the security of C.

while B do C; (B is low)
Start with low-equal s; and s9. The low expression B has the same
value in either state. Thus, the fixpoints in the semantics of the
while under both initial states will be the same.

while B do C; (B is high)
Start with low-equal s; and so. The value of B might differ for s;
and so. However, from the assumption for this case we know that
(77) the while-loop terminates and (i) any number of Cj-iterations
will result in the same distribution of the final values of [. O
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6.3. TYPE-SYSTEM-BASED ANALYSIS

Let us exemplify how the compositional nature of the security condition
can be used for straightforward proofs of correctness of compositional
analyses. In this subsection we consider a nontermination-covert-flow-
sensitive type system by Volpano and Smith’s [46], adapted to our
language and extended to handle probabilistic choice. Note that this
is an instance of a particular analysis that will reject some secure pro-
grams. The compositionality of the security condition can be used for
justification of any compositional analysis of arbitrary precision. The
point of this subsection is not to develop a powerful analysis, but rather
to illustrate how simple the proof technique is using the compositional
security condition.

Let us now describe the type system. The basic idea is to give
security types (note the difference between these types and semantic
security types used in security specification) to expressions (high or
low) and commands (high c¢md or low ¢md) and make sure that these
types do not mismatch when composing the commands. The main job
of the types is to make sure that (i) an expression of type low does not
contain an occurrence of the high variable h, (i) a command of type
high c¢md does not have an occurrence of assignment to the low variable
[ and (4i7) while-loops have the type low c¢md. These properties can be
easily proved by induction.

The type system is presented in Figure 3. The rule Assign,, pre-
vents direct insecure information flows—for example, the assignment
[ := h is not typable. The rule If prevents indirect insecure flows—
the command if h = 0 then [ := 0 else [ := 1 cannot be typed since
the guard has type high and the branches have type low cmd. In this
particular system, the guard of the while-loop has to be low to pre-
vent nontermination leaks. The while-loop has to have type low cmd.
This guarantees that a while cannot be placed in a branch of a high
conditional, with could also introduce a potential nontermination leak.

Let us now prove the security of the type system. We start off with
a simple lemma. The lemma intuitively says that the behaviour of two
commands with no loops or assignments to / can only differ in the high
output as one varies the high input.

LEMMA 1. Cj : high ¢cmd,Cy : high cmd =
[Ci] ((All x Id), —&E[(All x Id),]) [C-]
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[Var] h : high l:low
[Exp] n:T Ezxp : high

Expy:low Exps: low

Arith
[Arithmy,,,] op(Ezxpy, Exps) : low
Exp : low
Assi
[Assign o] l:=Exp:low cmd
[ASSignhigh] hi=Eap:t emd

Ci:temd Coy:7 emd
C1;Cy : 7 cmd

[Seq]

Ci:temd Co:7 emd
ClﬂpCQ:Tcmd

[Choice]

B:7 Ci:temd Cy:7 cemd
if B then Cy else Cy : 7 ¢emd

[I]

B:low C:71cmd
while B do C : low ¢md

[While]
Figure 3. Type system for security

Proof. We need to show
[C1]e(in, i) L =[Colle(i},i) L &
> [CileCin,ir)(on, o) = Y [Cole(Ghit)(on, or)

OhESt]”'gh OhESthigh
for any 4;,p,1), and o;. Clearly, [Ci]e(in, @) L = 0 = [Cole(2),,4) L
since nontermination is only possible in the presence of a while-loop.
By property (iii) of the type system, no while-loop can occur in a
high command. From the fact that there are no assignments to [ (
(11)-property), deduce

Z [[Ci]]g(’l:h,il)(oh’ol) — { ]-; if il =0

on € Sthigh 0, otherwise

for both ¢ = 1, 2. This implies the second equality. O
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The following theorem is a straightforward utilisation of the hook-up
properties shown in Theorem 5.

