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Abstract

An improvement theory is a variant of the standard theories of observa-
tional approximation (or equivalence) in which the basic observations made
of a functional program’s execution include some intensional information about,
for example, the program’s computational cost. One program is an improve-
ment of another if its execution is more efficient in any program context. In
this article we give an overview of our work on the theory and applications of
improvement. Applications include reasoning about time properties of func-
tional programs, and proving the correctness of program transformation meth-
ods. We also introduce a new application, in the form of some bisimulation-
like proof techniques for equivalence, with something of the flavour of San-
giorgi’s “bisimulation up-to expansion and context”.

1 Introduction

An improvement theory is a variant of the standard theories of observational ap-
proximation (or equivalence) in which the basic observations made of a program’s
execution include some intensional information about, for example, the program’s
computational cost. One program is an improvement of another if its execution is
more efficient in any program context.

In this article we survey a number of applications of a particular improvement
theory developed for a small untyped functional language.

The initial motivation for considering such relations was to support a simple cal-
culus for reasoning about time behaviour of non-strict functional programs (Sands
1993). From this work it was a natural step to consider a more general class of
improvement theories for functional languages, providing contextually robust the-
ories of optimisation (Sands 1991).

However, the real pay-off for this study is not in reasoning about efficiency prop-
erties per se, but in reasoning about equivalence: The Improvement Theorem (Sands
1995b) provides a condition for the total correctness of transformations on recur-
sive programs. Roughly speaking, the Improvement Theorem says that if the local
steps of a transformation are contained in a particular improvement theory, then
correctness of the transformation follows. This result has furnished:

9To appear: Eds. A. Gordon and A Pitts, Higher-Order Operational Techniques in Semantics,
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e an equivalence-preserving variant of the classic Unfold-Fold transformation
in a higher-order functional languages (Sands 1995b), and

e the first correctness proofs for a number of well-known transformation meth-
ods(Sands 1996a) (see also (Sands 1995a)).

New work reported in this article is the development of some proof techniques for
equivalence based on the improvement theory, with something of the flavour of
Sangiorgi’s “bisimulation up-to expansion and context”.

Overview

In the next section we introduce the syntax and semantics of the language used in
the remainder of the article. Section 3 introduces a simple improvement theory for
the language based on observing the number of recursive calls made during evalu-
ation. We introduce proof techniques for establishing improvement, and introduce
the tick algebra which facilitates the calculation of simple improvement properties.
Section 4 considers the application which originally motivated the study of im-
provement relations, namely the problem of time analysis of functional programs.
Section 5 describes a correctness problem in program transformation. We present
The Improvement Theorem, which shows, in principle, how the problem can be
solved by using improvement. Section 6 illustrates this application by consider-
ing a particular program transformation method. Finally, Section 7 introduces and
illustrates some proof techniques for the equivalence of programs which can be de-
rived from the Improvement Theorem.

2 Preliminaries

We summarise some of the notation used in specifying the language and its oper-
ational semantics. The subject of this study will be an untyped higher-order non-
strict functional language with lazy data-constructors.

We assume a flat collection of mutually recursive definitions of constants, each
of the form f £ ¢¢, where ¢ is a closed expression. Symbolsf, g, h ..., range over
the constants, f, , x,y, z...over variables and e, €1, €5 . . . over expressions. The
syntax of expressions is as follows:

e x | f | e;ey (Variable; Recursive constant; Application)

| Az.e (Lambda-abstraction)
|  caseeof (Case expressions)
paty = ey ...pat, = e,
| c(e) (Constructor expressions and constants)
| p(e) (Strict primitive functions)

pat = ¢(z) (Patterns)



Somewhat improperly we will refer to the constants f, g, etc., as function names,
or function calls. In general they need not be functions however.

We assume that each constructor ¢ and each primitive function p has a fixed ar-
ity, and that the constructors include constants (i.e. constructors of arity zero). Con-
stants will be written as ¢ rather than ¢(). The primitives and constructors are not
curried — they cannot be written without their full complement of operands. We
assume that the primitive functions map constants to constants.

We can assume that the case expressions are defined for any subset of patterns
{pat, ...pat,} such that the constructors of the patterns are distinct. A variable
can occur at most once in a given pattern; the number of variables must match the
arity of the constructor, and these variables are considered to be bound in the cor-
responding branch of the case-expression.

A list of zero or more expressions €1, . . . e, will often be denoted e. Application,
as is usual, associates to the left, so ((- - - (egey) . . .)€, ) may be writtenas eg € . . . €,
and further abbreviated to ¢q €.

The expression written e{z := €’} will denote simultaneous (capture-free) sub-
stitution of a sequence of expressions €’ for free occurrences of a sequence of vari-
ables z, respectively, in the expression e. We will use o, o/, ¢ etc. to range over
substitutions. The term FV(e) will denote the set of free variables of expression e,
and FV(e) will be used to denote a (canonical) list of the free variables of e. Some-
times we will informally write “substitutions” of the form {g := €} to represent the
replacement of occurrences of function symbols g by expressions e. This is not a
proper substitution since the function symbols are not variables. Care must be taken
with such substitutions since the notion of equivalence between expressions is not
closed under these kind of replacements.

A context, ranged over by C', (1, etc. is an expression with zero or more “holes”,
[ ], in the place of some subexpressions; C'[e] is the expression produced by replac-
ing the holes with expression e. Contrasting with substitution, occurrences of free
variables in e may become bound in C'[¢]; if C'[e] is closed then we say itis a closing
context (for €).

We write e = ¢’ to mean that e and ¢’ are identical up to renaming of bound
variables. Contexts are identified up to renaming of those bound variables which
are not in scope at the positions of the holes.

2.1 Operational Semantics, Approximation and Equivalence

The operational semantics is used to define an evaluation relation |} (a partial func-
tion) between closed expressions and the “values” of computations. The set of val-
ues, following the standard terminology (see e.g. (Peyton Jones 1987)), are called
weak head normal forms. The weak head normal forms, w, wy, ws,... € WHNF
are just the constructor-expressions ¢(e), and the Closures (lambda expressions),
as given by

w = cle) | Ar.e



The operational semantics is call-by-name, and |} is defined in terms of a one-step
evaluation relation using the notion of a reduction context (Felleisen, Friedman, and
Kohlbecker 1987). If e{}w for some closed expression e then we say that e evaluates
to w. We say that e converges, and sometimes write el} if there exists a w such that
ellw. Otherwise we say that e diverges. We make no finer distinctions between
divergent expressions, so that run-time errors and infinite loops are identified.

Reduction contexts, ranged over by IR, are contexts containing a single hole
which is used to identify the next expression to be evaluated (reduced).

Definition 1 A reduction context IR is given inductively by the following grammar

IR=1[]|Re]|case IR of pat, =e;...pat, = e, |p(c,IR,¢€)

The reduction context for primitive functions forces left-to-right evaluation of the
arguments. This is just a matter of convenience to make the one-step evaluation
relation deterministic.

Now we define the one step reduction relation. We assume that each primitive
function p is given meaning by a partial function [p] from vectors of constants (ac-
cording to the arity of p) to the constants (nullary constructors). We do not need
to specify the exact set of primitive functions; it will suffice to note that they are
strict—all operands must evaluate to constants before the result of an application,
if any, can be returned— and are only defined over constants, not over arbitrary
weak head normal forms.

