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Abstract

In program optimisation an analysis determines some information about
a portion of a program, which is then used to justify certain transformations
on the code. The correctness of the optimisation can be argued monolithi-
cally by considering the behaviour of the optimiser and a particular analysis
in conjunction. Alternatively, correctness can be established by finding an
interface, a semantic property, between the analysis and the transformation.
The semantic property provides modularity by giving a specification for a
systematic construction of the analysis, and the program transformations
are justified via the semantic properties.

This paper considers the problem of partial evaluation. The safety of a
partial evaluator (“it does not go wrong”) has previously been argued in the
monolithic style by considering the behaviour of a particular binding-time
analysis and program specialiser in conjunction. In this paper we pursue the
alternative approach of justifying the binding-time properties semantically.
While several semantic models have been proposed for binding times, we
are not aware of any application of these models in proving the safety of a
partial evaluator. In this paper we:

o identify problems of existing models of binding-time properties based
on projections and partial equivalence relations (PERs), which imply
that they are not adequate to prove the safety of simple off-line partial
evaluators;
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e propose a new model for binding times that avoids the potential pitfalls
of projections/PERs;

e specify binding-time annotations justified by a “collecting” semantics,
and clarify the connection between extensional properties (local anal-
ysis) and program annotations (global analysis) necessary to support
binding-time analysis;

e prove the safety of a simple but liberal class of monovariant partial
evaluators for a higher-order functional language with recursive types,
based on annotations justified by the model.

1 Introduction

1.1 Transformations supported by Program Analysis

Program optimisation usually takes the following form: an analysis deter-
mines some information about a portion of a program, and the information
is then used to justify certain transformations on the code. We consider two
basic methods for establishing the correctness of such a process, which we
call monolithic and model-based, respectively:

Monolithic The monolithic view considers the correctness of the analysis
and the transformation simultaneously. The pair of the analysis and
the transformation is correct if the transformation “works.”

Model-based The model-based approach associates some semantic prop-
erty with the information domain of the analysis. The correctness of
the analysis, and the correctness of the transformation are then con-
sidered independently, but relative to this semantic property.

The monolithic approach has attracted much interest in the last few years.
Its advocates, e.g. Wand [Wan93], Amtoft [Amt93], and Steckler [Ste94],
argue that considering the correctness of the algorithm and transformation
together leads to a much simpler proof. The slogan is:

The analysis is correct because the transformation works!

It is notable that these kinds of proofs are greatly aided by the non-algorithmic
specification of the analysis in terms of non-standard type systems, or con-
straint systems. The disadvantages of this approach are that: as the name
suggests, variations in either the analysis or the transformation require that
the proof must be re-established for each change or combination of analy-
sers and transformers; there is currently no support for systematic design
of correct analyses; similar analysis may be used in justifying quite differ-
ent kinds of transformation, but there are no “reusable” components in the
correctness proof.



In principle, the model-based approach addresses each of these deficien-
cies. By associating a semantic property with each piece of information from
a static analysis, one obtains an intermediary between the analysis and the
transformation. This, in turn, achieves a factorisation of correctness of
the analysis and the transformation with respect to the semantic property.
This means that independent changes to either the analysis or transforma-
tion can be justified independently. Furthermore, it enables utilisation of
techniques for systematic design of correct analyses, namely abstract in-
terpretation [CC79]. Finally, it facilitates reuse of analyses for different
transformations which rely on a common semantic property.

The problem in practice is, to quote Wand [Wan93]:

“While program analyses of various sorts have been studied
intensively for many years, it has proven remarkably difficult
to specify the correctness of an analysis in a way that actually
justifies the resulting transformation.”

In this paper we address this problem for a particular transformation,
off-line partial evaluation, in the setting of higher-order functional programs.
The associated analysis is called binding-time analysis, and the core of the
correctness problem is to verify that a partial evaluator does not “go wrong”
when following binding-time annotations.

While there are numerous proofs of correctness using the monolithic ap-
proach, and several candidate semantic models for binding-time properties,
we know of no correctness proof for a partial evaluator based on a semantic
model of binding-time properties. In this paper we:

¢ identify problems of existing models of binding-time properties based
on projections and partial equivalence relations (PERs), which imply
that they are not adequate to prove the correctness of even simple
off-line partial evaluators;

e propose a new model for binding times which avoids the potential
pitfalls of projections/PERs;

e clarify the connection between extensional properties (local analy-
sis) and program annotations (global analysis) necessary to support
binding-time analysis;

e prove the correctness of a simple but liberal class of partial evaluators
based on the soundness of the annotations with respect to the model,
and demonstrate the applicability to both off-line and on-line partial
evaluation.

Model-based analysis is the hallmark of abstract interpretation. Trans-
formations often require an abstraction not directly of the standard seman-
tics of a language, but of its collecting semantics, however. Expressing



the collecting semantics in denotational models has proved to be difficult.
Cousot and Cousot show how powersets support this step at higher type
and apply it to what they call comportment analysis [CC94].

2 Off-line Partial Evaluation: Related Work

An off-line partial evaluator determines which parts of a program to evaluate,
and which parts to leave as residual code, by following annotations produced
by a binding-time analysis.

Given a description of the parameters in a program that will be known at
partial evaluation time, a binding-time analysis must determine which parts
of the program are dependent solely on these known parts (and therefore
also known at partial evaluation time). A binding-time analysis performed
prior to the partial evaluation process can have several practical benefits (see
[Jon88]), and plays an essential réle in most approaches to the generation
of efficient compilers from interpreters [BJMS88].

2.1 Approaches to Correctness

Monolithic The monolithic view for partial evaluation considers the cor-
rectness of the off-line partial evaluator and the binding-time analysis si-
multaneously. The annotations produced by the binding-time analysis are
considered to be correct if the partial evaluator, whose actions are governed
by the annotations, behaves in the intended manner, e.g. it does not “go
wrong” by expecting to be able to produce a value from a program frag-
ment dependent on an unbound variable. Examples of this approach are
seen in the work of Gomard [Gom92], based on a denotationally-specified
partial evaluator for a lambda calculus with constants (“\-mix”), Wand
[Wan93] and Palsberg [Pal93], based on the pure lambda calculus, Henglein
and Mossin [HM94] for a typed functional language and a denotationally
specified partial evaluator, Consel et al. [CJ?D94] for a rewriting-based ap-
proach, and more recently [Hat95] who considers the mechanical verification
of the correctness proof for a A-mix style partial evaluator.

Model-based The model-based approach has its roots in Jones’ definition
of congruence [Jon88], which specifies correctness of binding-time analysis
by focusing on semantic dependency between different parts of a program.
Launchbury adapted this idea to a functional setting, using the idea of
domain projections to model binding times of structured data in a first-
order language [Lau88, Lau89]. This domain-based approach was subse-
quently adopted and extended by Mogensen [Mog89] and De Niel et al.
[NBV91]. Hunt and Sands [HS91] showed that Launchbury’s analysis could
be smoothly extended to higher types using partial equivalence relations



(PERS) as a model of binding times, following Hunt [Hun90]. Davis [Dav94]
considers a closely related extension to higher types with general recursive
types.

