Higher-Order Expression Procedures

David Sands

DIKU, University of Copenhagen
dave@diku.dk

Abstract

We investigate the soundness of a specialisation tech-
nique due to Scherlis, expression procedures, in the con-
text of a higher-order non-strict functional language.
An expression procedure is a generalised procedure con-
struct providing a contextually specialised definition.
The addition of expression procedures thereby facili-
tates the manipulation and specialisation of programs.
In the expression procedure approach, programs thus
generalised are transformed by means of three key trans-
formation rules: composition, application and abstrac-
tion.

Arguably, the most notable, yet most overlooked fea-
ture of the expression procedure approach to transfor-
mation, is that the transformation rules always preserve
the meaning of programs. This is in contrast to the
unfold-fold transformation rules of Burstall and Dar-
lington. In Scherlis’ thesis, this distinguishing prop-
erty was shown to hold for a strict first-order language.
Rules for call-by-name evaluation order were stated but
not proved correct. In this paper we show that the ex-
pression procedure approach is correct for call-by-name
evaluation, including lazy data structures and higher
order functions.

1 Introduction

The declarative style of programming encourages, and
benefits from, a modular approach to the construction
of programs. A standard motivation for the study of
program transformation in this setting is that the mod-
ular style comes at the expense of program efficiency.
Program transformation can be seen as an attempt to
reconcile these conflicting goals, permitting program
construction in the modular style, and gaining efficiency
through meaning-preserving transformations. Correct-

Slightly revised version of a paper to appear: ACM SIGPLAN
Symp. on Partial Evaluation and Semantics-based Program Ma-
nipulation, La Jolla, 1995

ness is an essential ingredient of this argument. If a
transformation method cannot ensure that the exten-
sional meaning of a program is preserved, then the prin-
cipal benefit of the modular approach to program con-
struction, namely correctness, is lost.

In this paper we study the correctness of a trans-
formation method for recursive programs in a higher-
order functional language. The method was introduced
by Scherlis [Sch81][Sch80] for a first-order language, and
proved correct with respect to a call-by-value semantics.

1.1 Expression Procedures

The basic approach of Scherlis’ transformation is that
of contextual specialisation: a function f is specialised
to the case where it occurs in some syntactic context C'.
This allows specialisation of subparts of a program so
that the specific way in which functions are composed
can be taken into account. Scherlis calls this internal
specialisation. The transformation method is based on
an extension of a language of recursion equations of the
form fx £ e, to include expression procedures. An ex-
pression procedure has the form e 2 €', ie. its left-hand
side is a complex term containing function symbols al-
ready defined in the program. The operational view of
a normal recursive definition, £ z £ e, is that of a com-
putation rule for the evaluation of instances of the func-
tion £. An expression procedure of the form C[f] 2 ¢’
can be viewed as a specialised computation rule for in-
stances of f, occurring in the context C. The addi-
tion of expression procedures, as an intermediate stage
during program transformation, enhances the ability to
perform program derivations, because it facilitates syn-
tactic representation of the interaction of various pro-
gram components. As a consequence of this addition,
the set of transformation rules required to describe a
wide range of program optimisations is very small.

Our view of expression procedures is as a frame-
work in which specific transformation tactics can be
described.

Contributions This paper shows that the expression
procedure approach extends to a wider class of lan-
guages. Specifically, the main contribution of this pa-
per is a proof of total correctness for Scherlis’ transfor-
mation rules in the context of a language with higher-
order functions and lazy data structures. The proof
itself is highly non-trivial, and proved to be resilient
to the techniques previously developed by the author
[San94, San95b]. The basic tool for the technical devel-
opment is a notion of weighted improvement: a relation
which compares the relative efficiency of expressions,
with respect to a given weight associated to each func-
tion definition. This is a generalisation of the notion of
improvement used in [San94, San95b], and is of inde-
pendent interest.

2 Expression Procedure Transfor-
mation: An Example

We introduce the rules of Scherlis’ transformation, in
the context of a lazy higher-order language, by means
of a simple example. We begin with the function defi-
nitions given below:

case rs of
nil =>nil

filterpzs £

y:ys=>if py theny : filter p ys

else filter p ys

iterate fx 2 1z :(iteratef (fx))

Now suppose we wish to compute the composed expres-
sion
filterp (iterate f z).

(So for example, filter even (iterate(Ay.l1 + y)1)
produces the infinite stream of even integers greater
than one.)

For the outer call of filter to proceed, it is clear that
the call to iterate must be computed. We can view this
expression as a version of the function iterate, to be
specialised to the case where the surrounding context is
filterp[]. For the first step of the transformation, we
compose this context with the definition of iterate to
obtain an expression procedure:

filterp(iterate fz) £ filterp(x : iterate f (fz))

Now we transform the body of the expression procedure
by application of the definition of filter (unfolding
the call) followed by simplification of the case expres-
sion, yielding:

filterp (iterate f z)

2 if pxthenx:filterp(iteratef(fz))
else filterp (iterate f (f x))

Now we have obtained an expression procedure which
can be applied recursively. However, it is not intended
that expression procedures should be directly imple-
mented, but we can “concretise” the effect of this re-
cursion in two further steps. First we abstract the
whole body of the expression procedure to define a new
function fit:

filterp (iterate f x)
= fitpfx
fitpfz £ if pxrthenx:filterp(iterate f(fzx))

else filterp(iterate f (f z))

Finally we apply the expression procedure to the right-
hand side of the definition of fit to obtain

filter p(iterate f z)
fitpfx

2 fitpfx
2 ifprthenz:fitpf(fx)
else fitp f(fx)

The example results in a definition which exhibits a
modest improvement over the original expression, since
it avoids an intermediate level of list-construction. It
serves to illustrate:

e the basic rules of composition, application and ab-
straction, which, together with simplification and
redundant-definition-elimination, form the basis of
the transformation method;

e the application of Scherlis’ rules to programs with
higher-order functions, non-strict evaluation or-
der, and lazy constructors.