Definition 2 One-step reduction — is the least relation on closed expressions sat-
isfying the rules given in Figure 1.

R[f] — IRle] (fun)
(if f is defined by f £ ¢¢)

R[(Az.e)e'] — IR[e{z:=¢€}] B3
IR[case ¢;(€) of ...ci(z;))=e€i...] — IR[e{z,:=¢€}] (case)
R[p(c)] — R[] (prim)

(if [ple= <)

Figure 1: One-step reduction rules

In each rule of the form IR[e] — IR[€'] in Figure 1, the expression e is referred to
as a redex. The one step evaluation relation is deterministic; this relies on the fact
that if e; — e, then e; can be uniquely factored into a reduction context /R and a
redex ¢’ such that e; = IR[¢]. Let —* denote the transitive reflexive closure of .



Definition 3 Closed expression e converges to weak head normal form w, ellw, if
and only if e —* w.

Using this notion of convergence we now define the standard notions of operational
approximation and equivalence. We use is the standard Morris-style contextual or-
dering, or observational approximation see e.g. (Plotkin 1975).The notion of “ob-
servation” we take is just the fact of convergence, as in the lazy lambda calculus
(Abramsky 1990). Operational equivalence equates two expressions if and only if
in all closing contexts they give rise to the same observation — i.e. either they both
converge, or they both diverge.

Definition4 /. e operationally approximates €', e T ¢, if for all contexts C
such that Cle], C[e'] are closed, if Cle]} then C[€']|].

2. e is operationally equivalent to ¢, e = ¢/, if e C €’ and €' C e.

Choosing to observe, say, only computations which produce constants would give
rise to slightly weaker versions of operational approximation and equivalence - but
the above versions would still be sound for reasoning about the weaker variants of
the relation.

3 A Theory of Improvement

In this section we introduce a theory of improvement, as a refinement of the the-
ory of operational approximation. Roughly speaking, improvement is a refinement
of operational approximation which expression e is improved by ¢’ if, in all clos-
ing contexts, computation using e’ is no less efficient than when using e, measured
in terms of the number of function calls (f, g, etc.) made. From the point of view
of applications of the theory to program transformation and analysis, the impor-
tant property of improvement is that it is a contextual congruence—an expression
can be improved by improving a sub-expression. For reasoning about improvement
a more tractable formulation of the improvement relation is introduced and some
proof techniques related to this formulation are used.

Variations on the Definition of Improvement There are a number of variations
that we can make in the definition of improvement. We could, for example, ad-
ditionally count the number of primitive functions called. Such variations might
be used to give additional information about transformations. However, the fact
that we count the number of recursive function calls in the definition of improve-
ment will be essential to the Improvement Theorem presented in the next section;
the Theorem does not hold if we use an improvement metric which does not count
these function calls.

We begin by defining a variation of the evaluation relation which includes the
number of applications of the (fun) rule.



Definition 5 Define e ~ €' if e — € by application of the (fun)rule; define e > €'
if e = €' by application of any other rule.
Define the family of binary relations on expressions {—,} ., inductively as fol-
lows: -
erso € if ersre
ersppr € 0f e ey v eg 3y € for some ey, e,

We say that a closed expression e converges in n (fun)-steps to weak head nor-
mal form w, written e|}"w if e —, w.

The determinacy of the one-step evaluation relation guarantees that if e{}"w and
el w' then w = w’ and moreover n = n’. It will be convenient to adopt the
following abbreviations:

def e e
o cl"ETw.ell"w o el Ze"&n<m e el = In. e
Now improvement is defined in a way analogous to observational approximation:

Definition 6 (Improvement) ¢ isimprovedby ¢, e > €', if for all contexts C such
that Cle], C[e'] are closed, if Cle]l)™ then C[e'|=".

It can be seen from the definition that > is a precongruence (transitive, reflexive,
closed under contexts, i.e. e > € = Cl[e] > C[€']) and is a refinement of opera-
tional approximation, i.e. ¢ > € = ¢ C ¢’

We also define a strong version of improvement which contains (by definition)
operational equivalence:

Definition 7 (Strong Improvement, Cost-Equivalence) The strong improvement
relation > s defined by: ¢ e ¢ ifand only ife > €' and e = ¢'.

The cost equivalence relation, <, is defined by: e <T> €' if and only if e > €’
and ' > e.

If R is arelation, then let R~' denote the inverse of the relation, so thata R b <—>
b R~ a. Itis not difficult to see that > = (>) N (). This fact, and other relation-
ships between the various preorders and equivalence relations we have considered
so far, are summarised in the Hasse diagram of Figure 2. In this lattice, the binary
meet (greatest lower bound) corresponds to the set-intersection of the relations, and
the top element, T, relates any two expressions.

3.1 Proving Improvement

Finding a more tractable characterisation of improvement (than that provided by
Def. 6) is desirable in order to establish improvement laws (and the Improvement
Theorem itself). The characterisation we use says that two expressions are in the
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Figure 2: A N-semi-sub-lattice of preorders

improvement relation if and only if they are contained in a certain kind of simula-
tion relation. This is a form of context lemma eg. (Milner 1977; Abramsky 1990;
Howe 1989), and the proof of the characterisation uses previous technical results
concerning a more general class of improvement relations (Sands 1991). In (Sands
1991), we abstracted over the way improvement is defined in terms of the oper-
ational semantics, and following Howe (1989), we gave some conditions which
guarantee that the simulation relations are sound for reasoning about improvement.

Definition 8 A relation TR on closed expressions is an improvement simulation
if for all e, €', whenever e TR ¢', if e|\"w; then €'||<™w, for some w, such that
either:

1wy =cler...e,), we=c(e)...€,),ande; IR €}, (1 € 1...n), or
2. wy,wy € Closures, and for all closed eq, (wy €9) TR (w3 €q)

For a given relation TR and weak head normal forms w, and wy we will abbre-
viate the property “(1) or (2)” in the above by wy IR 1 ws.

So, intuitively, if an improvement simulation relates e to ¢’, then if e converges, ¢’
does so at least as efficiently, and yields a “similar” result, whose “components”
are related by that improvement simulation.

The key to reasoning about the improvement relation is the fact that &>, restricted
to closed expressions, is itself an improvement simulation, and is in fact the largest
improvement simulation. Furthermore, improvement on open expressions can be
characterised in terms of improvement on all closed instances. This is summarised
in the following.



Let & denote the largest improvement simulation. It is easy to verify that this
exists, and is given by the union of all simulation relations. Let >° denote its ex-

tension to open terms specified by e B° ¢’ if and only if e &> €’o for all closing
substitutions o.

Lemma 1 (Improvement Context-Lemma) For all ¢, ¢/, ¢ > €' if and only if
e>° ¢

The most important part of the lemma, that &>° C I>, can be proved by a straightfor-
ward application of Howe’s method (Howe 1989) as illustrated in (Sands 1991).