There is a third approach to proving correctness, closely related to the
model-based view, but arguably different: an off-line partial evaluator is
viewed as an abstraction of an on-line one. An on-line partial evaluation
does not follow static binding-time annotations, but computes the neces-
sary information on the fly. Off-line partial evaluation is then viewed as
a restriction of the actions of the on-line version, since it makes decisions
about what to partially evaluate based on annotations, rather than actual
data. (As we mention later, it might also be considered an optimisation,
since it removes the need for many tests on the nature of the data manip-
ulated.) This approach has been considered by Consel and Khoo [CK92]
and Bulyonkov [Bul93]. Consel and Khoo give an abstract denotational
specification of the values encountered by an on-line specialiser for a first-
order functional language, and show that a binding-time analysis correctly
abstracts these values. Off-line partial evaluation is then obtained by the
restriction of the actions of the on-line version. Their highly abstract and
non-operational specification of an on-line specialiser resembles a collecting
interpretation (a static semantics in the terminology of [CC79]).

3 The Problem with Projections and PERs

In this section we consider the existing proposals for modelling binding
times, including partially-static structures, in functional languages. The
principal technique uses domain projections [Lau88]. We will argue that
this model has potential flaws from the point of view of proving the correct-
ness of a partial evaluator. These problems carry over to the PER model
[HS91], and motivate the introduction of a new model in the next section.

3.1 Uniform Congruence

In his “re-examination” paper, Jones [Jon88] defines a semantic-based con-
dition, congruence, which specifies when a binding-time analysis is correct.
The essence of the definition is that the parts of a program that are deemed
to be static will only ever depend on the static values (and the other parts
of the program which are deemed static). Launchbury adapted this idea
to a functional setting, and derived what he considered to be a necessarily
stronger condition, called uniform congruence, and expressed this condition
with the help of domain projections.

In Launchbury’s setting, a first-order language of recursion equations,
the job of a binding-time analysis is to determine a program division. A
division A is a mapping which assigns a binding time to each function symbol



defined in the program. (It is therefore monovariant because it assigns just
one binding time for each definition.)

A binding-time is identified with (modelled by) a domain projection.
A projection is a continuous map a« : D — D on a cpo D, such that
aC Az € D.z and aoa = . An intuition behind the use of projections to
describe binding times is that the parts of its argument that a projection dis-
cards (replaces by bottom) represent the parts about which no information
is known, where “no information” is equated with “dynamic.” This inter-
pretation is used to define when a program division is safe, i.e. uniformly
congruent.

A program division A is deemed to be uniformly congruent, if for each
definition and call instance of the form

fz=...(ge)...

which occurs in the program, then

A(g) o [Mv-e[v/z]] o A(f) = [Av-ev/x]] o A(f)

This means that if A(f) describes the static-ness of the argument to f, then
A(g) correctly predicts the static-ness of the argument e in the call g e.

In Hunt and Sands’ terminology [HS91], in which binding times A(f)
and A(g) are interpreted as equivalence relations (and at higher-types, as
partial equivalence relations), this property would be written equivalently
as

(Av.e[v/z]) : A(f) = A(g)

which by definition means that for all v1, v9 in the semantic domain associ-
ated with parameter z,

v1 A(f) va = [M.e[v/z]]vi A(g) [Av.e[v/z]]vs.

The “uniformity” in Launchbury’s definition refers to the fact that no
contextual assumptions are made about the possible value of z in the ex-
pression e. This reflects a simple but aggressive view of partial evaluation,
which assumes that we can begin specialising the call to (g e) without using
knowledge of either the context “...” or the range of possible values of z
in that context. This uniformity requirement is a strengthening of Jones’
condition, and so fewer program divisions are permitted.

3.2 The Problem with Uniform Congruence

Launchbury’s specialiser (for present purposes, a specialiser is just a partial
evaluator which produces specialised variants of program text) specialises
function calls with respect to the static parts of their arguments.

Clearly then, from the point of view of the specialiser the binding-time
analysis is correct if the parts of the arguments that are deemed static can



indeed be evaluated, and their evaluation either terminates with a value,
or the specialiser goes into a loop in the attempt—in any case it must not
get “stuck” trying to evaluate something dynamic, such as a free variable.
(A consequence of the fact that Launchbury’s language is statically typed is
that there are no run-time errors in the standard interpreter.)

The job of the semantic specification of uniform congruence is to give an
analysis-independent specification of a correct program division. This can
be used to justify binding-time analyses independently of a specific partial
evaluator (just as Launchbury has done). But for this to be adequate, one
must be able to argue the correctness of a partial evaluator with respect to a
uniformly congruent program division (something Launchbury did not do).

We argue that the semantic condition of uniform congruence is not suffi-
cient to guarantee the correctness of a simple “mix-style” partial evaluator.
That is to say, there are uniformly congruent program divisions which can
cause a specialiser to “go wrong.” What is more, we claim that Launchbury’s
own specialiser will go wrong on an instance of this example.

Consider the following (abstract) program:

letrec

glv,w) = e

f(z,y) = g(ifythenQelse(,y)
in f(4,4)

where g is non-recursive, {2 and ' are any expressions not involving ¥, but
which diverge (fail to terminate) for all values of z.

Now suppose we specify that i is static and j is dynamic. This property
of the pair (i,7) can be represented by a projection fst et Mz, y).(z, L).
Based on this specification, the division

[f = fst,g — fst]

is uniformly congruent. To see intuitively why, first note that since 2 and
Q' do not contain y, and under the assumption that z is static any sub-
expressions of Q and Q' are also static. The surprise is that g¢’s first argu-
ment can be considered static. Intuitively, this is correct because the value
of its only argument (the call instance in f’s definition) does not depend
on the value of y — since it is always undefined (L)! The potential prob-
lem with this uniformly congruent division is readily apparent. The term
if ythenQelse ' is deemed to be static even though y is dynamic. This
means that a partial evaluator may begin to evaluate the conditional, and
thereby “go wrong” by either:

1. attempting to evaluate y, or
2. by expecting that the expression if ythenQ else ' can be compared

with other static “values”, for example in a pending list of specialised
function calls.



For Launchbury’s simple partial evaluator it is the latter case. We can realise
an instance of this scheme in Launchbury’s PEL language and show that his
specialiser “goes wrong” when given the above safe (= uniformly congruent)
program division.

In the binding-time model we present in the next section domains con-
tain “extra” elements that force if ythenQelse Q' to be dynamic. More
concretely, y may not only be bound to L, true or false, but also to J, an
“anonymous” dynamic value. Whereas the result of the first three bindings
is L, in the latter case it is the special value §. Thus, in the extended domain
with §, if y thenQ else Q' does depend on y; in particular, if ¢ is dynamic
then so is the whole expression.

Note that we do not claim that Launchbury’s analysis will produce this
program division (it will not). The point is that the safety condition which
specifies a correct analysis must be adequate to prove the correctness of
the transformation. We conclude that this is not the case for Launchbury’s
projection-based safety condition. The problem is inherited by Hunt and
Sands’ PER-based extension to higher-order functions — in fact we came
across this problem in a higher-order setting, but a superficially quite dif-
ferent context: attempting to prove the correctness of a A-mix style partial
evaluator [Gom92] using the PER-model of binding times.

