Improvement in a Lazy Context:
An Operational Theory for Call-By-Need
(Extended Version)

Andrew Moran

Chalmers

Abstract

The standard implementation technique for lazy func-
tional languages is call-by-need, which ensures that an
argument to a function in any given call is evaluated
at most once. A significant problem with call-by-need
is that it is difficult — even for compiler writers — to
predict the effects of program transformations. The tra-
ditional theories for lazy functional languages are based
on call-by-name models, and offer no help in determining
which transformations do indeed optimize a program.

In this article we present an operational theory for call-
by-need, based upon an improvement ordering on pro-
grams: M is improved by N if in all program-contexts C,
when C[M] terminates then C[N] terminates at least as
cheaply.

‘We show that this improvement relation satisfies a “con-
text lemma”, and supports a rich inequational theory,
subsuming the call-by-need lambda calculi of Ariola et al.
[AFM™*95]. The reduction-based call-by-need calculi are
inadequate as a theory of lazy-program transformation
since they only permit transformations which speed up
programs by at most a constant factor (a claim we sub-
stantiate); we go beyond the various reduction-based cal-
culi for call-by-need by providing powerful proof rules
for recursion, including syntactic continuity — the basis
of fixed-point-induction style reasoning, and an improve-
ment theorem, suitable for arguing the correctness and
safety of recursion-based program transformations.

1 Introduction

Call-by-need optimises call-by-name by ensuring that
when evaluating a given function application, arguments

1Department of Computing Science, Chalmers University of
Technology and the University of Goteborg, S-412 96 Goteborg,
Sweden; [andrew,dave]@cs.chalmers.se.

Extended version of a paper that appeared at POPL’99,
San Antonio, Texas, January 20-22, 1999.

David Sands

1

are evaluated at most once. All serious compilers for lazy
functional languages implement call-by-need evaluation.
Lazy functional languages are believed to be well-suited
to high-level program transformations, and some state-
of-the-art compilers take advantage of this by applying
a myriad of transformations and analyses during compi-
lation [PJS98]. However, it is notoriously difficult, even
for those with extremely solid intuitions about call-by-
need, to predict the effects of a program transformation
on the running time. Since traditional theories for lazy
languages are based upon call-by-name models, they give
no assurance that a given transformation doesn’t lead to
an asymptotic slow-down.

Call-by-need Calculi The call-by-need lambda calculi
[AFM*95, AF97, MOW9S] offer a solution to some of
these problems. By permitting fewer equations than call-
by-name, these calculi enable term-level reasoning with-
out ignoring the key implementation issues underpinning
call-by-need. However, they do have some serious limita-
tions. All of the equations in the calculi are, by definition,
symmetric. This means that certain useful local transfor-
mations cannot be present. In fact, the call-by-need cal-
culi are limited to transformations which change running-
times by at most a constant-factor (see section 4.6), inde-
pendent of the context in which the programs are used.
Even within the confines of constant-factor transforma-
tions there are significant shortcomings, since none of the
calculi have proof rules for recursion; we believe that, as a
consequence, almost no interesting equivalences between
recursive programs — such as the fusion of recursive func-
tions (e.g. via deforestation) — can be justified in the
calculi.

Our Approach We aim to go beyond these limitations
by refining the notion of observational approzimation be-
tween terms, and by establishing algebraic laws (contain-
ing the laws of the call-by-need calculi as theorems) and
recursion principles for that approximation relation. A
key result of [AFM'95] is that the standard observa-
tional equivalence and approximation relations, in which
one only observes termination, cannot distinguish call-
by-need evaluation from call-by-name. To obtain an op-
erational theory which retains the computational distinc-
tions between name and need, we also observe the cost
of evaluation, in terms of a high-level model of compu-
tation steps. Our observational approximation relation,
improvement, is defined with respect to a fixed opera-

tional semantics by saying that: M is improved by N if
in all program-contexts C, when C[M] terminates then
C[N] terminates at least as fast.