The principle differences between the expression pro-
cedure transformation, and the well-known unfold-fold
method [BD77], are that:

e recursion is not introduced by explicit folding, so
the computation rules are never used “backwards”;

e each transformation step only depends on the cur-
rent definitions and expression procedures;

e the unfold fold method requires old versions of the
function definitions in order to give folding any
power.

In the remainder of this paper we show (also in con-
trast to the unfold-fold method) that the transforma-
tion method, applied to lazy higher-order programs, al-
ways produces equivalent programs.

3 Preliminaries
We summarise the notation used in the paper (which

is different from [Sch80]), the language studied and its
operational semantics.

We assume that a basic program a flat set of mutually
recursive (and curried) function definitions of the form
fx)...3q, 2 e where ay, the arity of function f, is
greater than zero. Let £, g, h ..., range over function
names, z,¥y,%... over variables and e, e;, ey... over
expressions. The syntax of expressions is as follows:

=z | f (Variable; Function name)
| erex (Application)
| caseeof (Case expressions)

(%) =er ...cn(Zr) ey,
| <€) (Constructor expressions)
| p(@) (Strict primitive ops)

We assume that each constructor ¢ and each primitive
function p has a fixed arity, and that the constructors
include constants (ie. constructors of arity zero). Con-
stants will be written as ¢ rather than c¢().

The primitives and constructors are not curried -
they cannot be written without their full complement
of operands. The expression written eo{€/z} will denote
simultaneous (capture-free) substitution of a sequence
of expressions € for free occurrences of a sequence of
variables T, respectively, in the expression eg. The term
Fv(e) will denote the free variables of expression e. A
context, ranged over by C', (', etc. is an expression with
zero or more “holes”, [], in the place of some subexpres-
sions; Cle] is the expression obtained by replacing the
holes with expression e. Contrasting with substitution,
occurrences of free variables in e may become bound in
Cle]; if Cle] is closed then we say it is a closing context
(for e).

e

3.1 Operational Semantics

The operational semantics defines an evaluation rela-
tion (a partial function) {}. If elw for some closed ex-
pression e, then we say that e evaluates to weak head
normal form w; when there is such a w, we say that e
converges, and write el}. For a given closed e, if there
is no such w then we say the e diverges. We make no
finer distinctions between divergent expressions, so “er-
rors” and “loops” are identified. The weak head normal
forms, w,wy,ws,... € WHNF are just the constructor-
expressions ¢(€), and the partially applied functions,
fe;...ex, 0 < k < as;. The operational semantics is
a standard call-by-name one, and | is defined in terms
of a one-step evaluation relation using the notion of a
reduction context [FFK87]: Reduction contexts, ranged
over by IR, are contexts containing a single hole which
is used to identify the next expression to be evaluated
(reduced).

Definition 1 (Reduction Contexts) A reduction con-

text IR is given inductively by the following grammar
R = []|Re

| case IR of ¢i(&1) =e1...cn(T)) =e,

| p(¢R,é)

Now we define the one step reduction relation on
closed expressions. We assume that each primitive func-
tion p is given meaning by a partial function [p] from
vectors of constants (according to the arity of p) to the
constants (nullary constructors). We do not need to
specify the exact set of primitive functions; it will suf-
fice to note that they are strict (all operands must be
evaluate to weak head normal form before the appli-
cation of primitive-function can), and are only defined
over constants, not over arbitrary weak head normal
forms.

Definition 2 (One-step Reduction) One-step reduc-
tion +— is the least relation on closed expressions, which
is closed under reduction contexts, ie.

e e = Rle] — R[e'].
and which satisfies the rules in Figure 1.

The one step evaluation relation is deterministic; this
relies on the fact that if e; — ey then e; can be uniquely
factored into a reduction context IR and a redex e’ such
that e; = IR[e'].

Definition 3 (Convergence) Closed expression e con-
verges to weak head normal form w, elw, if and only if
e »* w (where —* is the transitive reflexive closure of
).

From this we define the standard notions of opera-
tional approximation and equivalence. The operational
approximation we use is the standard Morris-style con-
textual ordering, or observational approzimation [Plo75,
Mil77]. The notion of “observation” we take is just
the fact of convergence, as in the lazy lambda calculus
[Abr90]. Operational equivalence equates two expres-
sions if and only if in all closing contexts they give rise
to the same observation - ie. either they both converge,
or they both diverge. Note that for this language if we
choose to observe more—such as the actual constructor
produced, the observational approximation and equiv-
alence relations will be unchanged.

(if £21... 20, 2 €)
(0<i<n)

(if [ple=¢)

fer. ..€q; 6{61 T 'eo‘f/a;'l’Eaf}
case ¢i(€) of ¢1(T1) =er...cn(Tn) >en = ez}

p(@ = ¢

Figure 1: One-step reduction rules

Definition 4 (Observational Equivalence) e an operational interpretation of expression proce-

. . . , . dures as an extension of the evaluation process;
(i) e observationally approximates €', e C €', if for

all contexts C' such that Cle], Cle'] are closed, if
Cle)l then Cle']d).

o progressiveness and consistency restrictions for ex-
pression procedures, motivated by the operational

interpretation;
(i3) e is observationally equivalent to €/, e 2 €/, if e C P ’
e and €' Ce. e intuitions as to why the transformation rules pre-

serve consistency and progressiveness

For the moment, we keep in mind an informal notion
of correctness, which is that any expression e computed
§§ing functions defined in the original program should

4 Expression Procedures and Cor-
rectness Preserving Program Tran

formation

In this section we describe Scherlis’ basic rules for trans-
formations of call-by-name programs, and define the key
notions of consistency and progressiveness which will be
instrumental in their correctness proof.