4 An Ideal Model of Binding Times

An appealing property of the projection/PER model of binding times is that
it is purely extensional, relying as it does on the standard semantics.? As
we showed in the previous section, using “bottom” to represent absence of
information at partial-evaluation time confuses termination properties with
neededness properties. Confusion arises because the property “static” does
not necessarily mean “terminating.”® So bottom is overloaded to denote
static computation (though nonterminating) and static nonavailability of
dynamic data, making it impossible to distinguish nonterminating compu-
tations that depend on dynamic inputs from those that don’t.

Our solution is a natural one, once we accept that we are modelling
properties that only have meaning at partial evaluation time. To be able

!Our extended interpretation of bool contains yet another value, a top element T;
T, however, is only required for a higher-order language. Note that the problem with
Launchbury’s model of binding times already occurs for a first-order language. Addressing
this problem in the same language context only requires the additional element d, not T.

*However, in order to model anything interesting about binding times the model for the
language under consideration must be lazy. Furthermore, we claim that for this purpose
the laziness must be taken to its logical conclusion — i.e. function spaces should be lifted
(contrary to the model in [HS91]) as well as tuples (contrary to [Lau89][HS91][Dav94]).

3In principal we have no objection to an interpretation of “static” which implies “termi-
nating”; but this is neither the interpretation used in practice in existing partial evaluators,
nor the interpretation used in this paper.



to make finer distinctions than in the standard semantics our solution is
to augment the domain constructors in the standard semantics to provide
extra elements: § and T. Intuitively, ¢ stands for an “anonymous dynamic
value”, and T denotes an abortive error; that is, the result of encountering
an error situation that leads to the abort of the whole program evaluation.

Partially static structures are handled by allowing data structures to
contain d-elements at component types without them being identified with
d (or T) of the compound type. This model enlarges the domains, and so
gives rise to a choice as to how the operators of the language should be
extended. The choices reflect choices in the partial evaluation strategy —
but at a much more abstract level than if we were to describe a particular
partial evaluator.

In the remainder of this section we describe the language and the model
of binding times and associated binding-time annotations.

4.1 A Higher-order Functional Programming Language

Our setting is a higher-order simply typed programming programming lan-
guage with unit, sum, pair and recursive types.

Types The types are described by the closed expressions in the following
grammar:

ru=ca|wmit |7 =7 | x|+ | reca. 7

Recursive types must be formally contractive; that is, in rec a. 7 the type 7
must not be a type variable.

Syntax and typing rules for expressions The syntax of our language,
including its “static” semantics, is given by rather standard typing rules,
presented in Figure 8 in the Appendix. They are for typing judgements
Al e : 1 where A is a type environment mapping program variables to
types, e is an expression, and 7 is a type.

Standard denotational semantics To give a standard semantics for this
language we can interpret types by Scott domains and type constructors by
domain constructors appropriate for a call-by-name (lazy) language [Gun92].

Specifically, we can interpret unit by the one-element domain 1; — by
the domain constructor for continuous functions; X by lifting the result of the
Cartesian product constructor (- x-); + by the separated sum constructor;
and rec a.. T by the inverse-limit of the domain constructor denoted by 7 (as
a function of ).

Expressions are denoted by domain elements. If - e : 7 for closed ex-
pression e then [e]sg € [7]std, where [€]siq is the domain element denoted



by e. This yields a denotational semantics that is observationally adequate
for a call-by-name operational semantics relative to observing termination
at all nontrivial first-order types (which excludes unit).

4.2 Extended Domains

Previous models of binding times have built upon the standard denotational
semantics either by interpreting binding times as projections or PERs on
the standard domains. As shown in Section 3 this leads to problems in that
these models may be too aggressive about what they classify as static. The
reason is that the standard domains do not have any “room” for intensional
information that captures the essential control dependencies — neededness
information — that a (simple) partial evaluator must respect. This problem
is even more pronounced in a call-by-value language, where the PER and
projection analyses become trivial (useless).

In this section we extend the standard domains by adding eztra elements
in a structural fashion: For every type 7 possessing a destructor operation we
add a dynamic element d,, which, intuitively, represents completely dynamic
values at 7. This new value lets us distinguish a dynamic value of type 7 x 7/,
say a variable, from a pair of dynamic values. In the latter case we can
perform a static (partial-evaluation time) decomposition of the pair, whereas
in the former we cannot. It is the ability to distinguish between being able to
perform a destructive operation (in this case m; or m,) at partial evaluation
time that necessitates and explains the role of the dynamic element.

Furthermore, for every type 7 we add a top element T, which represents
an error at type 7. We call the resulting domains topped domains (with ¢),
in order to distinguish them from the standard domains introduced earlier.
The elements of the standard domain are then embedded “naturally” in
the topped domains; in particular functions are extended to map the new
elements 6 and T to T.

Structurally topped domain constructions Our bindingtime domains
are Scott-domains with isolated - and T-elements. In what follows we will
define the topped interpretation for types and terms. We will write [-] to de-
note these mappings and use the following constructions on topped domains
D,D'. Let Tp, T, be the top elements in D and D', respectively.

e The co-strict function domain D < D' consists of the continuous
functions from D to D' mapping Tp to Tpr, plus a new top element
Tpopr- The partial ordering on non-T elements is inherited point-
wise from D’'.

e The co-strict product domain D ® D' consists of the pairs (d,d') with
Tp #d € D and Ty # d € D', extended with new bottom and
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top elements | pgpr and T pgpr, respectively. The partial ordering on
pairs is inherited componentwise from D and D’.

e The co-strict sum domain D @ D' consists of the elements inl d and
intd for all Tp #d € D and Tp # d' € D', extended with new
bottom and top elements | pgpr and T pgpr, respectively. The partial
ordering on elements inl d is inherited from D, and on elements inr d’
from D'; elements inl d and inr d’ are incomparable.

e The topped domain D" consists of all the elements from D, plus a new
top element, the partial ordering on non-top elements being the same
as in D.

e The dynamic domain Dg is D, extended with an additional element
6. S is either a singleton set or a set of elements from D such that
the least upper bound (in D) of any two distinct elements from S is
Tp. The partial order relation on non-§ elements is inherited from D.
It is extended to § as follows: § is “immediately below” T p; that is,
6 C Tp,and Tp is the only element greater than §. Furthermore, the
elements of S are immediately below §. That is, d C § if and only if
d C s for some s € S. This defines the partial order relation on Dg.
Note that, if T p is isolated in D then Dg is a domain in which both
¢ and T p are isolated.

Every domain interpreting a type 7 below has distinguished - and T-
elements. We shall denote these by ¢, and T, respectively.

[unit] = 17
[r—=1] = ([r] = |[TI]])({5f} where f(d) = if d C 4, then delse T

[rx7] = (IFl1®[")}y  whered = (d:,6,)
[r+7] = ([7]® IITI]])({Sdl,dg} where dy = inl §, and dy = inr §,/
[reca. 7] = limge, F'(17) where F(D) = [7][a — D]

The last clause denotes the inverse-limit construction for topped domains
with co-strict projection/embedding-pairs. We state without proof that this
yields a domain with distinguished §- and T-elements.