We omit the proof here. The proof of the “completeness” part of the lemma, that
e > ¢’ implies e ZO €', is rather more involved than the proof of the corresponding
property for operational approximation. We give an outline of the main ingredients:

o Characterise £ inductively in the form ;. & . (where £ _is “simulation up

2<w N
to a depths”). Then e Z ¢ implies that there ex1sts a smallest m > 0 such
that e % e

e It is sufficient to assume e and e’ closed, and to show that e z e’ implies
e I ¢'. By induction on the minimal m above, this can be done by building a
context which distinguishes e and ¢’. This in turn depends on the existence of
contexts which can magnify any non-zero computational cost by an arbitrary
degree.

The lemma provides a basic proof technique:

to show that e > ¢’ it is sufficient to find an improvement-simulation
containing each closed instance of the pair.

An alternative presentation of the definition of improvement simulation is in terms
of the maximal fixed point of a certain monotonic function on relations. In that case
the above proof technique is called co-induction. This proof technique is crucial to
the proof of the Improvement Theorem which follows in the next section. It can
also be useful in proving that specific transformation rules are improvements. Here
is an illustrative example; it also turns out to be a useful transformation rule:

Proposition 9 [fthe free variables of IR are distinct from the variables in pat ,, . . ., pat,,

then
IR[case z of pat, = €, pat, = e, ]

<> case z of pat, = R[eq] - - - pat, = IR[e,]

PROOF. We illustrate just the I>-half. The other half is similar. Let 1 be the rela-
tion containing =, together with all pairs of closed expressions of the form:

( IR[case eg of c1(Z1) = €1...cn(Tn) =€, ],

case eg of ¢1(71) : Rle1] ... ca(Z,) 1 Rlen] ) G-D



It is sufficient to show that R is an improvement simulation. Suppose ¢ R ¢’, and
suppose further that el)"w. We need to show that ¢’|}="w’ for some w’ such that
w RT w'. If e = ¢’ then this follows easily Otherwise e and e’ have the form of
(3.1). Now since IR[case [ | of ¢1(Z1) = €1...¢,(Z,) = €, ] is areduction context,
then we must have

IR[case eq of ¢1(z1)=e1...c,(Tn) = €, |
—F  IR[case ¢;(¢") of c1(Z1) = €1 ... cn(Tn) = €, |

for some expression ¢;(€”), and some & < n and since each of these reductions is
“in” eg, we have matching reduction steps

case e of ¢1(z1) : Req]...cn(Z,) @ IRe,]
—F case ¢;(€") of ¢1(71) : Rle]. .. cn(7,) 1 Rey)

Now the former derivative reduces in one more step to IR[e;{z; := ¢"}|, whilst the
latter reduces to IR[e;]{z;:=¢€"}. Since reduction contexts do not bind variables,
and since by assumption the free variables of the patterns are disjoint from the free
variables of IR, then these are syntactically equivalent, and so we conclude that

case eg of ¢1(z1) = Rleq] ... c.(z,) = Rle,] " w.

The remaining conditions for improvement simulation (recall Def. 8 and the - T op-
erator) are trivially satisfied, since w = w, which implies w R! w as required. O

3.2 The Tick Algebra

A particularly useful method for reasoning about improvement is to make use of
certain identity functions, i.e., functions f such that for all e, f ¢ = e. Sometimes it
is useful to consider functions which are the identity for expressions e of a certain
type (e.g., lists). The point of such functions is that they take time to do nothing; in
other words f e I> e. Such functions facilitate the simple calculation of improve-
ments, and are used extensively in applications of the theory. Here we consider the
simplest form of identity function, which we call the tick function.

V.

e = ticke
where tick is an identity function, given by the definition
tick £ Az.x

The tick function will be our canonical syntactic representation of a single com-
putation step. From the point of view of observational equivalence we can safely
regard it as an annotation, since Ve o e; but from the point of view of improve-
ment it is more significant. In particular, since the tick is a function call, from the

operational semantics it should be clear that

el"h = Vel"'h



In terms of improvement, observe that Ve > ebute ¥ Ve (except if all closed
instances of e diverge).

A key property regarding the tick function is that if function f is defined by f £ e,
then
f <> Ve

In Figure 3 gives some simple laws for \/, the tick algebra, which we state with-
out proof. In the laws, IR ranges over reduction contexts, possibly containing free
variables. There is a related rule for propagation of ticks over contexts. If we de-
fine an open context C' to be strict if for all closing substitutions ¢, C'[ L]¢1}, where
1 is any closed expression such that L {}. Then we claim that for all expressions
e, C[Ve] > VC'[e]. The improvement is not reversible since the expression in the
hole may gset duplicated.

We will see see more of the tick functions when we come to consider applica-
tions of the theory.

e e e rs*e
e < Ve! e <> ¢
\/61 > \/62
Ve > e ———(similarly for > and <)
IR[\/e] < \/IR[e] \/p(el co€q) > pler .. Ve . .. €n)
v case ¢ of <> case ¢ of
(@) =er...cu(y)=e, (7)) = Ve, .. cen(Zn) = Ve,

Figure 3: Tick laws

4 Time Analysis using Cost Equivalence

In this section we consider the application of the theory of improvement — and in
particular the theory of cost equivalence — to the problem of reasoning about the
running-time properties of programs. This section summarises some of the work
developed in Sands (1993).

Prominent in the study of algorithms in general, and central to formal activities
such as program transformation and parallelisation, are questions of efficiencyi, i.e.,
the running-time and space requirements of programs. These are intensional prop-
erties of a program—properties of how the program computes, rather that what it
computes. In this section we illustrate how improvement can be used as a tool for
reasoning about the running time of lazy functional programs.



In Sands (1990) we introduced a simple set of “naive” time rules, derived di-
rectly from the operational semantics. These concern equations on (e), the “time”
to evaluate expression e to (weak) head normal form, and ()", the time to evaluate
e to normal form. One of the principal limitations of the direct operational approach
to reasoning is the fact that the usual meanings of “equality” for programs do not
provide equational reasoning in the context of the time rules. This problem moti-
vated the development of a nonstandard theory of operational equivalence in which
the number of computation steps are viewed as an “observable” component of the
evaluation process. The resulting theory is the cost equivalence relation defined in
the previous section.

4.1 Motivation

As amotivating example for developing techniques to support reasoning about run-
ning time, consider the following defining equations for insertion sort (written in a
Haskell-like syntax)

isort [ | = []
isort (h:t) = insert h (isort t)
insert X [ ] = [x]

insert x (h:t) x:(h:t) ifx <h

= h:(insert x t) otherwise

As expected, isort requires O(n?) time to sort a list of length n. However, under
lazy evaluation, isort enjoys a rather nice modularity property with respect to time:
if we specify a program which computes the minimum of a list of numbers, by tak-
ing the head of the sorted list',

minimum = head o isort

then the time to compute minimum is only O(n). This rather pleasing property of
insertion-sort is a well-used example in the context of reasoning about running time
of lazy evaluation.

By contrast, the following time property of lazy “quicksort” is seldom reported.
A typical definition of a functional quicksort over lists might be:

gsort[] = []
gsort (h:t) = gsort (below h t) ++(h:gsort (above h t))

where below and above return lists of elements from t which are no bigger, and
strictly smaller than h, respectively, and -+- is infix list-append. Functional accounts

! The example is originally due to D. Turner; it appears as an exercise in informal reasoning about
lazy evaluation in (Bird and Wadler 1988)[Ch. 6], and in the majority(!) of papers on time analysis
of non-strict evaluation.



of quicksort are also quadratic time algorithms, but conventional wisdom would la-
bel quicksort as a better algorithm than insertion sort because of its better average-
case behaviour. A rather less pleasing property of lazy evaluation is that by replac-
ing “better” sorting algorithm gsort for isort in the definition of minimum, we obtain
an asymptotically worse algorithm, namely one which is Q(n?) in the length of the
input. We will return to these examples.