There are three fundamental transformation rules,
which were illustrated in the introductory example: ab-
straction which introduces new basic definitions; ap-
plication which unfolds either a basic definition, or an
expression procedure (ie. replaces a substitution in-
stance of the left-hand-side by the corresponding in-
stance of the right), and composition which introduces
a new expression procedure as a contextual instance of
an existing definition. The other rules are simplifica-
tion which use basic simplification properties of primi-
tive functions, and finally definition elimination which
eliminates redundant intermediate function/expression
procedure definitions.

Generalised Programs A generalised program is one
which comprises both basic definitions and expression
procedures. Each transformation rule produces a new
generalised program, and does not make reference to
earlier programs in the transformation.

Expression procedures are intended only as interme-
diate forms in the transformation of programs, rather
than a device which should be supported by a language
implementation. But to discuss correctness, and why
the method yields only equivalent programs, it is nec-
essary to give some meaning to expression procedures.
For the the purposes of this section, we follow Scherlis
in giving:

yield the same “observable outcome” as it would when
computed using the transformed functions.

4.1 Operational Interpretation of Expres-
sion Procedures

We can specify that an expression procedure, e; Z es,
can be used in computation by simply extending the
one-step evaluation rules.

Definition 5 (Extended One-step Evaluation)
With respect to a generalised program, let — ., denote
the result of extending the one-step evaluation (Defini-
tion 2) rule according to the following rule-schema (for
any reduction context IR and substitution o):

R[ela] e R[GQO'], 7,f el = ()]

From this operational interpretation of expression pro-
cedures there are two natural correctness conditions
with respect the basic definitions in the program, which
Scherlis called consistency and progressiveness.

Consistency Notice that +—,, is not deterministic,
since if e —,, €' then it is no longer the case that e
uniquely factorises into a redex and a reduction con-
text. From the point of view of correctness, allowing
the computation steps to be nondeterministic is not a
problem: we just need to ensure that all the possibilities
are operationally equivalent, so that computation using
the expression procedures never leads to a different ob-
servable outcome. This is the consistency condition.

Progressiveness The second condition we require is
that computation which employs expression procedures
should never be able to loop in cases where — converges®.
This is the progressiveness condition. Informally, pro-
gressiveness requires that each expression procedure must
represent a “useful” computation step.

Definition 6 (Consistency and Progressiveness)
Let EP be a set of expression procedures with respect to
a given program P. We define EP to be

(i) consistent if for all expression procedures e; 2 ey
in EP we have that e; = es, and

(i) progressive if for all closed expressions e, whenever
€ rep €1 Frep ot Frep €5 gy, - - for some {ei};on,
then e diverges—ie. there is no w such that elw.

4.2 Transformation Rules

Now we give the definition of the transformation rules.
We will need to employ a notion of strictness for syn-
tactic contexts. We say that a context C is strict? if for
all closed expressions e, and substitutions o, if Cle]o
converges then e must converge.

In the following let GP, GP’ range over generalised
programs, and a definition of the form e = ¢’ range
over both basic definitions and expression procedures.
We say that a pair of expressions {e1, e2) is a definition
instance of GP, if there exists a definition e = €’ in
GP (either basic or an expression procedure) such that
ec = e; and e'oc = e; for some substitution 0. We
have the following transformation rules ([Sch80](p61-
63), stated using our notation):

Definition 7 (Basic Transformation Rules) For a
given program GP, and any definition instance (e1,ea),
we define the following transformation rules:

(i) Composition produces new program, GP', which
is GP plus the expression procedure Clei] £ Cles],
for some strict context C.

(ii) Application produces a new program GP' by re-
placing some definition e = Cle;] in GP with e =

0[62].

(iii) Abstraction Let e; = Cileo]

en = Chleoy]
be definitions in a given program GP.

IThe other possibility, that computation using ., gets
“stuck” in an error state, is prevented by the consistency
condition.

2In the case where C is a function application of the form £ [],
this coincides with the usual denotational definition of strictness

Abstraction produces a new program GP' by re-
placing these definitions by new definitions:

er = Ci[(f)oi]
en = Cu[(fD)on]
f¥ 2 e

where Fv(e) = £, and £ is a new name.

In addition, there is a definition-elimination rule al-
lows us to drop expression procedures from a program,
and to eliminate unnecessary intermediate functions.
We will not give any further consideration of this rela-
tively straightforward rule.

There are also simplification rules which relate to
properties of the primitive functions and the case-ex-
pression. We will need to place some mild restrictions
on the simplification laws we use. Simplification laws
are those operational equivalences which do not involve
recursive function definitions (ie. their validity is inde-
pendent of the definitions in the program. Simplifica-
tion laws include the one-step evaluation rules for case-
and primitive-functions, plus an all-important case-dist-
ribution laws (used form left to right)

Clcase e of
c1(Z1) =er ... cn(Tn) =€)

~

= caseeof

c1(£1) =Cleq] ... cn(@n) =Cley]

for strict contexts C' not containing any of the variables
in .7_3"1 [fn

Note that (following Scherlis) we also used strict con-
texts in the definition of the composition rule for intro-
ducing an expression procedure. This is necessary to
guarantee the progressiveness property. For example,
given definitions

loop (z + 1)
xr

loopz
Kzy

A
A

If we allowed non-strict contexts, we could compose con-
text K z[] with the definition of loop to obtain

Kz (loopy) Z Kz (Loop (y + 1)),

which could give a looping computation on K1 (loop1)
where there was none previously.