Summary of Results We develop an operational theory
for a call-by-need lambda calculus with recursive lets,
constructors, and case expressions. The theory is based
upon an abstract machine semantics for call-by-need, and
is cost-sensitive, and therefore reflects the computational
distinctions between call-by-name and call-by-need. We
show that the improvement relation has a rich inequa-
tional theory, validating the reduction rules of the call-
by-need calculi. Most importantly, it supports powerful
induction principles for recursive programs. Some spe-
cific original results are:

o A context lemma for call-by-need, meaning we can
establish improvement by considering just computa-
tion in a restricted class of contexts, the evaluation
contexts;

e A rich inequational theory, the tick algebra, which
subsumes the call-by-need calculi;

o A syntactic continuity property which characterises
improvement of a recursive function in terms of its
finite unwindings, and forms the basis of fixed-point
induction style proofs, and

e Two powerful proof techniques, the improvement
theorem and improvement induction, which are par-
ticularly well-suited to inferring the correctness and
safety of recursion-based program transformations
which proceed by local improvements.

Overview We begin with a discussion of related work in
section 2. Section 3 then presents the operational seman-
tics (Sestoft’s “mark 1”7 abstract machine for laziness).
This is used as the basis for a contextual definition of im-
provement and cost equivalence, and the context lemma
is stated. The inequational theory, known as the tick al-
gebra, is presented in section 4, and the relative power
of the algebra and the call-by-need calculi is discussed.
Syntactic continuity is presented in section 5 and used
to show that an unwinding fixed-point combinator is im-
proved (up to a constant factor) by a knot-tying fixed-
point combinator. We also present a syntactic variant of
fixed-point fusion for call-by-need, which can be estab-
lished via syntactic continuity. The improvement theo-
rem is introduced in section 6, along with improvement
induction and examples of their use. Section 7 concludes,
and we discuss of future avenues of research. For the
interested reader, appendix A summarises the technical
development and presents the proofs of the main theo-
rems.

2 Related Work

Improvement theory and the improvement theorem were
originally developed in the call-by-name setting [San91,
San96], and generalised to a variety of call-by-name and
call-by-value languages in [San97]. Whether this pro-
gramme could be carried out in a call-by-need setting has
long been an open question. An inspiration which gave

us confidence in the possibility of a tractable improve-
ment theory for call-by-need is the call-by-need lambda
calculus presented by Ariola and Felleisen, and Maraist,
Odersky and Wadler [AFM 195, AF97, MOW98]. For us,
the significance of the call-by-need calculi is that they are
based on reduction (and hence equations) between terms
in the source language (see figure 7), rather than, say,
term-graphs, abstract-machine configurations, or terms
plus explicit substitutions. The reduction rules are con-
fluent, and enjoy a deterministic notion of standard re-
duction. Related concepts appear in other approaches,
in particular in the study of so-called optimal reductions
e.g., [Fie90, Mar91, Yos93].

One limitation of the original work by Ariola et al. is in
the treatment of recursive cycles; naive extension of the
calculi to deal with recursive lets leads to a loss of con-
fluence [Jef93, AK97]. The original call-by-need calculus
considers recursive lets only briefly. To recover conflu-
ence, one can simply disallow reductions under cycles, as
in e.g., [BLR96, Nie96]. Ariola and Blom give a full study
of cyclic recursion in [AB97, AB98], and show that an ap-
proximation to confluence can be obtained by equating
terms with the same infinite normal-form. Their Aosuars
calculus can be seen as the natural successor to the call-
by-need calculi.

In general, reduction calculi appear to be a good ve-
hicle for exploring the language design space with re-
gard to call-by-need-like features. Rose’s work e.g.
[Ros96, BLRI6] exemplifies this approach in an elegant
combination of explicit substitution and combinatory re-
duction systems. Our view is complementary to the
rewriting approaches: once a particular operational se-
mantics (reduction strategy) has been fixed, one can go
beyond the confines of the calculi by developing an oper-
ational theory.