4.2 Reasoning with Time

We outline how cost-equivalence can be used to help reason about the running time
of some simple lazy programs.

Time Equations The basic questions we wish to ask are of the form “How many
function-calls are required to compute the weak head normal form of expression e”.
Typically e will not be a simple closed expression, but will contain a meta-variable
ranging over some first-order input values (normal forms). As is usual, the kind
of answer we would like is a (closed form) function of the size of the input value,
representing the exact, or asymptotic, cost. We will not be particularly formal about
the treatment of meta-variables, so most of our reasoning is as if we are dealing with
(families of) closed expressions.

The basic idea is that we will use the instrumented evaluation el}"w as our cost-
model. In order to abstract away from the result of a computation it is convenient to
introduce phrases of the form (e): the time to compute expression e to weak head
normal form. In Sands (1993) we used rules along the lines of the following:

B N Gh) if e s ¢
(w) =0 <e>_{ 1+ (€) ife:e'

This has an obvious shortcoming that it does not model the usual implementation
mechanism. namely call-by-need, but proves to be adequate for many purposes.
An approach to call-by-need is investigated in Sands (1993) also, but we will not
consider it here. Here we will mainly work with the cost-equivalence relation, and
only employ the time equations when it is notationally convenient to abstract away
from the result computed by the “top-level” expression.

Notation For n > 0, let "Ve denote the application of n ticks to expression e.
The following property follows easily from the tick algebra:

Proposition 10 For all closed expressions e,
1. ell"w implies e <> "

2. e "' € WHNF implies ell"w for some w such that w <t w'.



isort 2 J\xs. case xs of
nel = nil
h :t=inserth (isort?)

insert = Ax.\ys. case ys of
nil = z : nil
h:t=if x <hthenz:(h:1)
else h : (insertz t)

Figure 4: Insertion Sort

In terms of the time equations, we note that if e <> "Ve' then (¢) = n + (€).
The point of the proposition is that we can use <> as a basis for reasoning about
evaluation steps. Moreover, because <I> is a congruence, we can use it to simplify
subexpressions.

Insertion Sort Returning to the example given earlier, Figure 4 presents the in-
sertion sort function, this time in the syntax of the language introduced earlier, but
retaining the infix “:” list constructor.

The time to compute the head-normal form of insertion sort is relatively simple
to determine. We consider computing the head normal form of insertion sort ap-
plied to some arbitrary (evaluated) list of integers v,, : ... : vy : nil where n > 1.
Let V5 denote the list nil and, for each 7 < n, let V;;; denote the list v;;; : V;. The
following shows that the time needed to compute the first element of insertion sort
is always linear in the length of the argument.

Proposition 11 Foralli > 0there exist expression €' and some valuev € {vy,...,v;}

such that _
isort V; <t> ity 2 ¢!

PROOF. By induction on ¢, and calculating using the tick algebra. In the base case
(¢ = 1) we have isort Vi <> Vinsert vy (isort V) < Vo i,
In the induction case (¢ = k + 1) we calculate:

isort Vi <> Vinsert V41 (isort V)
<> Vinsert Vkt+1 (2]““)\/(1) s €) (Hypothesis)
for some ¢’ and some v’ € {vq,...v;}

<> Mease PHIV(p 1 ) of ...
< G+ +1) v Vg1 < vthenvpyy tv: €

else v : (insertvyyq €)
Vg1 v € ifvper <w

(2(k+1)+1)y/
{ 2(k+1)+1)v;, . (insertvpyq €') otherwise



gs £ Axs. case xs of
nil = nil
h :t=-qs(below h t)++(h : qs(above h t))

below = Az.\ys. case ys of
nil = nil
h:t=if h <z thenh : belowz ¢
else below z ¢
rs+Hys = case xs of
nil = ys
h:t=h:(t+Hys)

Figure 5: Functional Quicksort

As a direct corollary we have (isort V;) = 2i + 1.

Quicksort Now we consider amore involved example. The equations in Figure 5
define a simple functional version of quicksort (gs) using auxiliary functions below
and above, and append written here as an infix function +. Primitive functions for
integer comparison have also been written infix to aid readability. The definition
for above has been omitted, but is like that of below with the comparison “>"" in
place of “<”.

The aim will be fairly modest: to show that quicksort exhibits its worst-case
O(n?) behaviour even when we only require the first element of the list to be com-
puted, in contrast to the earlier insertion sort example which always takes linear
time to compute the first element of the result. First consider the general case:

0 if e <> Ml

(gse) =1+ k+ gs(below A t) ' |
< ++(y : gs(above A t)) > ife > ™(h 1)

From the time rules and the definition of append, this simplifies to

0 if e <> Vil

1+ (gs(below y 2)) ife < *(h : 1) 4.1)

<qse>:1—|—k—|—{

Proceeding to the particular problem, it is not too surprising that we will use non-
increasing lists v to show that (qsv) = Q(r?). Towards this goal, fix an arbitrary
family of integer values {v; };-o such that v; < v; whenever ¢ < j. Now define the



set of non-increasing lists { A; };>o by induction on z: let A, denote the list nil, and,
for each & > 0 let Ay denote the list vyyq : Aj.

The goal is now to show that (gs(A,,)) is quadratic in n. It is easy to see, instan-
tiating (4.1) that
(as(Ax+1)) = 2 + (as(below vy41 Ag))

but continuing with this simple style of reasoning we quickly see the limitations
of the “naive” operational approach to reasoning. Unlike the insertion-sort exam-
ple where basic operational reasoning is sufficient (see (Sands 1993), where cost
equivalence is not used for the isort example), the successive calls to gs become
increasingly complex. The key to showing that (gs A,,) is quadratic in » is the iden-
tification of a cost equivalence which allows us to simplify (a generalised version
of) the call to below. To do this we will need another form of identity function.

Identity Functions on Lists We introduce another identity function, this time on
the domain of list-valued expressions. Let T be the identity function on lists given
by
T £ Az. case z of

nil = nil

h:t=(h:Tt)
As with the tick function, let T denote the n-fold composition of T, where T e is
just e. It follows from this definition that

T7 nil < Vil
T (h:t) < "™h:T")

So T™ is an identity function for lists which increases the cost of producing each
constructor in the list’s structure by n ticks. We use T to characterise a key property
of a certain call to below:

Proposition 12 Forall a > 0, and 1, 5 such that 0 < j < 1,

below (v;, T*A;) <> T+ A4,

PROOF. By induction on j, using the tick algebra (it can also be proved straight-
forwardly by coinduction).