The importance of strictness properties for correct
transformations on non-strict programs was noted by
Runciman et ol [RFJ89] in a study of correct instantia-
tion in unfold-fold transformation. The use of strictness
in [RFJ89] corresponds to its use in the above distribu-
tion law for case expressions. In many cases, a simple
syntactic condition is enough to establish the necessary
strictness property —eg. all reduction contexts IR are
strict.

4.3 Additional Restriction on Abstrac-
tion

The additional restriction we impose concerns the con-
texts allowed in the definition of the abstraction rule.
The restriction is that the holes are not allowed within
expressions in argument positions ie. they are not al-
lowed in the right hand expression of any application,
so for example a context of the form f (C[]) would not
be allowed. This does not seem to present a problem
in practice—in fact, the most common form of abstrac-
tion involves abstracting the whole right-hand side of
an expression procedure, in which case the context is
the trivial one []".

Definition 8 (Abstractable Contexts) We define ab-
stractable contexts, ranged over by A, A; ..., to be con-
texts with zero or more occurrences of a hole, [], by the
following grammar:

A = e | [] | Ae | plAr1...4,)
| case Aof ¢1(#1) =41 ...cn(En) =4,

This restriction on abstraction has some desirable
properties, although its motivation is technical and re-
lates to the proof of correctness. We do not know if the
additional condition is necessary for progressiveness.

The restriction guarantees that the additional func-
tion call introduced by the abstraction has a “limited”
effect. The intuition is as follows: suppose we per-
form an abstraction within the body of some expres-
sion procedure. Now suppose that we apply one step of
computation using the new expression procedure. The
abstraction has introduced an overhead of some addi-
tional function calls. The restriction guarantees that
the number of times we incur the extra function call
(with respect to a single use of this new expression pro-
cedure) is bounded by a constant, which independent of
the arguments to the expression procedure. In a strict
first-order language this property holds for all contexts.

5 Correctness

Viewing a program transformation as an operation which
changes some definitions in a program (possibly also
adding some new definitions), we say that the transfor-
mation is correct if, for any expression e which mentions
functions defined in the original program, e converges
using the original program if and only if e converges
using the new definitions®.

3This implies, for example, that if e evaluates to the constant
true in the original program, it will do so in the new program
(and vice-versa)—if this were not the case, then the expression
case e of true =>true would converge with respect to the original
program, but not with respect to the new.

In the study of the correctness of program transfor-
mation in [San95b], an equivalent condition is given, re-
formulated in terms of observational equivalence (which
implicitly refers to a fixed set of function definitions);
a transformation is viewed as a process of deriving new
functions £} (possibly plus some auxiliaries) from some
existing £;. The transformation is then considered to be
correct if £} 2 £;. This formulation takes advantage of
the fact that definitions of new functions conservatively
extends operational equivalence.

In this paper we take the more direct view of correct-
ness, and attempt to follow the general lines of Scherlis’
proof for similar rules in the context of a strict first
order language. Although the technical details of our
proof are necessarily quite different from Scherlis’, in
essence correctness comes down to showing that the
transformation rules introduce, and preserve, consistent
and progressive expression procedures.

5.1 Weighted-Improvement

By far the most difficult part of the correctness proof
concerns a proper treatment of progressiveness. Our
definition of progressiveness, although simple, has rather
subtle properties. For example, for any program P, as-
suming addition is one of our primitive functions, the
consistent expression procedures 1 +2 2 2 + 1 and
2+ 1 21+ 2, are individually progressive, but when
taken together they are not.

We will capture the progressiveness property of the
expression procedures in terms of a rather more tractable
class of improvement relations. We characterise pro-
gressiveness by a less general property, strict improve-
ment, which is adequate to prove progressiveness for the
expression procedures obtained by the transformation
rules.

We begin by defining a class of improvement rela-
tions. An improvement relation is a binary relation on
expressions which is based on the relative “efficiency”
of two expressions. Roughly speaking, improvement is
a refinement of operational approximation which says
that an expression e is improved by €' if, in all closing
contexts, computation using e is no less efficient than
when using €. The measurement of efficiency is with
respect to a given weighting, which assigns a positive in-
teger to each function symbol in a given program. The
“efficiency” is then the total “weight” of non-primitive
function calls computed.

The improvement relations are instances of the im-
provement theories from [San91], and generalise the spe-
cific improvement theory used in [San95b] (although we
do not give an associated improvement theorem). From
this we define a notion of strict improvement, and show
that if (e, e’} is in the strict improvement relation for

ep

some weighting, then the expression procedure e £ ¢’ is
progressive.

Finally, correctness follows by showing that the trans-
formation rules preserve strict improvement property of
expression procedures.

Weighting, and Evaluation Cost In the definitions
that follow, assume a fixed program. We write e K el
if e = €/, and the reduction step involves a redex of the
form £ e; ...eq, (see definition 2). If e — €’ by reducing

any other kind of redex, then we write e e

A weighting is a mapping which assigns a positive
integer to each function name (defined in a given pro-
gram). Let ¥ ¥, ... range over weightings.