Note that we add a new top element for every constructed domain. Fur-
thermore for every type constructor with the exception of unit we add a new
element 0. Recall that the possibility of distinguishing completely dynamic
values from partial dynamic values in a destructive context motivated our
introduction of a distinct element § in the first place. There is no destructor
for unit — and hence no need to add a distinct d-element.

As an example, let us define bool = unit @ unit. The standard inter-
pretation of bool has the three elements true = inl (), false = inr () and
the bottom element 1 ;,,. In the above extended interpretation, [bool] is
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the five-element domain consisting of elements {.L, true, false, dpoo1, T boot }
ordered by L Cz C d C T for z = true or x = false.

Extended interpretation of expressions We have extended the inter-
pretations of types, so now we must extend the interpretation of terms over
these new types.

The extension of the standard interpretations of terms essentially fol-
lows the strictness properties of the basic syntactic constructs, so that any
destructor (e.g. m-,case - of ...) maps the elements § and T of the type
being “destructed” to § and T, respectively, of the resulting domain. With-
out giving the full details, the essence of the extension is characterised by
the following semantic equations for T. They are completely analogous for

d.

case e of )
inlz=€|llp = T
inry = e .
»if =T
[[e 6,]]p — T 1 He]]p
[relp = T
[[7r26]]p = T )

4.3 Binding times as ideals

A binding time at type 7 is modelled by a nonempty, nonfull ideal (closed
set, inclusive set) in the Scott-topology of [7]; that is, it is a subset of [7]
which is:

1. neither empty nor full: it contains L., but not T,;
2. downwards closed: t Ty € I = x € I; and

3. closed under w-chains: if {z;} is an ascending w-chain with z; € I for
all i € w then | |;c, z; € I.

For each type 7 a set I is said to be a (semantic) binding time at type
7 if I is a nonempty, nonfull ideal over the domain [7]. We will say that
an element d (of some domain E) has binding time I (an ideal over E)
whenever d € I. Let I and I' be arbitrary binding times at types 7 and 7/,
respectively. The binding times are closed under the following operations:

I-T ¥ {felr=7|f#T,f#6and (Vde ) f(d) eI}
IxI' € {d,d)e[rx7]|del,deTl'}u{l}
I+I' ¥ {inlde[r+7']|del}

U{inrd € [r+7]|d eI'yu{L}

Furthermore, the ideals of [7[rec a. 7/a]] and [rec . 7] are in a one-to-one
correspondence.

12



Being Scott-closed sets, binding times at the same type are closed under
finite unions I; U... U I, and (finite or infinite) intersections (¢ x Ik-

4.4 Binding-time statements

We say closed expression e has binding time I and write = e: I if [e] € I.
For open expressions, let B be a mapping from program variables to binding
times. We write B = e : I if for all environments p and variables z in the
domain of B such that p(z) € B(z) we have [e]p € I.

“Dynamic” and “Static” At each non-trivial type 7 we define an ideal
A, which represents the property “completely dynamic” at 7, and X, which
represents “surface” static. We define A, to be the downwards closure |0,
of d;; that is, the least ideal containing 6,: |d; = {d € [7] : d C é,}. Note
in particular that A, contains ¢, but not T,. The binding time ¥, at T
denotes A, — {4,}; that is, all of A; except for its maximal element ;.
(Note that ¢ is isolated in every domain, so this is an ideal.) Intuitively,
the elements in X, are those that are “surface” static, in the sense that one
can apply the corresponding destructor at partial evaluation time without
getting an error. We usually write A and ¥ without subscripts whenever
the type is derivable from the context.

Taking a domain such as bool x bool, we can represent the property that
the pair is statically known (intuitively, available to the partial evaluator
to destruct) by the ideal Xpp1xpoo1, Which is equal to Apgor X Apgor. Fig-
ure 1 sketches part of the Hasse diagram for bool x bool, and indicates some
example binding times.

5 Internalising Binding-time Properties: Semantics-
based Annotations

In partial evaluation and other transformations it is important to know not
only what extensional property a program has, but also how it is established;
in particular, what properties have to hold internally, for the individual
parts of the program, since it is this intensional information that is usually
exploited in optimizing transformations.

In partial evaluation it is rather useless in itself to find out that an
expression has binding time “dynamic.” Indeed this is usually stipulated
from the outset. What is desired is a proof whose structure captures what
the binding-time properties of individual parts of the expression are and how
they can be combined to yield the binding time of the overall expression.

What is required then is an internalisation of what it means for an
expression e to have a certain binding time. That is, the subexpressions of
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Figure 1: Example binding times in bool X bool
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e must have certain binding times if the whole expression e is to have its
final, desired binding time.

Ideally one would hope for a complete internalisation, in essence a sound
and complete logic for inferring binding times. This may be undesirable
(on top of being difficult to accomplish at all) since it expects the ensuing
(automated) transformation process to exploit or at least to “understand”
all proofs in the logic.

In this section we present an internalisation for monovariantly well-
annotated expressions. Intuitively, monovariancy requires that the binding
time of a bound variable be a fixed binding time (ideal), which must be “big
enough” to contain the values the variable may ever be bound to. Similarly,
the binding time of a subexpression must be a single ideal big enough to
contain the value of the subexpression in every environment it is evaluated.

This is in contrast to polyvariant binding-time analysis where bound vari-
ables can be associated with several binding times (for different contexts)
and where the binding times of (sub)expressions in the scope of bound vari-
ables may be dependent on (functions of) the binding times of the actual
values.

We restrict our attention to monovariancy since monovariant binding-
time analyses are currently better and easier understood in partial evalua-
tion.4

5.1 Monovariant binding-time annotations

Monovariantly well-annotated expressions are defined by an inference sys-
tem on binding-time judgements of the form B > e : I, where I denotes a
semantic binding time, e is a well-typed expression, and B is an environment
associating variables with binding times. Figure 2 presents the nonlogical
inference rules for inferring binding-time properties for the constructs of the
language in a syntax-directed fashion. Figure 3 gives a logical rule that
is applicable to any expression. It lets us weaken an ideal to any larger
ideal. Finally, Figure 4 adds a rule for annotating an expression with an
abstraction of an ideal.

Note that we have no formal language of binding times: the metavari-
ables I,I' range over semantic binding times (ideals), A denotes binding
time “dynamic” (at the relevant type) as defined in Section 4.4, and x , +
and — are the ideal constructors from Section 4.3.

What is gained by this inference system, and what role does the annota-
tion rule play in it? Consider a derivation of a binding-time property for an
expression e without use of the annotation rule. This results in a binding-
time judgement A > e : I. Discarding the derivation and only retaining
its conclusion we know the binding time of e itself, but nothing about the

“We believe the monovariant inference system given here can be extended to a poly-
variant logic that is semantically complete, but leave this to future work.
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binding times of its subexpressions! The practical problem for a specialiser
is that it needs to process program parts on the basis of their binding-time
properties. Knowing only the binding-time property of the whole expression
is too little information. One way of remedying this is to retain the whole
derivation since it contains binding-time judgements for the subexpressions
— this is, in essence, what the monolithic approach does: the result of a
binding-time analysis is the (whole) derivation, and a specialiser does not
operate on the program expression itself, but on a representation of a deriva-
tion for it. As we have remarked earlier, this ties the specialiser closely to
a particular formalisation of a binding-time analysis. Furthermore, it may
retain too much information, information that is not really relevant to par-
tial evaluation or other transformations. Since there is a potentially large
“semantic distance” between the original expression and the product of the
analysis (the whole derivation), it furthermore complicates establishing the
correctness of the specialiser since the specialiser is defined on derivations,
whereas the standard semantics is defined on the original expression.