Base: (j =0) below(v;, T*4q) < Vease T% Ay of . . )
<> \/(case "Vhil of .. J)
< “MY(nil)
<;LD T+l A,
Induction: (j = k+1) below(v;, T* Aj11)
<> \/(case TApyq of )
<> “H\/(case Vgg1 : T*Ag of L)
> P vppr < v, then vy @ below(v;, T*Ay)
else below(v;, T*Ay))
D “TV(ogy : below(v;, T*Ay))
DU MV vpyr s T AR) (Hypothesis)

< T A
0

Now we can make use of the proposition in the analysis of quicksort. We consider
the more general case of (qs T*A;). Considering the cases when j = 0 and j =
k + 1, and instantiating the general time equation gives:

(qs(T*Ap)) = 1+4a

(qs(T*Ag41)) = 2+ a+ (gs(below vyyy T*Ag))
= 2+ a+ (gs(T*T1 A))

Thus we have derived a recurrence equation which is easily solved; a simple induc-
tion is sufficient to check that
n(n+5
(qsT*A,) = % fa(n+1)+1.
Finally, since the A, are just T° A,,, we have that the time to compute the weak head
normal form of gs A,, is quadratic in n:

n(n +5)

(g5 An) = ——

+ L.

Further Work Under a call-by-need computation model some computations are
shared, so we would expect that, for example, (Az.x + ) V0 <> V0 where +

is a primitive function. Instead, we get (Az.z + ) 0 <> 200 which can make
cost equivalence unreliable for reasoning about non-linear functions. As we men-
tioned earlier, the problems of reasoning about call-by-need are addressed in Sands
(1993)— but not via a call-by-need theory of cost equivalence. Defining call-by-
need improvement is not problematic. The problem is to find an appropriate context
lemma, and this is a topic we plan to address in future work. The applications of
the Improvement Theorem introduced in the next section depend less critically on



the intentional qualities of improvement theorem. For these applications the call-
by-name origin of our improvement theory is often advantageous, since for exam-
ple unrestricted beta-reduction is an improvement for call-by-name. We do not yet
know whether the development of the next section will go through for a call-by-
need theory.

S The Improvement Theorem

In this section we motivate and introduce the Improvement Theorem. The Improve-
ment Theorem employs the improvement relation to prove the correctness of pro-
gram transformations. The interesting point of this application is that the goal is
not to prove that program transformations improve programs per se, but simply to
prove that they produce operationally equivalent programs.

5.1 The Correctness Problem

The goal of program transformation is to improve efficiency while preserving mean-
ing. Source-to-source transformation methods such as unfold-fold transformation,
partial evaluation (specialisation) and deforestation (Burstall and Darlington 1977;
Jones, Gomard, and Sestoft 1993; Wadler 1990), are some well-known examples.
These kind of transformations are characterised by the fact that

o they utilise a small number of relatively simple transformation steps, and

e in order to compound the effect of these relatively simple local optimisations,
the transformations have the ability to introduce new recursive calls.

Transformations such as deforestation (Wadler 1990) (a functional form of loop-
fusion) and program specialisation (and analogous transformations on logic pro-
grams) are able to introduce new recursive structures via a process of selectively
memoising previously encountered expressions, and introducing recursion accord-
ing to a “déja vu” principle (Jones, Gomard, and Sestoft 1993). In the classic unfold-
fold transformation, it is the fold step which introduces recursion. See Pettorossi
and Proietti (1995) for an overview of transformation strategies which fit this style.

The problem is that for many transformation methods which deal with recursive
programs (including those methods mentioned above), correctness cannot be ar-
gued by simply showing that the basic transformation steps are meaning preserving.>
Yet this problem (exemplified below) runs contrary to many informal-—and some
“formal”’—arguments which are used in attempts to justify correctness of particular
transformation methods. This is the problem for which the Improvement Theorem
was designed to address.

2One might say that there are two problems with correctness — the other problem is that it has
not been widely recognised as a problem!



To take a simple example to illustrate the problem, consider the following “trans-
formation by equivalence-preserving steps”. Start with the function repeat which
produces the “infinite” list of its argument:

repeatz £ x : (repeat x)

Suppose the function tail computes the tail of a list. The following property can
be easily deduced: repeat z = tail(repeat 2). Now suppose that we use this “local
equivalence” to transform the body of the function to obtain a new version of the
function:

repeat’z £ z : (tail(repeat’ z))

The problem is that this function is not equivalent to the original, since it can never
produce more than first element in the list.

One might be tempted to suggest that this is “just a problem of name-capture”,
and to conclude that the problem can be solved by

e notallowing transformations on the body which depend on the function being
transformed; in the example above, this means that if we transform the body,
repeat must be treated as a free variable, or

e making the new function non-recursive, so that e.g., we would obtain:

repeat’ z £ z : (tail(repeat 7))

Unfortunately these “solutions”, while preventing us from performing incorrect trans-
formations, also prevent us from performing any interesting correct ones!

5.2 A Solution: Local Improvement

To obtain total correctness without losing the local, stepwise character of program
transformation, it is clear that a stronger condition than extensional equivalence for
the local transformation steps is needed. In Sands (1995b) we presented such a con-
dition, namely improvement.

In the remainder of this section we outline the main technical result from Sands
(1995b), which says that if transformation steps are guided by certain natural opti-
misation concerns, then correctness of the transformation follows. We also present
“local” version of the Improvement Theorem which is stated at expression-level
recursion using a simple “letrec” construct.

More precisely, the Improvement Theorem says that if e is improved by €', in
addition to e being operationally equivalent to ¢, then a transformation which re-
places e by ¢’ (potentially introducing recursion) is totally correct; in addition this
guarantees that the transformed program is a formal improvement over the original.

Notice that in the problematic example above, replacement of repeat x by the
equivalent term tail(repeat ) is not an improvement since the latter requires eval-
uation of an additional call to repeat in order to reach weak head normal form.



The fact that the theorem, in addition to establishing correctness, also guaran-
tees that the transformed program is an improvement over the original is an added
bonus. It can also allow us to apply the theorem iteratively. It also gives us an
indication of the limits of the method. Transformations which do not improve a
program cannot be justified using the Improvement Theorem alone. However, in
combination with some other more basic methods for establishing correctness, the
Improvement Theorem can still be effective. We refer the reader to Sands (1996b)
for examples of other more basic methods and how they can be used together with
the Improvement Theorem.

For the purposes of the formal statement of the Improvement Theorem, trans-
formation is viewed as the introduction of some new functions from a given set
of definitions, so the transformation from a program consisting of a single function
f £ etoanew versionf £ ¢’ will be represented by the derivation of a new function
g 2 ¢/{f:=g}. In this way we do not need to explicitly parameterise operational
equivalence and improvement by the intended set of function definitions.

In the following (Theorem 1 — Proposition 14) let {f;},.; be a set of functions
indexed by some set /, given by some definitions:

{fi £ e; }ier

Let {e!},.; be a set of expressions. The following results relate to the transforma-
tion of the functions f; using the expressions e: let {g; },.; be a set of new functions
(i.e. the definitions of the f; do not depend upon them) given by definitions

{gi 2 e{f:=g}}ier

We begin with the standard partial correctness property associated with “transfor-
mation by equivalence’:

Theorem 1 (Partial Correctness) Ife; = ¢; forall v € I, theng; C_f;, 1 € 1.