Definition 9 (Weighted Cost) For all closed expres-
stons e, natural numbers n, and weightings ¥, we say
that, relative to ¥, e converges with cost n to weak head
normal form w, written ¥ + el"w, and defined induc-
tively as follows:

(i) if e =w for some w then U + el)%w;
(i) if e O el and T e')"w then ¥ F el"w;

(iii) if e V> € and U F &'} w then U + el"w where
n=m+ U(f).

It should be clear that we can make a judgement of the
form ¥ F e|}"w if and only if eljw.

Improvement is defined in an analogous way to ob-
servational approximation:

Definition 10 (Improvement) e is improved by e
with respect to U, written ¥+ e D> €', if for all con-
texts C such that Cle], Cle'] are closed,

if @k Cle]y™w then ¥+ Cle'[J"w' for some n < m.

Immediately from the definition, it can be seen that,
with respect to some weighting, B> is a precongruence
(transitive, reflexive, closed under contexts, ie. e > ¢’ =
Cle] & Cle']) and is a refinement of operational approx-
imation, ie. ¥ F e > € = e C ¢€'. It turns out that
the improvement relations have an elegant characteri-
sation in terms of a bisimulation-like definition [San91].
An outline of this characterisation below. We refer the
reader to [San91] for the general theory, and [San95b]
for a specific example (where the weight of all functions
is one). We state the following properties of improve-
ment, which follow either directly from the definition,
or from the characterisation below.

Proposition 11 For all weightings ¥,

(i) e e =>TFel e

(iz’)eri)e’:>ll‘l—e’,lze
(iti) Y -fxD>eiffa2e

(iv) ¥ Clcase z of
C1 (:'jl) =>er--- Cn(gn) :>en]
> casex of
a1 (y-i) :>C[€1] T Cn(?jn) :>C[en]
if C is strict and does not use variables 71 ... Yn

5.2 The Context Lemma for Weighted
Improvement

Finding a more tractable characterisation of improve-
ment (than that provided by Definition 10) is essential
in establishing improvement laws. The characterisation
we use says that two expressions are in the improve-
ment relation if and only if they are contained in a
certain kind of simulation relation. This is a form of
context lemma [Mil77, Abr90, How89], and the proof of
the characterisation uses previous technical results con-
cerning a more general class of improvement relations
[San91].

Definition 12 For a fized weighting ¥, A relation IR
on closed expressions is an improvement simulation for
U if whenever e IR €', if U F el wy then ¥ F ' "ws
for some n < m and some ws such that either:

(1) wi=cler...ep), wa=cle...e),
and e; IR e}, (i€1l...n), or
(ZZ) wlzflel...em,wngge’l...e’n,

(ie. w1 and wo are partially applied functions)
and for all closed eg, (w1 eg) ZR (w2 €p)-

So, intuitively, if an improvement-simulation relates e
to €', then if e converges, €' does so at least as effi-
ciently (with respect to ¥), and yields a “similar” result,
whose “components” are related by that improvement-
simulation.

The key to reasoning about the improvement rela-
tion is the fact that, with respect to some weighting ¥,
>, restricted to closed expressions, is itself an improve-
ment simulation (and is in fact the mazimal improve-
ment simulation for ¥). Furthermore, improvement on
open expressions can be characterised in terms of im-
provement on all closed instances. This is summarised
in the following:

Lemma 13 (Improvement Context-Lemma)

For all e, €, ¥ F e > € if and only if there exists
an improvement simulation IR for ¥ such that for all
closing substitutions o, ec IR €'o.

The lemma provides a basic proof technique, sometimes
called co-induction:

to show that e I> €’ it is sufficient to find
an improvement-simulation containing each
closed instance of the pair.

5.3 Strict Improvement
= Progressiveness

The connection between improvement and progressive-
ness is via a definition of strict improvement. Strict im-
provement is a refinement of improvement which says
that for strict contexts the cost of computation (relative
to some weighting) must be strictly less. The simplest
definition is in terms of the “tick” function of [San95b]:

Definition 14 (Strict Improvement) Let vV denote
an identity function, ie. Vi & x, with the distinguished
property that we assume ¥(¥) =1 for all weightings .

We define e to be strictly improved by €' with respect
to U, written U Fe> €, if\I’}—eE‘/e'

Strict improvement satisfies the following properties (part
of the “tick algebra” of [San95b]):

Proposition 15 If U + e > €/, then with respect to ¥
we have:

(i) eo > €'o for any substitution o

i) if eo > e and e’ > ey then eg I> e
(151) Cle] > Cle'] for any strict context C

) Cle] & Cle'] for any context C;

(v) IRle] > R[e]
Theorem 16 If there exists ¥ such that U - e; D> eo
for all expression procedures e; £ es in some gener-
alised program GP, then the expression procedures are
progressive.

We omit the details of the proof; the key property is that
> is a well-founded ordering on the set of convergent
programs, and so every step made by the expression
procedure rules must make progress, whenever progress
is possible.

If an expression procedure is a strict improvement,
then we will say that is improvement-progressive.

5.4 Improvement-Progressiveness
= Correctness

To prove correctness it is sufficient to show that the
transformation rules preserve consistency and progres-
siveness, and it sufficient to consider the application of
the rules to expression procedures only.

Proposition 17 To prove correctness of the expression
procedures method, it is sufficient to show, for all gen-
eralised programs with consistent and improvement-pro-
gressive expression procedures, that any application of
either

(i) the composition rule, or

(#) the application, abstraction or simplification rules
to any of the expression procedures

always yields consistent and improvement-progressive
expression procedures.