THEOREM 6 (Security of the Analysis).
C:7 emd = C is secure.

Proof. Induction on C and direct application of the hook-up theorem.
Let us consider the cases by which C : 7 ¢md. The cases skip : 7 c¢md,
l:=Ezxp: low emd (Ezp : low) and h := Ezp : 7 ¢cmd are immediate
since C is a ground secure context. (The case | := Exp : low c¢md (Exp :
low) relies on the (7)-property of the type system which guarantees
Exp : low = Exp is low.)

The cases C1;C : 7 emd, Cy [l C2 : 7 emd, if B then C else O :
low emd (B : low) and while B do C : low ¢md (B : low) provide secure
contexts [o1];[e2], [81] [, [#2], if B then [e;] else [#3] and while B do [e]
(B is low by in the two latter by the (i)-property) respectively. By the
induction hypothesis the sub-commands are secure, so the conclusion
follows by the hook-up theorem.

The last case is if B then C; else Cs : high ¢cmd. Both C; and Co
have type high cmd. To apply the if-on-high case of Theorem 5 note
that by Lemma 1 we have [C1] ((All x Id), —&[(All x Id),])[Ce]. D

7. Conclusions

We have developed an extensional semantics-based specification of se-
cure information flow in sequential programs, by embracing and ex-
tending earlier work on the use of partial equivalence relations to model
binding times [19]. We have shown how this idea can be extended to
handle nondeterminism and also probabilistic information flow.

A final remark on some recent related work: Abadi, Banerjee, Heintze
and Riecke [1] show that a single calculus (DCC), based on Moggi’s
computational lambda calculus, can capture a number of specific static
analyses for security, binding-time analysis, program slicing and call-
tracking. Although their calculus does not handle nondeterministic
language features, it is notable that the semantic model given to DCC is
per-based, and the logical presentations of the abstract interpretation
for per-based BTA [19, 20, 14] readily fit this framework (although
this specific analysis is not one of those considered for DCC). They
also show that what we have called “termination insensitive” analyses
(Section 2.3) can be modelled by extending the semantic relations to
relate bottom (nontermination) to every other domain point (without
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insisting on transitivity). It is encouraging to note that—at least in the
deterministic setting—the per-based approach can be weakened to a
termination-insensitive condition without significant technical difficul-
ties. We do not, however, see any obvious way to make the probabilistic
security condition insensitive to termination in a similar manner.

We conclude by considering a few possible extensions and limita-
tions:

Multi-level security There is no problem with handling lattices of
security levels rather than the simple high-low distinction. But one
cannot expect to assign any intrinsic semantic meaning to such lattices
of security levels, since they represent a “social phenomenon” which
is external to the programming language semantics. In the presence
of multiple security levels one must simply formulate conditions for
security by considering information flows between levels in a pairwise
fashion (although of course a specific static analysis is able to do
something much more efficient).

Downgrading and Trusting There are operations which are natural
to consider but which cannot be modelled in an obvious way in an
extensional framework. One such operation is the downgrading of in-
formation from high to low without losing information—for example
representing the secure encryption of high level information. This seems
impossible since an encryption operation does not lose information
about a value and yet should have type high — low—Dbut the only
functions of type high — low are the constant functions. An analogous
problem arises with @rbaek and Palsberg’s trust primitive if we try to
use pers to model their integrity analysis [37].

Operational Semantics We are not particularly married to the de-
notational perspective on programming language semantics. We have
reported an examination of operational formulations of pers on a multi-
threaded language [42], based on partial bisimulations.

Constructing Program Analyses Although the model seems useful to
compare other formalisations, further work is needed to show that it
can assist in the systematic design of program analyses.

Concurrency Handling nondeterminism can be viewed as the main
stepping stone to formulating a language-based security condition for
concurrent languages. We have made an investigation of per-based secu-
rity conditions for a multi-threaded language [42], using an operational
rather than denotational semantic model of security.
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