This is the “standard” partial correctness result (see eg. (Kott 1978)(Courcelle 1979))
associated with e.g. unfold-fold transformations. It follows easily from a least fixed-
point theorem for [ (the full details for this language can be found in Sands (1996b))
since the f are easily shown to be fixed points of the defining equations for functions

g.

Partial correctness is clearly not adequate for transformations, since it allows
the resulting programs to loop in cases where the original program terminated. We
obtain a guarantee of total correctness by combining the partial correctness result
with the following:

Theorem 2 (The Improvement Theorem (Sands 1995b)) If we have ¢; &> ¢ for
all1 € I, thent; > g;, 1 € I.

The proof of the Theorem, given in detail in (Sands 1996b), makes use of the alter-
native characterisation of the improvement relation given later.

Putting the two theorems together, we get:



Corollary 13 Ifwe have ¢; 28 el forall i € I, then f; RS gi,t € I
Informally, this implies that:

if a program transformation proceeds by repeatedly applying some set
of transformation rules to a program, providing that the basic rules of
the transformation are equivalence-preserving, and also contained in
the improvement relation (with respect to the original definitions), then
the resulting transformation will be correct. Moreover, the resulting
program will be an improvement over the original.

There is also a third variation, a “cost-equivalence” theorem, which is also useful:

Proposition 14 Ife; < ¢; forall i € I, thenf; <t g;, i € 1.

5.3 An Improvement Theorem for Local Recursion

In this section we introduce a form of the improvement theorem which deals with
local expression-level recursion, expressed with a fixed point combinator or with a
simple “letrec” definition.

Definition 15 Let fix be a recursion combinator defined by fix £ Ah.h(fix k). Now
define a letrec expression letrec h = e in €' as a syntactic abbreviation for the
term (Ah.€')(fix Ah.e).

Using these definitions we can present an expression-level version of the Improve-
ment Theorem, analogous to Corollary 13:

Theorem 3 (Sands 1996a) If M\h.eq and M\h.e, are closed expressions, then if
letrec h = g in eq 28 letrec h = ey in e
then for all expressions e

letrec h = egine > letrech = e ine
S

There is a more primitive variant of this theorem expressed in terms of fix which
nicely illustrates the reciprocity between the least fixed-point property and the Im-
provement Theorem?

Theorem 4

61(ﬁX 60) — fix €g g fix €1
61(ﬁX 60) — fix €g R fix €1

3This variant was suggested by Sgren Lassen (Aarhus).



PROOF. Parts () and (¢7) can be established easily from Theorem 1 and Theorem 2
respectively. Here we just sketch how part (:¢) can be derived, since part () is
standard. Assume that eq(fix €9) > e;(fix €9). Defineg £ eq(fix €o); it follows from

this definition that g <> \/eo(fix eo) < fixeg. From the initial assumption we
can use this to show that eg(fix eg) > €; g. By Theorem 2 we have g > h where

h = e; h. But h <> fix ¢4, and hence we can conclude fix eq > fix e; are required.
|

6 Example Application to the Correctness of Program
Transformations

In this section we illustrate the application of the Improvement Theorem to the veri-
fication of the correctness of a small program transformation. The example is taken
from Sands (1996b), and concerns a transformation described in Wadler (1989).
More extensive examples are found in Sands (1996a), where the Improvement The-
orem is used to provide a total correctness proof for an automatic transformation
based on a higher-order variant of the deforestation method (Wadler 1990).

The main application studied in Sands (1996b) is the classic unfold-fold method.
The problem is different from the task of verifying specific transformation methods
(such as the one in this section) because, in general, unfold-fold transformations are
not correct. Task is to design, with the help of the Improvement Theorem, a simple
syntactic method for constraining the transformation process such that correctness
is ensured.

6.1 Concatenate Vanishes

We consider a simple mechanizable transformation which aims to eliminate calls
to the concatenate (or append) function. The effects of the transformation are well
known, such as the transformation of a naive quadratic-time reverse function into
a linear-time equivalent.

The systematic definition of the transformation used here is due to Wadler (Wadler
1989) (with one small modification). Wadler’s formulation of this well-known trans-
formation is completely mechanizable, and the transformation “algorithm” always
terminates. Unlike many other mechanizable transformations (such as deforesta-
tion and partial evaluation), it can improve the asymptotic complexity of some pro-
grams.

The basic idea is to eliminate an occurrence of concatenate (defined in Fig. 5)
of the formfe; ... e,+¢, by finding a function f* which satisfies

fto 2,y (fay...2,)Hy.



Definition 1 (“‘Concatenate Vanishes) The transformation has two phases: ini-
tialization, which introduces an initial definition for f+, and fransformation, which
applies a set of rewrites to the right-hand sides of all definitions.

Initialization For some functionf z; ...z, £ e, for which there is an occurrence
of aterm (f ey ...e,)+¢ in the program, define a new function

fte ... 2,y 2 etHv.

Transformation Apply the following rewrite rules, in any order, to all the right-
hand sides of the definitions in the program:

(1) nlHz — =z

(2) (x:y)Hz — z:(y+H=)

(3) (zHy)+Hz = rH(y+2)

(4) ( case x of —  case z of
a(th)=e c1(y1) = (e1+2)
Cn(Un) = €n)+H2 en(Un) = (entt2)

(5) (fzy...zp)Hy — fra .. 2,y

(6) (ftay...zpy)Hz — o .z, (y+H2)

In rule (4) (strictly speaking it is a rule schema, since we assume an instance for
each vector of expressions €; . .. e,,) it is assumed that z is distinct from the pattern
variables ;.

Henceforth, let — be the rewrite relation generated by the above rules (i.e., the
compatible closure) and —7 be its transitive closure.

It should be clear that the rewrites can only be applied a finite number of times,
so the transformation always terminates—and the rewrite system is Church-Rosser
(although this property is not needed for the correctness proof).

Example 16 The following example illustrates the effect of the transformation: itrav
computes the inorder traversal of a binary tree. Trees are assumed to be built from
a nullary leaf constructor, and a ternary node, comprising a left subtree, a node-
element, and a right subtree.

itrav { £ case t of
leaf = nil
node(l,n,r) = (itravl)+H-(n : itravr).

The second branch of the case expression is a candidate for the transformation,
so we define:

itrav ¢y £ (case ¢ of
leaf = nil
node(l, n,r) = (itravl)+(n : itravr)
)+y



Now we transform the right-hand sides of these two definitions, respectively:

case t of leaf = nil
node(l,n,r) = (itravl)+-(n : itrav r)
case t of leaf = nil
node(l,n,r) = itrav’ [ (n : itravr)

(case t of leaf = nil
node(l,n,r) = (itravl)+(n : itrav r))Hy
— case t of leaf = nil4++y
node(l,n,r) = ((itravl)+(n : itravr))+Hy
—7T caset of leaf =y
node(l,n,r) = itrav’ [ (n : itravt ry)

The resulting expressions are taken as the right-hand sides of new versions of itrav
and itrav™ respectively (where we elide the renaming):

itrav ¢ 2  caset of leaf = nil

node(l,n,r)=itrav’ [ (n : itravr)

itravi iy 2 casetof leaf =y
node(l,n,r)=itravT [ (n :itravt ry)

The running time of the original version is quadratic (worst case) in the size of the
tree, while the new version is linear (when the entire result is computed).