Apart from the rewriting-based approaches, there have
been a few attempts to give a high-level semantics to
call-by-need e.g. [Jos89, Jefd4, SPI96, Lau93, Ses97].
Launchbury’s natural semantics, and Sestoft’s abstract
machine(s) have been adopted by a number of researchers
as the formal definition of call-by-need e.g. [TWM95,
HM95, SPJ97, Gus98]. Since it appears to be a non-
controversial choice, we adopt Sestoft’s machine — es-
sentially a Krivine-machine [Cur91] with updating of the
heap — as the operational model underpinning our the-
ory. As others have observed (e.g. [Pit97a]), working with
an abstract machine rather than an inductive semantics
also has benefits in proofs about computations (examples
of this may be seen in the appendix).

3 The Operational Semantics

Our language is an untyped lambda calculus with recur-
sive lets, structured data, and case expressions. We work
with a restricted syntax in which arguments to functions
(including constructors) are always variables:

L M,N:=z|Xxe.M|Mzx|cZ
| let {f=M}inN
| case M of {c; @ — N;}.
The syntactic restriction is now rather standard, follow-

ing its use in core language of the Glasgow Haskell com-
piler, e.g., [PJPS96, PJS98], and in [Lau93, Ses97].

All constructors have a fixed arity, and are assumed to be
saturated. By ¢Z we mean cxy - -- ,. The only values
are lambda expressions and fully-applied constructors.
Throughout, z,y,z, and w will range over variables, ¢
over constructor names, and V and W over values. We
will write let {# = M} in N as a shorthand for

let {1 = Mi,... ,zn =My} in N

where the # are distinct, the order of bindings is not
syntactically significant, and the & are considered bound
in N and the M (so our lets are recursive). Similarly we
write case M of {¢; Z; - N;} for
case M of {c1&1 - Ni| - |em &m = N}

where each Z; is a vector of distinct variables, and the c;
are distinct constructors. In addition, we will sometimes
write alts as an abbreviation for case alternatives {c; £; —»
N;}.

For examples, working with a restricted syntax can be
cumbersome, so it is sometimes useful to lift the restric-
tion. Where we do this it should be taken that

MN=let {x =N} in Mz, «fresh
whenever N is not a variable. Similarly for constructor
expressions.

The only kind of substitution that we consider is variable
for variable, with o ranging over such substitutions. The
simultaneous substitution of one vector of variables for
another will be written M [¥/z], where the & are assumed
to be distinct (but the % need not be).

3.1 The Abstract Machine

The semantics presented in this section is essentially Ses-
toft’s “mark 1”7 abstract machine for laziness [Ses97]. In
that paper, he proves his abstract machine semantics
sound and complete with respect to Launchbury’s nat-
ural semantics, and we will not repeat those proofs here.

Transitions are over configurations consisting of a heap,
containing bindings, the expression currently being eval-
uated, and a stack. The heap is a partial function from
variables to terms, and denoted in an identical manner to
a collection of let-bindings. The stack may contain vari-
ables (the arguments to applications), case alternatives,
or update markers denoted by #z for some variable .
Update markers ensure that a binding to x will be recre-
ated in the heap with the result of the current evaluation;
this is how sharing is maintained in the semantics.

We write (I, M, S) for the abstract machine configura-
tion with heap I', expression M, and stack S. We denote
the empty heap by 0, and the addltlon of a group of bind-
ings £ = M to a heap T' by juxtaposition: T'{& = M}.
The stack written b : S will denote the a stack S with b
pushed on the top. The empty stack is denoted by ¢, and
the concatenation of two stacks S and T' by ST (where
S is on top of T).

We will refer to the set of variables bound by I' as
domT, and to the set of variables marked for update in
a stack S as dom S. Update markers should be thought
of as binding occurrences of variables. A configuration

is well-formed if domI' and dom S are disjoint. We
write dom(T',S) for their union. For a configuration
(T, M, S) to be closed, any free variables in I, M, and
S must be contained in dom(I',S). For sets of variables
P and Q we will write P 4) to mean that P and @ are
disjoint, i.e., PNQ = (. The free variables of a term M
will be denoted FV (M); for a vector of terms M, we will
write FV (M).