PROOF. (Outline) The crux of the proposition is that
we do not have to consider the case where we apply
transformations to the basic definitions. This is true
because we can show that:

(i) if £Z £ e is a definition in a given program then
f T £ e is a consistent and progressive expression
procedure;

(ii) any transformation step applied to a definition
fZ £ e can be simulated by the corresponding
transformation on the expression procedure f & =
&

(iii) if £4 2 €' is a consistent and progressive expres-
sion procedure, then it is correct to replace a func-
tion definition fZ £ e by £ 7 2 €'.

O

So we have reduced the correctness problem to preser-
vation of consistency with respect to application of the
transformation rules to expression procedures.

The main problem is proving progressiveness. With
regard to consistency, we will state the following with-
out proof:

Proposition 18 For any generalised program with con-
sistent expression procedures, a transformation step us-
ing either the composition rule, or the application, ab-
straction or simplification rules on any of the expression
procedures, gives a generalised program with consistent
erpression procedures.

This follows easily from the fact that operational equiv-
alence is closed under substitution and under context
(compatible) and that for any definition £Z £ e we
have that £ Z = e.

Following Proposition 17, to prove correctness it re-
mains to show that that progressiveness is preserved:

Theorem 19 For all generalised programs with improve-
ment-progressive expression procedures, any application
of either

(i) the composition rule, or

(#) the application or abstraction rules to any of the
expression procedures

yields a generalised program with improvement-progres-
sive erpression procedures.

The difficult case is abstraction, since it introduces ad-
ditional function calls. In this case we need to construct
a new weighting which makes the resulting expression
procedures improvement-progressive. First we need a
couple of technical lemmas. The informal idea (Sec-
tion 4) that abstractable contexts do not evaluate the
expression placed in their holes more than a bounded
number of times, is made precise by the following:

Lemma 20 For all abstractable contexts A, there exists
some k > 1 such that for all e

VEA[e] > A[Ve],
where V¥ is k applications of v.

PROOF. Induction in the structure of abstractable con-
texts. O

Lemma 21 For any weighting ¥ and integer k > 0, let
UtE be the weighting satisfying ¥ (g) = U(g) + k for
all functions g in the domain of ¥ (with the exception
of v, for which we have IH*(V) =1).

If neither e1,ea nor any definition in the program
contains the distinguished function ‘/, then

‘Il|—61>62=>\11+k|—61>\/k62.

PRrROOF. Easy from the fact that for e not containing ‘/7
T + el w implies THF F elF . 0

PROOF. [Theorem 19] Let GP be a generalised pro-
grams with improvement-progressive expression proce-
dures, with respect to weight ¥. From the improve-
ment-progressiveness assumption (and the fact that £ Z >
eif £ ¥ £ e) for any definition instance {eq, e3) of GP we
have that e; > es. Now consider each transformation
in turn:

Composition Composition introduces a new expres-
sion procedure of the form Cle;] 2 Clez] from some def-
inition instance (e, e3), some substitution o, and some
strict context C. Since ¥ F e; > ey and since C is
strict, by the properties of strict improvement (Propo-
sition 15), ¥ I Cle10] > Cleao].

Application Suppose we replace an expression pro-
cedure e £ Cle1] by e £ Cles], for some definition
instance (ej,e2). We know ¥ F e; > ez, and hence
¥+ Cle1] & Cles]. (C is not necessarily strict.) Also,
by improvement-progressiveness, ¥ + e > Clei], and

hence ¥ I e > Cles].

Abstraction This is the most difficult case. We must
construct a new weighting from ¥ which makes the
new expression procedures progressive. Assume that
we abstract a single expression procedure (the general-
isation will be straightforward) e; £ Aleo], to obtain
e1 Z A[(f¥)o] and £ & £ e for some abstractable con-
text A, and substitution o.

By Lemma 20, we have an integer k such that @ F
VkA[ea] > A[Veo]. We will show that ®', defined by:

Lo (1 ifh=t
®'(h) = { ®(h) + k otherwise.

is a weighting for the new program which makes all the
expression procedures improvement-progressive. All un-
changed expression procedures are improvement-pro-
gressive under ®' (since f is unreachable from these
expressions, under normal evaluation). By Lemma 21
we have

3+ e > VFA[eo].

By the choice of k£ above, we get that
3 + V¥d[eo] > A[Veo],
and since f has weight 1, we also have that
®' + A[Veo] > A[(f £)o).

Hence by the transitivity properties of strict improve-
ment (Proposition 15(ii)) we can conclude that &'
e1 > A[(f £)o] as required. O

Finally, with the simple restriction that the simpli-
fication steps must be improvements (which is easily
enforced, since eg. all right-linear equivalences involv-
ing only primitive functions and constants are improve-
ments for any weighting), the correctness proof is com-
plete.

6 Conclusions

The significance of the expression procedure method is
that it is guaranteed to preserve the meaning of a pro-
gram, and this property is built into the rules of the sys-
tem. And yet, like the unfold-fold method, it is still very
general in terms of the class of transformation “tactics”
that it can describe. This paper has shown that this
approach extends to a wider class of languages, namely
higher-order functional languages with lazy data struc-
tures. We anticipate that Scherlis’ call-by-value rules
can be similarly extended to the higher-order case.
Expression procedures have received little attention
in the literature on program transformation. We believe
that is because the whole problem of correctness for

“recursive” transformations on functional programs has
been “conveniently forgotten”. This fact is all the more
striking when one draws comparison with the situation
in logic programming; there it is almost always that case
that specific transformation methods are expressed, and
justified, within a framework which guarantees correct-
ness (such as a variant of Tamaki and Sato’s unfold-fold
approach [TS84] —eg. [Deb88] [Ale92]).