The following correctness result for any transformation using this method shows
that the new version must be an improvement over the original, which implies that
the new version never leads to more function calls, regardless of the context in
which it is used.

6.2 Correctness

It is intuitively clear that each rewrite of the transformation is an equivalence; the
first two rules comprise the definition of concatenate; the third is the well-known as-
sociativity law; the fourth is a consequence of distribution law for case expressions;
and the last two follow easily from the preceding rules and the initial definitions.
This is sufficient (by Theorem 1) to show that the new versions of functions are less
in the operational order than the originals, but does not guarantee equivalence. In
particular note that rule (5) gives the transformation the ability to introduce recur-
sion into the definition of the new auxiliary functions. To prove total correctness
we apply the Improvement Theorem; it is sufficient to verify that the transformation
rewrites are all contained in the strong improvement relation.



Proposition 17 The transformations rules (1)—(6) are strong improvements.

PROOF. [Outline] Using the context lemma for improvement it is sufficient to
consider only closed instances of the rewrites. Rules (1) and (2) are essentially
justunfoldings of the standard definition of concatenate and thus are improvements.
Rule (3) can be proved from the operational semantics by showing that its reflex-
ive closure is an improvement simulation (it is also proved using a new proof tech-
nique in the next section). Rule (4) can be proved with the help of Proposition 9,
observing that the context [ ]++z unfolds to a reduction context. Rule (5) follows
directly from the definition of f* provided by the initialization, since after two re-
duction steps on each side of the laws the left and right-hand sides are identical.
Furthermore, this law is a “cost equivalence” — it is also an improvement in the
other direction, and so for (6) we have that:

(ffrz ...z y)+Hz < ((fzr...2,)+Hy)+H2z (since (5)C (<T>))
(fzy...2.)H(y+2) (by(3))

>
RS ftay ...z, (y+Hz) (by (5))

Then we get the following from the Improvement Theorem (Corollary 13).

Proposition 18 The transformation is correct, and the resulting functions are im-
provements over the originals.

7 Proof Techniques Based on Improvement

In this section we consider a new application: the construction of proof techniques
for = which make use of the improvement relation.

7.1 Equivalence by Transformation

A method for correctly transforming programs provides us with a natural method
for proving the equivalence of expressions. For example, let e and e’ be two arbi-
trary expressions, and let the sequence of variables ¥ contain all their free variables.
Then e and €’ can be proved equivalent by showing that the new (nonrecursive)
functions f and f’ defined by
f
f !

can be transformed into a common third function.

AT.e
AT.e

> 1>



This approach to equivalence proofs was suggested by Kott (1982). Kott used a
variant of the unfold-fold transformation method * to transform functions f and f/
into functions g and g’ respectively, such that g and g’ are syntactically identical up
to renaming. Kott called this “the Mc Carthy method” after McCarthy’s recursion
induction principal (McCarthy 1967).

In this section we present a proof technique for equivalence which is derived
from this transformational viewpoint, using the improvement theorem. However,
our method will abstract away from the transformational origins of the approach.
The method will not explicitly construct functions like f and f’ above—except in
the correctness proof of the method itself.

7.2 Strong Improvement Up To Context

We introduce some notation to simplify the presentation. Let I> denote a refinement
of strong improvement given by

e> e — el Ve! |
S

Definition 19 If R is a binary relation on expressions, let R ° denote the closure
under substitution and context of R, given by

{(Cleroy, ... en0,],Cleior, ... eh0o.] | e; R eliel...n},

where C' denotes an arbitrary n-holed context, and the o; are arbitrary substitu-
tions.

Definition 20 (bisimulation up to improvement and context) A binary relation
on expressions R is a bisimulation up to improvement and context if

whenever e1 R eq, then there exists expressions €', and e, such that
1 2

e1 > €, e3> ey, and ¢\ R,
Theorem 5 If R is a bisimulation up to improvement and context, then R C =.

PROOF. Let R= {(e;, €})},c;- Then by definition of improvement context sim-
ulation, for each ¢ € [ there exist contexts C';, ¢ € [ such that e; > (;[€] and
e! > C;[€'] where where the respective pairs of expressions from € and € are sub-
stitution instances of pairs in £. To simplify the exposition, assume that the C';

4Unfortunately, in (Kott 1982) the proposed method of ensuring that the unfold-fold transforma-
tions are correct is unsound. Kott states (Proposition 1, loc. cit.) that unfold-fold transformations
for a first-order call-by-value language are correct whenever the number of folds does not exceed
the number of unfolds. A counterexample can be found in Sands (1996b)(Section 1). Kott’s over-
sight is that the language in question contains a non-strict operator—the conditional. Without this
operator the Proposition is sound, but is not useful.



have only one distinct type of hole. The generalisation of the proof to the case of
“polyadic” contexts is completely straightforward, but notationally cumbersome.

So for each (e;, ¢/) € R we have a substitution o; such that ¢; > C;[e;o;] and
e; > Cj[e%o;] for some j € I. Thus we define the following set of functions:

L
g

Since > C =, we have that ¢; & C[e;o;] and €} = C'i[e;m]. Hence it is sufficient
to prove that f; = g;,+ € I. We will do this by showing that the f; and the g; can be
correctly transformed, respectively, into functions f/ and g/ such that f/ and g/ are
syntactically identical.

> 1>

/\;Z"Z'.Ci[ejai], e; > OZ'[GJU'Z'], fZ = FV(@Z' C’i[ejai] 6;» OZ[G;O'Z])
)\fZCZ[G;O'Z] 6;' > CZ[G;O'Z]

From the above definitions is easy to see that, for each k£ € [/

e, > \/Ck[elak] for some [ el

~g

T i

Thus we have Ci[e;oi] & Ci[(f; 7;)o;]. Using this fact together with The Improve-

ment Theorem (viz. Corollary 13) we have that f; e f! where
fl & & Ci[(f] &) o).
Following the same lines we can show that g; & g’ where
gi = A7:.Ci[(g; 7))ol

Since these function definitions are identical modulo naming, clearly we have f; B

fi < giandg; > g!. Since operational equivalence is contained in strict improve-
. S

ment, this concludes the proof. g

Taking the special case of bisimulation up to improvement and contextwhich con-
tains just a single pair of expressions (and where the context is unary), we obtain:

Corollary 21 Expressions e and e’ are operationally equivalent if there exists some
context C', and some substitution o such that

er> Cles] and € 1> Cle'o]

We mention this special case because it turns out to be sufficient for many examples.
The following variation of the above Theorem enables us to prove strong improve-
ment properties:

Definition 22 (strong improvement up to improvement and context) A binary
relation on expressions R is a strong improvement up to improvement and con-
text if whenever e; R ey, then there exists expressions ¢ and €., such that

1 > €, ey I Ve, and ¢, R°),.



Proposition 23 If R is a strong improvement up to improvement and context then
RCD.

PROOF. (Sketch) As in the proof of Theorem 5, except that we obtain e; <> g; <>
g, by making use of Proposition 14. O

There are many other obvious variations of these proof methods along similar lines;
for example for proving weaker properties like operational approximation (C ) and
improvement ().

7.3 Examples

Here we consider a few simple examples to illustrate the application of the proof
techniques given above. Corollary 21 will in fact be sufficient for current purposes.
We will routinely omit simple calculations where they only employ the rules of the
tick algebra.