The abstract machine semantics is presented in figure 3.1;
we implicitly restrict the definition to well-formed con-
figurations. There are seven rules, which can grouped as
follows. Rules (Lookup) and (Update) concern evaluation
of variables. To begin evaluation of x, we remove the
binding £ = M from the heap and start evaluating M,
with z, marked for update, pushed onto the stack. Rule
(Update) applies when this evaluation is finished, and we
may update the heap with the new binding for z.

Rules (Unwind) and (Subst) concern function applica-
tion: rule (Unwind) pushes an argument onto the stack
while the function is being evaluated; once a lambda ex-
pression has been obtained, rule (Subst) retrieves the ar-
gument from the stack and substitutes it into the body
of that lambda expression.

Rules (Case) and (Branch) govern the evaluation of case
expressions. Rule (Case) initiates evaluation of the case
expression, with the case alternatives pushed onto the
stack. Rule (Branch) uses the result of this evaluation to
choose one of the branches of the case, performing sub-
stitution of the constructor’s arguments for the branch’s
pattern variables.

Lastly, rule (Letrec) adds a set of bindings to the heap.
The side condition ensures that no inadvertent name cap-
ture occurs, and can always be satisfied by a local a-
conversion.

Definition 3.1 (Convergence) For closed configurations
<F7 M} S))

(T, M, S)I" = 3A, VAT, M, S)—>" (A, V, €),
def

(T, M, S)S™ =3 .(r, M,S)u Am<n

Closed configurations which do not converge are of three
types: they either reduce indefinitely, get stuck because
of a type error, or get stuck because of a black-hole (a
self-dependent expression as in let £ = z in z). All non-
converging configurations will be semantically identified.

We will also write M, M{y" and M{S", identifying
closed M with the initial configuration (@, M,).

3.2 Program Contexts

The starting point for an operational theory is usually
an approximation and an equivalence defined in terms of
program contezts. Program contexts are usually intro-
duced as “programs with holes”, the intention being that
an expression is to be “plugged into” all of the holes in
the context. The central idea is that to compare the be-
haviour of two terms one should compare their behaviour
in all program contexts.

(T{e =M}, z, S) = (T, M, #x:5)
(T, V, #2:8) > (I{z =V}, V, §)
(T, Mz, S) — (T,
(D, Ae.M, y:S)— (T,
(T, case M of alts, S) — (T,
(T, ¢; ¥, {ci®i » N;}:S)—> (T,
(T, let {#=M}in N, S) —» (I{# =M}, N, §) &4 dom(T,5S)

(Lookup)
(Update)
M, z:S) (Unwind)
MY/, S) (Subst)
M, alts: S) (Case)
Nililz,), $) (Branch)
(Letrec)

Figure 1: The abstract machine semantics for call-by-need.

We will use contexts of the following form:

C,Du=[]|z | .C|Czx|cZ
| let {# =C}inD |case Cof {c; @ — D;}.

Our contexts may contain zero or more occurrences of the
hole, and as usual the operation of filling a hole with a
term can cause variables in the term to become captured.

The relationship between terms and configurations is
characterised by a translation function from configura-
tions to terms, defined inductively on the stack:

trans{(Q), M, e) =M
trans({# = M}, N, e} =let {f = M} in N
trans(I', M, :S)=trans(I', Mz, S)
trans(T, M, #xz:S) =trans(I'{z = M}, z, S)
trans(I", M, alts : S) = trans(I', case M of alts, S)

The following lemma clarifies the relationship:

Lemma 3.1 (Translation) For all T, C, S,
there exists k = 0 such that for any M,
(9, trans(T, C[M], S),) =* (T, C[M], S).

PRrROOF. Simple induction on the size of S. O

3.3 Improvement

We define observational approximation and equivalence
via contexts in the standard way [AO93].