By using the annotation rule we can discard the derivation of a binding-
time property for an expression and yet retain relevant semantic information
about its subexpressions. This information is extensional in the sense that
annotations only abstract the derived binding time for a subexpression, not
a particular way the binding time can be established. We can think of
the annotations as a “semantic trace” of how an expression has a certain
binding-time property. The abstraction function « is a partial function
mapping binding times to annotations. It expresses how much semantic
information is retained from a binding time. The standard annotations we
shall consider in the following section are A = {5, D} where S stands for
“static” and D for “dynamic.”

It is easy to check that B> e : I implies B = e : I; that is, our
monovariant internalisation is sound. For every (open) expression e and
assumptions B mapping the free variables of e to binding-times contained
in A there is at least one binding time I such that Br>e : I is derivable using
the rules of Figures 2 and 3. The internalisation is not complete, however:
B [=e: I does not generally imply Bi>e: I.

5.2 Preservation of Binding-Time Properties under Reduc-
tion

In this section we show that well-annotated expressions are closed under
reduction in any context; that is, they have the Subject Reduction Property.
As shown in the following section this is the crucial connection that lets
us argue the safety of partial evaluation for expressions that are — via a
translation into our annotation scheme — semantically well-annotated.

An annotated ezpression is a (well-typed) expression where subexpres-
sions may carry arbitrary annotations from the range of a.
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Definition 5.1 (Reduction rules) The one-step reduction, —, for anno-
tated expressions is given by the following rules,

(Az.e1) e = er{€} (e e) = e mo(e,e) — ¢

case inl (e) of case inr (e) of
inlz = e | = er{€y} inlz = e || | = e2{%y}
nry = ey nry = e

ﬁ.’E f e — el{ﬁCE f el/f} eb e

The expressions to the left are called redexes and those on the right the
corresponding reducts. We close — under arbitrary contexts; that is, e — €'
if e = C[r] for some (single-hole) context C[] and redex r with reduct r’,
where ¢ = C[r']. We write e —»% € if e — ... = € in one or more
reduction steps; e =% e’ ife=¢' ore—T €.

The main theorem of this section is that well-annotated terms are closed
under reduction; that is, if e —* ¢’ and e is well-annotated then €’ is also
well-annotated. This is the critical connection between our semantic model
of binding times and what one can do with this information.

Due to the annotations that (may) occur inside expressions the subject
reduction property also has to hold locally; that is, intuitively, we must be
able to establish that, if e — ¢’ then B > ¢’ : I can be obtained by “local”
transformation of any proof of B> e : I. For this to hold in the presence of
the weakening rule of Figure 3, it is necessary and sufficient to establish that
containments between constructed ideals hold only if suitable containment
relations hold for the component ideals; that is,

IXI'CJxJ = ICJandI'CJ
I+I'CcJ+J = ICJandI'CJ
I-I'CJ—J = JCIandI'C.J

The technically crucial point is that the first two implications hold for ar-
bitrary nonempty ideals, whereas the last implication does not: if J' is full
(the whole domain) then I — I' C J — J' for any choice of I,I',J!

This problem is the — sole — reason why our extended domains do not
only contain an element § representing dynamic values, but also an element
T, and why binding times, by definition, are nonfull ideals. The following
lemma shows that the problematic implication does hold if J' is not full.

Lemma 5.2 Let D be a domain with a top element T. Let I,I',J,J" be
nonempty ideals such that J' is a proper subset of D.
Then I - I'CJ — J ifand only if JC I and I' C J'.

PROOF. See appendix. o
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Thus all three implications above hold for binding times, and we can
establish our main theorem:

Theorem 5.3 (Subject Reduction Theorem) If Br>e: I and e —* ¢
then Br>e¢': 1.

PROOF. The proof is in three parts. First we show that the theorem holds
for a single reduction step where e is a redex. In the second part we show
that it holds for C[e] where e is a redex and C]] is an arbitrary context.
The final step is an induction on the length of reductions. In the appendix
we elaborate the first two steps (the last one being straightforward). &

6 Standard and Partial Evaluation

In this section we give a definition of off-line partial evaluation for our lan-
guage, built by removing restrictions on reductions possible in the standard
evaluation rules, and prove its safety from our semantic definition of a sound
binding-time annotation.

6.1 Standard Call-by-name Evaluation

The operational semantics of the language is specified by reduction rules,
which represent the basic computation steps, plus a description of the syn-
tactic contexts in which the rules can be applied.

The standard operational semantics is built using the reduction rules of
Definition 5.1, applying them to closed unannotated expressions. We need
to specify the syntactic contexts in which we allow the reduction rules to
be applied. We do not specify a deterministic reduction order, since it is
sufficient (and more general) simply to constrain the reduction rules so that
we: (i) do not reduce under a A-abstraction, (ii) do not reduce under a
fix-expression, (iii) do not reduce in the branches of a case expression, and
(iv) do not reduce under a constructor (pairing, or sum injections). Let —,
be the resulting relation (call-by-name reduction). We state the following
properties of —,, without proof: for all closed expressions e : T

e If e —», ¢ then €' : 7 and [e] = [€']

e If there is an infinite reduction sequence starting from e then all re-
duction sequences are infinite.

e For all e of first-order type, but excluding unit, we have that [e] = L
if and only if there is an infinite reduction sequence starting from e.

Thus denotational semantics is sound with respect to a definition of observa-
tional equivalence which observes termination at any first-order type except
unit.
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6.2 Partial Evaluation

We define a class of partial evaluators by describing the possible reductions
that a partial evaluator may perform. A particular partial evaluator could
then be built by choosing some reduction strategy from these reductions.

We view partial evaluation as standard evaluation extended straightfor-
wardly to handle “symbolic” values; that is, open expressions. “Dynamic”
inputs are then just modelled by free variables.

Binding-time analysis is used to guide either the actions of a specialiser
(so-called off-line partial evaluation) or to optimise its actions (on-line partial
evaluation). In both cases it is important to guarantee that the specialiser
can “trust” the information provided by the binding-time analysis in order
to avoid costly checks of data at partial evaluation time (such as whether
data are static or dynamic values). In this section we show how semanti-
cally consistent binding-time annotations ensure that a specialiser cannot
“go wrong” as long as its actions (reduction steps) respect the (semantic)
binding-time annotations.

Partial evaluation applies the same reduction rules as standard evalu-
ation, but with fewer constraints. Firstly, we allow evaluation to be more
eager, so evaluation of the components of pairs, or of the argument of the
sum-injections, is now possible. Secondly, we draw upon the binding-time
annotations to allow reductions to reach even deeper into an expression —
namely, under lambda abstractions or in the branches of case-expressions.
Due to this, and the presence of dynamic inputs (free variables), it must be
guaranteed that a specialiser that executes a “static” reduction can be as-
sured that it does not encounter dynamic data where it expects to find static
data. In off-line partial evaluation only static reductions are performed. In
on-line partial evaluation dynamic reductions may also be performed (see
the next section), but require a check as the nature of the data (static or
dynamic).