Definition 2 A context C' is a pseudo reduction context if it is a single-holed con-
text which does not capture variables, and which satisfies the following properties:

1. C[Ve] < V(e

2. (case ¢q of pat; = ey ...pal, = e, | <

~

case eg of paty = Cleq]...pat, = Cle,], FV(C) distinct from FV(pat;)

In what follows, we state that certain contexts are pseudo reduction contexts by
way of a proof hint. To establish this property in all cases below requires nothing
more than the tick algebra, together with Proposition 9 (the propagation-rule for
reduction contexts).

Associativity of Append We can prove the well-known associativity property of
append by simply showing that R = {((z-+y)++z, x+(y++2))} is a bisimulation
up to improvement and context. In fact, in Section 6 we used a stronger property of
the pair above, namely that it is contained in strong improvement. This is shown by
proving that R is a strong improvement up to improvement and context. Contexts
of the form | |++e are pseudo reduction context, and using this fact the following
calculations are routine:

(r+Hy)+Hz B v case z of
nil = y+H-=
h:t=nh:(|(t+y)+H=z

~—

rH(y+Hz) < v case 7 of
nil = y+H-=
h:t=h:(|tH(y+=z)]|)




The subexpressions are boxed to highlight the common context. The two boxed
subexpressions are just renamings of the respective expressions on the left-hand
sides. This is sufficient to show that 7 is a strong improvement up to improvement
and context, and hence that (z+y)+2 & 2+ (y+2).

The example can, of course, be proved by considering all closed instances, and
using coinduction. The points to note are that the proof works directly on open
expressions, and that the “commmon context” (the expression “outside” the boxes
above) does indeed capture variables.

A Filter Example Continuing with standard examples, consider map and filter
defined by:

filter = map £ Am.\zs. case xs of
Ap.Axs. case xs of nil = nil
nil = nil y:ys=(fy): map fys
Y:iys=

if py then y : filter p ys
else filter p ys

Now we wish to prove that

e = map f(filter (po f) xs) = (filter p (map f zs) = ¢’

where (p o f) is just shorthand for Aa.(p (f @)), (and where the conditional expres-
sion in the definition of filter represents the obvious case-expression on booleans).
We can do this by finding a context C', and a substitution o such that e > C'[ec] and
¢’ > C[e'o]. Observing that filter z [ | and map f [ ] are pseudo reduction contexts,
two simple calculations are sufficient to derive a suitable C' and o, namely:
o={xs:=ys}and C = case zs of

nil = nil

y:ys=if p(fy)then fy:[]

else | .

Equivalence of Fixed Point Combinators The previous examples can also be
proved using more standard variations of “applicative bisimulation” (e.g., see Gor-

don (1995)). The following example proves a property for which the usual bisimulation-

like techniques are rather ineffective. The problem is to prove the equivalence of
two different fixed point combinators. Define the following:

Y A.h(D h (D h))
D A Az h(z x)

A
A

and as before, fix £ Mh.h(fixh)

We can prove that Y = fix by constructing a bisimulation up to improvement and
contextwhich contains the above pair of expressions. As in the previous examples,



a relation which contains only this pair is sufficient. We begin with Y

Y < YAh.h(Dh(Dh))
< AhhY(h (DA (D h)))
< Ak ([Y]h)

From the definition of fix we have immediately that fix <> VAh.h(| fix] h), and we
are done. By two applications of Proposition 23 we also have that Y <> fix. Note
that if we had started with Y’ 2 A\h.D h (D k) we would not have been able to pro-
ceed as above; but in this case Y’ e Y follows by just unfolding D once.

7.4 Related Proof Techniques

We have used the terminology of “bisimulation up to” from CCS (see e.g., (Milner
1989)). The closest proof technique to that presented here is Sangiorgi’s “weak
bisimulation up-to context and up to expansion” which we discuss below.

Functional Proof Methods In the setting of functional languages Gordon (1995)
has considered a number of variations on the basic Abramsky-style applicative bisim-
ulation, including some ‘“‘small step” versions. The method of bisimulation up to
improvement and contextintroduced here is sufficiently strong to prove all the ex-
amples from (Gordon 1995) which hold in an untyped language®, and many of the
proofs become simpler, and are certainly more calculational in style. Although
Gordon’s methods are “complete” in theory, in practice one must be able to write
down representations of the bisimulations in question; it does not seem possible to
write down an appropriate bisimulation to prove fix 2 Y without judicious quan-
tification over contexts.

Pitts (Pitts 1995) has considered a variation of “bisimulation up to context” where
two expressions are bisimilar up to context if they both evaluate to weak head nor-
mal forms with the same outermost constructor (or they both diverge), and the re-
spective terms under the constructor can be obtained by substituting bisimilar terms
into a common subexpression. The weakness of Pitt’s method is that the “context”
in question cannot capture variables.

Process Calculus Proof Methods The proof methods described in this section
were derived from the improvement theorem. However, there turns out to be a very
closely related proof technique developed by Sangiorgi for the pi-calculus. This
relationship has influenced the terminology we have chosen.

In Sands (1991) we noted the similarity between the definition of improvement,
and the efficiency preorder for CCS investigated by Arun-Kumar and Hennessy

The operational equivalence in this paper is different from Gordon’s because his language is
statically typed, and because we observe termination of functions. The only example equivalence
from (Gordon 1995) which does not hold here is the “Take Lemma”.



(Arun-Kumar and Hennessy 1991). The efficiency preorder is based on the number
of internal (silent) actions performed by a process, and expressed as a refinement
of weak bisimulation. As with improvement, the application of the efficiency pre-
order to the problem of reasoning about “ordinary” equivalence (in the case of CCS,
weak bisimulation) seems to have come later; in (Sangiorgi and Milner 1992) the
efficiency preorder, also dubbed expansion, is used to provide a “bisimulation up
to” proof technique for weak bisimulation.

In the setting of the pi-calculus, Sangiorgi (1995, 1994) has used a refinement of
these earlier proof techniques to great effect in studying the relationships between
various calculi. The proof technique in question is called “bisimulation up to con-
text and up to >”, where > is the expansion relation. We will not go into the details
of this proof technique here, but it contains similar ingredients to our bisimulation
up to improvement and context. There are also some important differences. We
use the > relation as an abstract alternative to using the one-step evaluation rela-
tion. This enables us to handle open expressions, but the proof technique fails to
be complete (for example, it cannot prove that any pair of weak head normal forms
are equivalent).

We summarise some informal correspondences between the notions in process
calculus and the relations defined in this article in Table 1. Our attempts to complete
this picture find a more exact correspondence between the proof techniques relating
to bisimulation up to improvement and contexthave so far been unsuccessful.

Proces Calc. Functional

silent transition (=) | —*F

strong bisimulation | cost equivalence <I>

weak bisimulation operational equivalence (=) (see Gordon (1995))
expansion (>) strong improvement (Bs)

(5>) strict improvement (t>)

Table 1: Informal relationships to Notions in Process Algebra

Another notion in concurrency which appears to have some connection to the
Improvement Theorem, but which we have not yet investigated, is the metric-space
semantics in the context of timed systems (e.g., Reed and Roscoe (1986)).
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