Because of their “built-in” correctness property, we
believe that the expression procedure method is a good
high-level framework for describing more specific (and
therefore more mechanisable) transformations. For ex-
ample, Turchin’s supercompilation methods [Tur86], ap-
plied to a non-strict language* can be described very
naturally in terms of Scherlis’ expression procedure trans-
formations. Turchin describes transformations of RE-
FAL (a first-order functional language) via the con-
struction of a “process graph” (in the terminology of
[GK93]). The aim is to construct a finite graph by
“folding” equivalent nodes, according to some folding
strategy (for example, syntactic equivalence modulo re-
naming) and finally to re-interpret the graph as a pro-
gram. Expression procedures are a good fit for describ-
ing this style of transformation. The construction of
a finite process graph can be represented by the con-
struction of self-sufficient (recursive) expression proce-
dures, which can be converted to program form by ab-
straction and application (in the manner of the last two
steps of the example in Section 2). With the insights
from Sgrensen et al’s work, [Sgr94] [SGJ94], the ba-
sic ingredients of supercompilation are also seen to be
present in Scherlis’ transformation: driving corresponds
to distribution laws for conditionals, information propa-
gation (in a general sense such as that of [FN88]) corre-
sponds to qualified expression procedures (see [Sch80]).
These components are also explicitly present in Weg-
breit’s early study of transformation [Weg76], and also
in Wadler’s deforestation [Wad90]. We have checked
that the transformation in this paper is sufficient to
provide a natural and direct encoding of the deforesta-
tion algorithm from [Wad90]. In this way we can show
that the restrictions we have placed on the abstraction
rule are not severe in practice®. We believe that it can
also cope with higher-order extensions, thus providing
an alternative correctness proof to [San95a].

We leave the details to a longer version of the paper.
The significance of viewing the above transformations
in the expression-procedure framework is that it ensures

40nly partial correctness is preserved in a strict language since
the domain of termination can be increased. Some of the condi-
tions on Scherlis’ rules for a strict language need to be relaxed to
allow such transformations.

5For deforestation we do need the abstraction rule (in order
to construct new definitions) but we never need to apply it in a
“non-abstractable” context.

10

correctness by construction. The results of this paper
have enabled us to extend this claim to a much wider
class of languages.

6.1 Related Work

From the point of view of correctness (which is the main
topic of this paper) we should compare the expression-
procedure method with methods for guaranteed cor-
rect program transformation. Related methods for cor-
rect program transformation are reviewed extensively
in [San94]. Scherlis compared his approach to that of
Kott [Kot78] (rather less critically than the compar-
ison in [San94]) and Manna and Waldinger [MWT79].
Subsequently, the bulk of work on correct unfold-fold
transformations is in the setting of logic programming
(although references to Scherlis’ method are rare). The
first, and probably best-known approaches to correct
unfold-fold transformations of logic programs is that of
Tamaki and Sato [TS84]. As for many subsequent vari-
ations on their ideas, the conditions for correctness are
dependent on the transformation history, rather than
being built into the rules of the system themselves.
To some degree this is inevitable, since the unfold-fold
method always depends on older versions of functions
in order to perform interesting fold-steps. In contrast,
Bossi et al [BCE92] considered a replacement condition
which is not history-sensitive—but it is a model theo-
retic condition, rather than a syntactic one. In previous
work, the author also proposed a semantic condition,
based on improvement, for correct transformations on
a higher-order functional language [San94, San95b]; the
method was used to obtain correct unfold-fold transfor-
mations, where sufficient aspects of the transformation
“history” are built into the program itself, to obtain
correct folding. This work is the most closely related
to the goals of this paper, by virtue of the fact that it
deals with correct transformations on higher-order func-
tions. An advantage of the present approach is that it
does away with all of the additional book-keeping (the
“tick-algebra”) from [San95b]. Compared to unfold-
fold derivations using the tick algebra, expression pro-
cedures seem to handle transformations involving lazy
data-structures in a smoother manner.

Acknowledgement and Further Work This paper
grew out of an attempt to apply the improvement the-
orem from [San94] to verify the correctness of expres-
sion procedures in a higher-order language. However,
the improvement theorem (as we noted in [San94]) is
not able to prove the correctness of expression proce-
dures, because of the (essential) abstraction rule. The
idea of using a weighted improvement came from Tor-
ben Amtoft (Aarhus), (the use of “weights” also oc-

curs in Amtoft’s study of unfold-fold transformations of
logic programs [Amt93][Amt92]) when the author was
explaining the details of the proof of the improvement
theorem. At the time, we concluded that a “weighted”
improvement theorem looked like an easy generalisa-
tion, but that there were no obvious applications.

A unifying topic for further work would be to show
that the improvement theorem also holds for weighted
improvement. We conjecture that it does, and that this
is sufficient to give an alternative (but perhaps less di-
rect) correctness proof for the transformation studied
in this paper.

Another direction for further work is to consider lan-
guages with side-effects. Mason [Mas86][Ch. 7] extends
Sherlis’ transformation rules to a first-order Lisp with
destructive operations, but leaves the correctness as a
conjecture. It would be interesting to see if the tech-
niques of this paper could be used in this context as
well.

References

[Abr90] S. Abramsky. The lazy lambda calculus. In
D. Turner, editor, Research Topics in Func-
tional Programming, pages 65-116. Addison

Wesley, 1990.