PE-annotations The definition of a monovariant binding-time annota-
tion provided in the previous section is particularly simple because it only
describes annotations on sub-expressions. The price of the simplicity of this
definition is that there may not be an exact correspondence between the
kind of annotations which are followed by a given partial evaluator, and the
notion of a monovariant binding-time annotation. In particular, the partial
evaluator we will describe operates on expressions with annotations on the
binding occurrences of variables—and these are not proper sub-expressions.
To avoid confusion we will call the annotations expected by our partial
evaluator PE-annotations. When we come to prove the safety of the par-
tial evaluator we will show how the PE-annotations can be interpreted as
semantic annotations.

The PE-annotated expressions handled by our partial evaluator have
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possible annotations in two places: on all destructors (projections, case-
expressions, applications), indicating a binding-time property of the expres-
sion in the “destructed” position, and on some binding occurrences of vari-
ables (lambda abstractions, fix-expressions and case expressions). Further-
more, the partial evaluator knows about only two annotations: dynamic
(D) and static (S). Destructors annotated by S can be reduced (the par-
tial evaluator expects that the destructed expression will be static), but
dynamic destructors will not be reduced (since it cannot be trusted that the
expression in the hole will be static).

Reduction now occurs in a more liberal class of contexts. In particular
we can reduce under lambdas, or inside the branches of a case expression
whenever the variable is annotated with dynamic.

The definition is divided into static reductions —pe, and partial evalua-
tion contezts P. Let variables b, b1, by range over annotations {S, D}, and let
[D] denote either annotation D or “no annotation”. The static reductions
—rpe are given in Fig. 5 and the partial evaluation contexts IP are given in
Fig. 6.

AzlPle; @Se e e1{€y} mi(e, ') Spe e (e, €) —pe €
case’ inl (e) of case® inr (e) of
inl zl1) = ey || | —pe e1{¥z} inl zl0t] = e || | —pe ea{®y}
inr yl??l = ey inr ylb2l = e,

fiz 2% e —pe el{ﬁx 5. €1/r}

Figure 5: Static Reduction Rules

P =[] | PQ@% | e@P | xtlP | 4P
case® IP of case® e of case® e of
| il zlPl = e || | inlz? = P| | inl zlPl = ey ||
inr ylPl = ey inr ylPl = ey inryP = IP
| PP | fizzP. P | (Pe) | (e IP)
| P | inrlIP

Figure 6: Partial Evaluation Contexts

Definition 6.1 One step partial evaluation relation e is defined by clos-
ing the static reductions under partial evaluation contexts. In other words,
for all annotated expressions e, €', e —pe € iff e = IPle1], for some IP, e
such that e1 —pe €2 and IPles] = ¢€'.
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Restricted to pure lambda-terms, the reductions permitted by our definition
include those of Palsberg’s definition of a top-down partial evaluator [Pal93].

6.3 Safety of the Partial evaluator

The definition of safety focuses on the statically annotated destructors. It
is convenient to give a formal definition of these expressions:

Definition 6.2 (Destructors) Define the destructors ID to be the follow-
ing single-holed contexts:

case [] of
D == [le | m[] | m[] | inlz=el
mnry = e

All destructors occurring in a PE-annotated expression must carry an anno-
tation (S or D). We call these expressions the PE-destructors. Let ID° and
IDP respectively denote the static and dynamically annotated PE destruc-
tors. For example, if ID is the destructor 7, [], then IDP[z] is the expression
m7z. A static destructor tells the partial evaluator that it can expect that
the expression in the hole can be evaluated to a constructor of the right
type (or we loop in the attempt). What this means in an implementation
(e.g. a partial evaluator like Similix [Bon91]) is that when partial evaluation
of the expression in the destructor position has finished, it will be trusted
that the result will be of the right kind to be “destructed”. The partial
evaluator “goes wrong” and reaches a possible error state if this is not the
case. Before we give a syntactic characterisation of these error states, we
note the following properties, where we assume that the standard seman-
tics of an annotated expression is defined to be that of the corresponding
unannotated version.

Proposition 6.3 If At e: 7 and e —p € then A € : 1, and for all
environments p matching type environment A, [e]p = [e']p

So partial evaluation preserves the type and denotation of an expression.
Note that if we wish to consider the underlying language to be call-by-value,
then this partial evaluator increases termination properties (so [€]yar Eyal
[€'Tvar) in the manner of lambda-mix [GJ91]. However, this is not the aspect
of safety that concerns binding-time analysis.

The fact that we always have a well-typed program leads to the con-
clusion that the error states are those for which a variable, or a dynamic
destructor, appears in the hole of a static destructor (and that this occurs
in some partial evaluation context). The following proposition helps char-
acterise the error states:

Proposition 6.4 If D[e] is a well-typed expression, and IDS[e] is not a
partial evaluation redez, then either e = x or e = ID'[€/] for some destructor
D'
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Definition 6.5 (Error states) A PE-annotated expression e is in an er-
ror state if either

1. e = P[ID{[z]] for some IP, Dy, z, or

2. e

P[ DY [ID2[e']]] for some IP, Dy, DD, €'.

Our goal is to show that applying the reduction rules of the partial evaluator
on a semantically well-annotated program can never lead to an error state.
To do this we must give a definition of “a well-annotated expression” by
interpreting PE-annotated expressions as semantic annotations.

Definition 6.6 We define a mapping, -, from PE-annotated expressions to
(ordinary) annotated expressions by induction on the syntaz:

I==x (61/,\62) = (é1,€3) inle = inle inre=inré
A0l e = dz. (B(#PYp)) el @ey = (61)° &
e =m(@")  mhe=m(@")
case® (37)]7 case (gb) of D)
inlw[lD] =e || = inlz = (&1){%1 /[ }
) D D
s inr o = (63){5”[2 ]/:1:2}

So, for example, if e is the PE-annotated expression Az”. (z,z), then & =
Az. (2P, zP).

Next we must give an interpretation of the annotations {S, D} as ab-
stractions of ideals. In what follows we assume the following definition for
the abstraction map a:

D, if T=A;
a(l;) =4 5, if 1C3,
undefined, otherwise

Now we can define when a PE-annotated expression is semantically well-
annotated.

Definition 6.7 A PE-annotated open expression e, such that A&+ e: 7 for
some type environment A, is well-annotated if there exists an I such that
By>e: I, where By = {z = Ay | © in the domain of A}.

The structure of the proof of safety of the partial evaluator is as follows:
first we show that anything appearing in a partial evaluation context is well-
annotated, providing that the whole expression is well-annotated. We use
this to argue that the error states are not well-annotated, and hence that the
partial evaluator never starts out in an error state. The proof is completed by
using the subject reduction property, which states that well-annotatedness
is preserved by partial evaluation steps.