Definition 3.2 (Observational Approximation) We
say that M observationally approximates N, written
M T N, if for all C such that C[M] and C[N] are closed,

CIM} = C[NIY.

We say that M and N are observationally equivalent,
written M =2 N, when M C_ N and N C M.

‘We know that 22 coincides with its call-by-name counter-
part, so this tells us nothing new. We need to incorporate
more intensional information if we are to build an oper-
ational theory that retains the distinction between name
and need. Since call-by-need may be thought of as an
optimisation of call-by-name, a natural intensional prop-
erty to compare is how many reduction steps are required
for termination.

Definition 3.3 (Improvement) We say that M is im-
proved by N, written M > N, if for all C such that

C[M] and C[N] are closed,
CIM" = C[NJYS™.

We say that M and N are cost equivalent, written M <
N, when M > N and N > M.

This definition suffers from the same problem as any con-
textual definition: to prove that two terms are related
requires one to examine their behaviour in all contexts.
For this reason, it is common to seek to prove a context
lemma [Mil77] for an operational semantics: one tries to
show that to prove M observationally approximates N,
one only need compare their behaviour with respect to a
much smaller set of contexts.

‘We have established the following context lemma for call-
by-need:

Lemma 3.2 (Context Lemma) For all terms M and N,
if for all T and S,

(T, M, S} = (T, N, S)<"

then M > N.

It says that we need only consider configuration contexts
of the form (T, [], S) where the hole [-] appears only
once. This corresponds exactly to a subset of term con-
texts called evaluation contexts, in which the hole is the
subject of evaluation. We shall make this correspondence
precise in the section 4.2.

Note that the context lemma applies to open terms M
and N. It is more common to restrict one’s attention to
closed terms, and then show that the preorder in question
is closed under (general) substitution.

3.4 Strong Improvement

The improvement relation, like the notion of operational
approximation which it refines, also increases the termi-
nation of programs, so if M > N then N may also ter-
minate “more often” than M. In the context of compiler
optimisations it is natural to ask for a stronger notion of
improvement which does not permit any change in ter-
mination behaviour.

Definition 3.4 (Strong Improvement) We say that M s
strongly improved by N, written M > N, if

M>NANCM

M is strongly improved by N if it is improved by N, and
N has identical termination behaviour (note that we need
only have N T M in the definition since M > N =
MLCN).

For simplicity of presentation we emphasise improvement
rather than strong improvement. However, almost all
the laws and proof rules presented in subsequent sections
also hold for strong improvement. Notable exceptions
being the “strictness laws” concerning €2, the divergent
term. The syntactic continuity proof principle is sound
for strong improvement, but degenerates to a trivial rule.

The following Hasse-diagram illustrates the relationships
between the various approximations and equivalences in-
troduced in this section:

N\
NN
NN

{

The diagram is a N-semi-lattice of relations on terms. In
other words, the greatest lower bound of any two relations
in the diagram is equal to their set-intersection.

4 The Tick Algebra

Consider the following improvement:
(Az. M)y B M[Y/y] (%)
Clearly, for any I' and S:

(T, Az.M)y, Sy —> (T, Aa.M, y:S)
= (L, M[Yfz], S),

so (*) follows from the context lemma. But we can say
more: (Az.M)y always takes exactly two more steps to
converge than M[¥Y/,]. If we had some syntactic way of
slowing the right-hand side down, (*) could be written
as a cost equivalence, which would be preferable, since
it is a more informative statement. This motivates the
introduction of the “tick”, written v', which we will use
to add a dummy step to a computation. Now we can
write () as

Az M)y & 7 M[Y/y] (8)

We can define v' within the language® as an empty let
binding, thus:

M = let {} in M.

Clearly, v' adds one unit to the cost of evaluating M
without otherwise changing its behaviour. Note that:

M| < "M}
My" — "Myt

We will write *“ M to mean that M has been slowed
down by k ticks. The following inference rule and axiom,
known collectively as “tick elimination” are crucial when
establishing improvement or cost equivalence.