[Ale92] F. Alexandre. A technique for transform-
ing logic programs by fold-unfold transforma-
tions. In PLILP ’92, volume 631 of LNCS,

pages 202-216. Springer-Verlag, 1992.

[Amt92] T. Amtoft. Unfold/fold transformations pre-
serving termination properties. In PLILP
’92, volume 631 of LNCS, pages 187-201.

Springer-Verlag, 1992.

[Amt93] T. Amtoft. Sharing of computations. PhD

thesis, DAIMI, Aahus University, 1993.

[BCE92] A. Bossi, N. Cocco, and S. Etalle. Transform-
ing normal programs by replacement. In Third
Workshop on Meta-Programming in Logic,

META 92, 1992.

[BD77] R. Burstall and J. Darlington. A transforma-
tion system for developing recursive programs.

JACM, 24:44-67, January 1977.

[Deb88] S. Debray. Unfold/fold transformations and
loop optimization of logic programs. In Pro-
ceedings of the SIGPLAN’88 Conference on
Programming Language Design and Imple-
mentation, pages 297-307, 1988. SIGPLAN

Notices 23(7).

11

[FFK87] M. Felleisen, D. Friedman, and E. Kohlbecker.
A syntactic theory of sequential control. The-
oretical Computer Science, 52:205-237, 1987.

[FN88] Y. Futamura and K. Nogi. Generalised par-
tial computation. In D. Bjgrner, Ershov, and
N. D. Jones, editors, Partial Evaluation and
Mized Computation. Proceedings of the IFIP
TC2 Workshop, Gammel Avernes, Denmark,

October 1987. North-Holland, 1988.

[GK93] R. Gliick and A. V. Klimov. Occam’s razor
in metacomputation: the notion of a perfect
process tree. In G.File P.Cousot, M.Falaschi
and A.Rauzy, editors, Static Analysis. Pro-
ceedings, volume 724 of LNCS, pages 112-123.

Springer-Verlag, 1993.

[How89] D. J. Howe. Equality in lazy computation sys-
tems. In Fourth annual symposium on Logic
In Computer Science, pages 198-203. IEEE,

1989.

[Kot78] L. Kott. About transformation system:
A theoretical study. In B. Robinet, edi-
tor, Program Transformations, pages 232—247.

Dunod, 1978.

[Mas86] I. Mason. The Semantics of Destructive Lisp.

Number 5 in CSLI Lecture Notes. CSLI, 1986.

[Mil77] R. Milner. Fully abstract models of the typed
A-calculus. Theoretical Computer Science, 4,

1977.

[MW79] Z. Manna and R. Waldinger. Synthesis:
Dreams — programs. Transactions on Pro-

gramming Languages and Systems, 5(4), 1979.

G. D. Plotkin. Call-by-name, Call-by-value
and the A-calculus. Theoretical Computer Sci-
ence, 1(1):125-159, 1975.

[Plo75]

[RFJ89] C. Runciman, M. Firth, and N. Jagger.
Transformation in a non-strict language: An
approach to instantiation. In Functional
Programming, Glasgow 1989: Proceedings
of the First Glasgow Workshop on Func-
tional Programming, Workshops in Comput-

ing. Springer Verlag, August 1989.

D. Sands. Operational theories of improve-
ment in functional languages (extended ab-
stract). In Proceedings of the Fourth Glasgow
Workshop on Functional Programming, pages
298-311, Skye, August 1991. Springer Work-
shop Series.

[San91]

[San94]

[San95a)

[San95b]

[Sch80]

[Sch81]

[SGJ94]

[Ser94]

[TS84]

[Turs6]

[Wad90]

[WegT6]

D. Sands. Total correctness and improve-
ment in the transformation of functional pro-
grams. DIKU, University of Copenhagen, Un-
published (53 pages), May 1994.

D. Sands. Correctness of recursion-based
automatic program transformations. In In-
ternational Joint Conference on Theory and
Practice of Software Development (TAP-
SOFT/FASE ’95), LNCS. Springer-Verlag,
1995.

D. Sands. Total correctness by local improve-
ment in program transformation. In Proceed-
ings of the 22nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Languages (POPL). ACM Press,
January 1995.

W. Scherlis. FEzpression Procedures and Pro-
gram Derivation. PhD thesis, Dept. of Com-
puter Science, Stanford, 1980. Report No.
STAN-CS-80-818.

W. L. Scherlis. Program improvement by in-
ternal specialisation. In 8’th Symposium on
Principals of Programming Languages. ACM,
1981.

M. H. Sgrensen, R. Gliick, and N. D. Jones.
Towards unifying partial evaluation, defor-
estation, supercompilation, and GPC. In
ESOP’94. LNCS 788, Springer Verlag, 1994.

M H Sgrensen. Turchin’s supercompiler re-
visited: An operational theory of positive in-
formation propagation. Master’s thesis, De-
partment of Computer Science, University of
Copenhagen, 1994.

H. Tamaki and T. Sato. Unfold/fold trans-
formation of logic programs. In S. Tarnlund,
editor, 2nd International Logic Programming
Conference, pages 127-138, 1984.

V. F. Turchin. The concept of a supercom-
piler. ToPLaS, 8:292-325, July 1986.

P. Wadler. Deforestation: transforming pro-
grams to eliminate trees. Theoretical Com-
puter Science, 73:231-248, 1990. Preliminary
version in ESOP 88, LNCS 300.

B. Wegbreit. Goal-directed program transfor-
mation. IEEE Transactions on Sofware Engi-
neering, 2:69-80, June 1976.

12