First we need a couple of technical lemmas:
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Lemma 6.8 For all B, I, I', B{z > I'}>e{%"/;} : ] <= B{z — A}>e:
I

~

Lemma 6.9 Extend = to operate on contexts, by specifying that [] = [].
For all partial evaluation contexts IP and PE-annotated expressions e, if
{z1...z,} are the variables captured by IP, then

Ple] = Ple{z? - T /y, 5, }]

Proposition 6.10 If e is well-annotated and e = IP[€'] then €' is well an-
notated.

—_—

PROOF. Suppose e is well-annotated. Then by definition By > Ple’] : I for
some I and some By mapping free variables to A. Assume that variables cap-
tured by IP are {z...z,}. By Lemma 6.9 B> ﬁ[g’{%D .- 157?/351 |
I. By a straightforward induction on IP we can show that we must have

Bo[:L'li—)IlSEni—)In]DgI{xlDxr?/wlwn}ll

for some I', I . .. I,. Now by Lemma 6.8 we can conclude that By{z1 —
A}---{xn — A} > €' : I' and hence that €’ is well-annotated. O

Lemma 6.11 A well-annotated expression cannot be in an error state.

PROOF. Suppose that e is in an error state. Then by definition either e =
IP[ID}[z]] or e = IP[ID{[IDY[¢']]]- Consider the second case (the first case
is similar). Now suppose, towards a contradiction, that e is well-annotated.
By Prop. 6.10 it follows that ID{[IDP[e]] is also well-annotated. From the

—

definition we can calculate that IDS[IDP[e']] = ID;[(ID3[(¢')P])5]. Finally,
by straightforward case analysis from the rules we conclude that there can
be no inference of the form By > ID;[(ID3[(e')P]))S] : I for any By, thus
contradicting the assumption that e is well-annotated. O

Lemma 6.12 (Substitution Lemma) If B{z — I"}>e: I" and B¢’ :
I' with I' C I" and I" C I then B> e{€/y} : 1.

Proor. By induction on e. O

Lemma 6.13 (Subject Reduction) Ife s, €' and Br>e: I then Bre :
I

PROOF. (Sketch) Consider the case when e is a redex. The result follows
easily in all cases by “backwards reasoning” except for application. For
this case we apply the Substitution Lemma (Lemma 6.12). The general
case (e = IP[€']) follows easily from the compositional construction of the
inference system. &
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Lemma 6.14 If e —p ¢’ then ¢ —»7 ¢

Theorem 6.15 If e is well-annotated and e v, €' then €' is not in an
error state.

PROOF. Assume e is well-annotated — i.e. that By > e : I for some I. By
Lemma 6.14 we have that € —T ¢/, and so by Subject Reduction (Theo-
rem 5.3) By > ¢ : I. Hence ¢ is well-annotated, and so by Lemma, 6.11 €'
cannot be in an error state. &

7 On-line Partial Evaluation

Off-line partial evaluation is defined to be partial evaluation which uses a
binding-time analysis. Conversely, the term on-line is used for partial eval-
uators which do not. This means that before attempting to do a reduction,
an on-line partial evaluator must always check to see if the object being
destructed is of the appropriate kind. It is generally able to perform more
reductions than an off-line evaluator, but is potentially less efficient (and
less simple in structure) because of the extra checking necessary.

In this section we show that the safety condition—that we never reach
an error state—also holds for a form of on-line partial evaluation. This
result is significant because it shows that an on-line partial evaluator could
be optimised by using a binding-time analysis, since it removes partial-
evaluation-time checks on the argument to a static destructor.

Definition 7.1 Define an on-line reduction relation —,, on PE-annotated
terms by extending the partial evaluation reductions —p. to include the fol-
lowing rewrite:

If D3[e] —pe € then IPIIDP]e]] —on Ple']

Note then that we still do not permit reduction under non-dynamically
annotated binding operators (not a severe restriction, since because they
are static they are likely to be eliminated by reduction anyway). But now
if a dynamic-annotated destructor is a redex, then it can be reduced.

Theorem 7.2 If e is well annotated and e —},, €' then €' is not in an error
state.

PRroOOF. Easy adaptation of the proof for the off-line case, since the analogue
of Lemma 6.14 holds (because annotations can be deleted), and so the result
follows directly from the Subject Reduction Theorem. &
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Figure 7: Binding-time analysis a la Gomard and Jones

8 Correctness of binding-time analyses

We have focused on proving safety (correctness) of partial evaluation from
a semantic model. A reasonable question is whether it is possible to design
analyses and show that they are sound w.r.t. this semantic model. In this
section we briefly claim that this is so, by outlining how existing monovari-
ant binding-time analyses can be justified in our model and monovariantly
internalised.

8.1 J)-mix

Gomard and Jones describe a simple, but illustrative off-line partial evalua-
tor for the kernel of an untyped higher-order programming language [GJ91,
Gom92]. We shall only consider the (pure) lambda calculus subset of the
language. It is untyped, but can be understood to be typed by giving every
expression the type rec a. @ — a. Our extended domain interpretation maps
this type to the “smallest” domain Dy, such that Dy = (Dy — Doo)‘{s 1}

via top-strict continuous isomorphism ¥ : (D, < Doo)(g 13 = Doo, where
f=Ad € Dy.if dC dp_ thendp_else Tp_.

As before, the semantic ideal A modelling “dynamic” (D) is | dp_,
whereas “(surface) static” (S) is ¥ =A —{ép.} = V(A — A).

The binding-time analysis of Gomard and Jones can be described by an
inference system consisting of rules that are derivable in our monovariant
internalisation. We give the rules using the ordinary annotated expressions.
These correspond, via a translation as in Definition 6.6, to PE-annotated
terms where not only destructors, but also constructors are annotated by
either S or D.

This shows that the binding-time analysis of Gomard and Jones is sound
with respect to our model of binding times and our monovariant internalisa-
tion. An immediate consequence of the Subject Reduction Theorem is that
no partial evaluator, in particular A-mix, whose actions can be modelled by
the reductions of Section 5 can reach an error state.

26



8.2 Other analyses

Mogensen Mogensen extends the binding times in Gomard and Jones’
analysis with recursively specified binding times [Mog92]. His off-line partial
evaluator has been shown correct relative to the analysis by Wand [Wan93].
Mogensen’s analysis can also be justified by the rules of Figure 7. The safety
of his partial evaluator follows from our Subject Reduction Theorem.

Palsberg/Schwartzbach The binding-time annotations of Palsberg and
Schwartzbach [Pal93] are the same as for Gomard/Jones and Mogensen.
Their binding-time analysis, however, cannot be shown correct relative to
our monovariant internalisation since our inference system lacks the ability
of propagating disjunctive properties. Adding rules for unions of ideals,
in the style of Jensen [Jen92], to our internalisation, seems to provide a
— still monovariant — internalisation of binding-time properties that sub-
sumes their analysis. This extension promises interesting applications to
constructor specialisation and closure analysis.

Launchbury and Hunt/Sands The binding-time models of Launchbury
[Lau89] and Hunt and Sands [HS91] can be expressed in our model in the
sense that their (syntactic descriptions of) binding times can be interpreted
as ideals in our extended domains, giving valid binding-time statements for
expressions. The analysis of Hunt and Sands is polyvariant, however, and
thus cannot be expressed in our monovariant internalisation. We conjecture
that Launchbury’s analysis is expressible in our monovariant internalisation.