‘/MR\/N

—~ ‘M>M
MD>N ~

(v'-elim)

Their validity follows from the definition of I>.

We can easily prove a number of improvements and cost
equivalences modulo tick, and we present a selection of
the more useful ones in the following sections. Through-
out, we will follow the standard convention that all bound
variables in the statement of a law are distinct, and that
they are disjoint from the free variables. Together with
(v-elim), the laws presented in figures 2, 3, 4, 5, and
figure 6 are known collectively as the tick algebra.

4.1 Beta Laws

The first set of laws, presented in figure 2, are important
in that they allow us to mimic evaluation within the alge-
bra. We have already seen (3); (case-3) is the analogous
law for case expressions. In (value-8), one may replace
occurrences of a variable, which is bound to some value
V, with V. The ticks reflect the fact that by replacing
x with its value, we are short-circuiting one lookup and
one update step.

The proofs of validity of (value-B), (var-3), (var-abs),
and (var-subst) rely upon general techniques that are
outlined in the appendix.

There are also two derived beta laws, corresponding to
unrestricted versions of (3) and (case-3). We can derive
the following cost equivalence (modulo tick):

(Az.M)N < *let { = N} in M 8"

where N is not a variable. There is a similar derived law
for general case expressions.

4.2 Laws for Evaluation Contexts

An evaluation context is a context in which the hole is the
target of evaluation; in other words, evaluation cannot

2We could introduce a new syntactic construct instead, with
the semantics of a dummy step. Since we are working with con-
textual approximations and equivalences, this would not neces-
sarily be a conservative extension: we would have to prove that
it could be represented in the original language. By defining v" in
the language, we neatly sidestep such considerations.

Laws of the Tick Algebra

Throughout, we follow the standard convention that all bound variables in the statement of a law are distinct, and that

they are disjoint from the free variables.

(2. M)y & > M[Y/y]

case ¢; i of {¢; & » M;} © > M; [?j/i:']

P

let {z =V,§=D[z]} in Clz] T let {x =V,7=D
let {z = 2,7 = D[]} in Clz] > let {& = 2,7 = D[z]} in C[2]

let {z =z, = D[*' 2]} in C[>"2] > let {r=2z2§= D
let {z = 2,§=M}in N > let {& = 2,7 = M[%]} in N[%,]

Figure 2: Beta laws for call-by-need.

E[case M of {pat, - N;}] < case M of {pat; - E[N;]}
Ellet {& = M} in N] < let {& = M} in E[N]

Figure 3: Laws for evaluation contexts.

let {Z=L,j=M}in N <let{f=M}inN, if&}FV(M,N)
}YinN<oYlet {#=L,j=M}in N

}in N < let {x =let {#= M} in N,j=L}in N

in N) < let {f#=V}inAzlet {Z=M}in N

let {r =M,j=N}inz<let{z=M7=N}in>M, ifz¢FV(MN)

let {.’E: ‘70'1,17= ‘70'2,Z=]\2} in N < let {f: ‘70'20'3,5= MO’s} in Nosg, o1= [?j/u‘j],az

Figure 4: Laws for dealing with lets.

Q> M
MD>Q iffM=Q
M=Q #M>'M

let {z = Q,7 = Dlz]} in Clz] < let {z = Q,7 = D[]} in C[Q
“Azdet {y=0,7= M} in N) < let {y =Q} in Azlet {Z= M} in N
C["M] > “C[M], if C is strict

~

Figure 5: Laws for {2 and strictness.

let {z = M, 7 = D[*>*M]} in C[> M] > let {z = M, § = D[z]} in C[z]

Figure 6: Beta expansion conjecture.