9 Conclusions and Further Work

In this paper we have considered a model-based approach to the safety of
off-line partial evaluation. We have motivated a new model for structured
binding times in higher-order functional languages, illustrating problems
with the previous models using projections and PERs. The model is based
on an extension of the standard domains with “extra” elements § (anony-
mous dynamic value) and T (error value) at each type, reflecting the finer
distinctions that we are able to make between programs at partial evalua-
tion time than we are able to make during normal execution. We tackle the
problem of program annotation by showing that semantic properties can be
expressed in a structural syntax-directed style. This is essentially a collect-
ing interpretation [CCT79], but avoids the cumbersome details of an explicit
“sticky” semantics mapping properties to program points (cf. [Nie85])

The model is able to represent partially static data structures in the
manner of [Mog88] and [Lau88], as well as properties of higher-order func-
tions. Furthermore, we are not dependent on any assumption of lazy data
structures and non-strict evaluation in the underlying language.
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We have shown that the model is adequate to prove safety for a class
of partial evaluators for this language. This class of partial evaluators is
similar in spirit to Palsberg’s definition of top-down partial evaluators for
the pure lambda-calculus. We believe this is the first proof of its kind—
based on a semantic specification of a safe binding time annotation, rather
than on a particular analysis. We have also shown that sound binding-
time annotations are preserved by dynamic reductions, a fact which has
implications for the optimisation of on-line partial evaluators. Finally, we
have argued that existing analyses can be shown to be sound with respect
to the model given here.

9.1 Limitations and Further Work

There are some fundamental limitations in the definition of a sound an-
notation which are necessary in order to prove the correctness of simple-
minded partial evaluators. One such limitation is the “uniformity” assump-
tion [Lau89], which is implicit in the structural nature of our conditions
for a safe annotation®. This restriction is fundamental in the sense that
it would actually be unsafe to perform, for example, constant propaga-
tion or relational analyses between variables unless the partial evaluator
where to employ exactly the same flow analysis “on-line” (as in Turchin’s
driving [Tur86]). This also means that we cannot account for partial evalua-
tors which perform arbitrary algebraic manipulations (e.g. code propagation
across dynamic conditionals [Bon92]), unless they can be factored out in a
pre-processing stage (e.g. [CD91]).

Polyvariant binding-time analysis is intimately connected to (finitary or
infinitary) conjunctive properties of functions. This can be modelled by
taking intersections of ideals. Finitary conjunctive properties of functions
capture the polyvariant binding-time analyses of Gengler and Rytz [GR92]
and Consel [Con93]. Infinitary conjunctive properties can be expressed as
binding-time functions [HS91, CJ@94] or polymorphic types [HM94]. We
plan on extending the monovariant internalisation of this paper to a sound
and complete polyvariant internalisation using infinitary conjunction. This,
we hope, will enable us to justify both polyvariant analyses as well as the
safety of partial evaluators driven by polyvariant analyses.
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A Appendix

In this section we provide some details omitted from the main text.
Figure 8 gives the static semantics of the language.

Atz Az) AF () : unit

Az r1ike:t Are:r— 1 Akeé:r

A Xdz:1.e:7— T Atee 7

Ale: T Areée: 7 AkFe:Tx 71 AFe:7x 7

At (eel):mxT! AFme:T A mye: 7!

Alre:T AkFe:7
Abidnle: 7+ 7 Abidnre: 7+ 71

AlFe: 7+ 17 Alz = 71}Ee 7" A{e' —» '} e’ o "

case e of
At inlez =¢€| | :7"
inr ' = €

A{f »r1}tke:r
A fix f.e:T

Figure 8: Definition of simply-typed functional programming language

Below are proofs of Lemma 5.2 and Theorem 5.3, the Subject Reduction

Theorem.

Lemma A.1 (Lemma 5.2) Let D be a domain with a top element T. Let
LI' J J be nonempty ideals such that J' is not full in D; i.e., it is a proper
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subset of D.
Then I - 1I'CJ— J ifand only if JC I and I' C J'.

PROOF. if: This is the well-known contravariant containment rule for ideals.
only if: We prove this result by contradiction. Assume it doesn’t hold that
J CTIand I' CJ whenever I - I' C J — J'. Then for some ideals
I,I',J,J" either J C I fails to hold or, if it does hold, I' C J' fails. Let us
consider these two cases in turn.

1. Assume that J Z I; that is, there exists dy € J such that dy & I. Take
a function f € I — I'. (Such an f exists since ideals are nonempty.)
Let us define a function f’ as follows:

fl(iE) d:ef{ f(.’E), ifzel

T, otherwise

It can be checked that f’ is continuous.

Now, f' € I — I' since f'(I) = f(I) C I', but f' ¢ J — J'. To
wit, dy € J, but f'(dj) = T ¢ J' since J' cannot contain T as it,
otherwise, would have to be full. This shows that I — I' & J — J',
which is in contradiction to our assumption.

2. Assume that I' € J'; that is, there exists dpy € I' such that dp € J'.
Consider the constant function g defined by g(x) & dp. Clearly it is
continuous and an element of I — I'. Tt is not in J — J', however,
since there is z € J such that g(z) =dp ¢ J'. Thusge I >I1¢Z J —
J', which contradicts our assumption.

This concludes the proof. O

Theorem A.2 (Subject Reduction Theorem) IfBr>e: I and e —»* €
then Br>e¢': 1.

PROOF. 1. Assume that e is a redex. We shall only consider the case
where e = (Az. e1) ey as this is the most difficult case, which re-
quires Lemma 5.2. The other cases are similar in principle, but easier.
Without loss of generality we may assume that every application of a
non-logical rule is followed by exactly one application of the weakening
rule.

We have to show that B > (Az. e1) es : I implies B > e1{€2/;} : I.
Assume Br>(\z. e1) eo : I. This must have been derived by application
of the rule for application yielding B > (Az. e1) ey : I, followed by (a

single) application of the weakening rule. Clearly it is sufficient to
show that B> ej{€2/;} : I
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Since B > (Az. e1) ez : I is derived using the application rule there
must be an ideal I’ such that B> Az. e; : I' = I and B> ey :
I'. Furthermore, I must not contain all elements of the underlying
domain.

The former judgement must be derivable from B{z +— I"} >e; : I"
for some ideals I",I", which gives B> Az. e : [" - I" C I' — I.
Since I is not full it follows by Lemma 5.2 that I’ C I" and I'" C I.

Since B{z — I"}>e; : I" and Brey : I' with I' C I")I" C T it
follows by the Substitution Lemma (Lemma 6.12) that Br>e;{€2/;} : I,
which is what we had to show.

2. Let us assume now that e = C[r] where C[] is a context and r is a
redex with reduct 7. We want to show that if B> e : I then also
B¢ : I for e = C[r'].

Any proof of B > C[r] : I contains a judgement B’ > r : I’ for the
occurrence of e in the context C[] since the proof rules are syntax-
directed. In the first step we have shown that this implies B’ > 7’ :
I'. Since the proof rules are syntax-directed we can build a proof of
B> C[r'] : I. (Formally this is done by induction on C[].)

This concludes the proof. O
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