B)
(case-B)
(value-P)
(var-B)
(var-abs)

(var-subst)

(case-E)
(let-E)

(9¢)
(let-flatten)
(let-let)
(let-float-val)
)

(inline

= gl o5 = [,

(value-copy)

(@)
(1mp-Q2)
(diverge)
(@-8)
(let-float-2)
(v'-float)

(B-ezpand)

proceed until the hole is filled. Evaluation contexts have
the following form:

E:=Allet {£=DM}inA

| let {§ = M, zo = holz1],z1 = M[z2],... , @0 = A}
in A[(Eo]
Au=1[]| Az |case Aof {c;Z; - M;}.

E ranges over evaluation contexts, and A over what we
call applicative conterts. Our evaluation contexts are
strictly contained in those mentioned in the letrec ex-
tension of Ariola and Felleisen [AF97]: there they allow
E to appear anywhere we have an A. Our “flattened”
definition corresponds exactly to configuration contexts
(with a single hole) of the form (T, [], S), as stated by
the following lemma, where Ag is the set of all evaluation
contexts.

Lemma 4.1 Ag = {trans(T, [-], S) | all T, S}.

The two laws in figure 3 are very useful indeed: they al-
low us to move cases and lets in and out of evaluation
contexts. A common motif in proofs using the tick al-
gebra is the use of (case-E) and (let-E) to expose the
sub-term of interest. Their validity follows easily from a
simple lemma (given in the appendix).

‘We can derive a law which allows us to move ticks in and
out of evaluation contexts:
E["M] & “E[M] (v-E)
Since v' is just a let expression, this is an instance of
(let-E). Another derived law is the following:
let {x =M} in E[z] © *E[M], =z ¢FV(M,E)
(énline-E)

allowing us to inline z when used but once in an evalua-
tion context. It follows by (let-E), (inline), and (gc).

4.3 Concerning Lets

Some of the laws that allow us to manipulate lets are
presented in figure 4. Law (gc¢) corresponds to garbage
collection: it allows us to add or remove superfluous bind-
ings. A derived garbage collection cost equivalence is the
following:
let {r =M} inN < “N, z¢FV(N)

It follows from (gc) and the definition of v. Laws
(let-flatten) and (let-let) allow bindings to move across
each other, and law (let-float-val) concerns the movement
of value bindings across As (along with (let-float) below,
it forms the essence of the full-laziness transformation,
as noted in [PJPS96]). (inline) is simple inlining. The
last law, (value-copy) says that if we have two copies of
a strongly-connected component of the heap (composed
solely of values), then we may remove one of them, pro-
vided we perform some renaming.

Note that in, for example, the (let-let) axiom, the vari-
able convention ensures that the 2 do not occur free in
the L; in (let-float-val), the convention guarantees that

z is not free in the V.

All of the let laws except (value-copy) follow via similar
arguments to that for (8) above. (value-copy) requires
the use of the same general techniques needed to justify
the more complex 8 laws (proof given in the appendix).

4.4 Divergence and Strictness

Let €2 denote any closed term which does not converge.
For example, the “black-hole” term, let z = z in z, would
suffice as a definition for Q. The first three laws in fig-
ure 5 concern and its relationship with . (Q-38) and
(let-float-2) are similar to (value-B) and (let-float-val)
except that Q is used in place of a value. All of these
laws follow in a straightforward manner from the con-
text lemma and the fact that call-by-name termination
behaviour is preserved in call-by-need.

We say that a context C is strict if and only if C[Q] = Q.
Given this definition, we can float ticks out of any strict
context, as stated by (v'-float). The proof follows by the
same techniques used to prove (value-3).

It turns out that this tick floating property can be used
as a characterisation of strictness: for all C, if C["z] >
“Clz], = fresh, then C is strict. This follows since, by
congruence,

let 2 =QinC["z] > let z = Q in " C[z]

which implies, by (Q-8), and (gc¢), that C["Q] &> Y C[€)].
But since “Q < Q (by () and (imp-Q)), C[Q] & V' C[Q2].
Therefore, by (diverge), C[2] = Q.

4.5 Beta Expansion: A Conjecture

In analogy to (value-3), we have (8-expand) where values
are replaced by general terms:

let { = M, 7 = D[> M]} in C[>" M]

>let {x =M, 5= Dlz]} in Clx] (B-expand)
The intuition here is that the rule undoes a call-by-name
computation step (a beta-reduction). This is an improve-
ment providing we can pay for the potential gain that the
computation step might have made — which is at most
two ticks at each occurrence of the variable which is un-
folded.

Unfortunately we lack a satisfactory proof for (8-ezpand).
The context lemma seems inadequate to establish this
property. This seems to be linked to the fact that the
axiom embodies the essential difference between call-
by-name and call-by-need evaluation, and thus it may
be possible to adapt techniques based on redex-marking
[MOW98].

The conjecture can also be used to “tie the knot” when
deriving cyclic programs. This possible since we allow
z to occur free in M. See the last step of the proof of
proposition 5.4 for an example of the use of (B-ezpand)
in this context.

Using the conjecture, we can also establish the following:
“(Azlet {f = L,Z= M} in N)

> let {§f = LY inAzlet {#=M}in N (let-float)

which concerns moving non-value bindings out of As
(where the variable convention ensures that z does not
occur free in the E) As noted above, this is an es-
sential part of the full-laziness transformation. Another
consequence of the conjecture is standard common sub-
expression elimination:

YCP* M| > let {x = M} in C[z] (cse)

Again, the convention ensures that any free variables of
M are not captured by context C.

4.6 Constant Factors and the Calculi

We reproduce the axioms of the call-by-need calculus of
[AFM™95], in figure 73.

The laws collected in figures 2, 3, and 4 subsume the
call-by-need lambda calculi (in both cases minus the
symmetry law): each calculus rewrite rule of the form
L — R turns out to be either an outright improvement,
i.e. L > R, or, in the case of (let-A), an improvement
“modulo tick”:

“lety=(letx=LinM)inND>letz=1L
inlety=M in N.

This follows by (let-flatten), (let-let), and (v'-elim). The
extra tick is needed in this case is because without it the
right-hand side might (in the case when y is not used)
perform one extra heap-allocation step.

What is more interesting is that in each case we can re-
verse the improvement modulo tick. In other words, there
exists an R, obtained from R by inserting ticks, such that
R' > L. This fact will enable us to prove that any two
terms related by these calculi compute within a constant
factor of each other in any program context. Thus the
best (worst) speedup (resp. slowdown) program obtain-
able in these calculi is linear.

First it is natural to generalise the idea of improvement
modulo ticks.

Definition 4.1 (Imp. within a Constant Factor) We say
that M is improved by N within a constant factor, writ-
ten M & N, if there exists a k such that for all C such
that C[M] and C[N] are closed,

C[M]Un [C[N]l}gk("+l).

So M R N means that N is never more than a constant
factor slower than M (but it might still be faster by a
non-constant factor). Note that the constant factor is
independent of the context of use.

It can be seen that g is a precongruence relation (to
show transitivity requires a small calculation) and clearly
contains the improvement relation.

Now we consider a special case of &, namely programs

~’

which only differ by ticks. Let M -5 N mean that N
can be obtained from M by removing some ticks (from

31n the original paper V ranges over variables as well as values.
In addition, Ariola and Felleisen [AF97] restrict C in (let-V') to be
evaluation contexts.

anywhere within the term), and M < N mean that there
exists an L such that M 5 L and N 5 L. Clearly % is
a precongruence and < is a congruence.

Lemma 42 M X N — MgN.

PROOF. (Sketch) Clearly 5 C P>, so it suffices to show

that M 5 N = N > M. First show that the nesting
of ticks in a conﬁguratlon never increases as computa-
tion proceeds (easy to see since the rules never substitute
terms for variables). Then let k be the maximum nesting
of ticks in M, and show by induction on the length of the
computation that C[N]{}" implies C[N]{**+1 (s’crength—
ening this statement to configurations).

With this lemma we can establish the following:

Theorem 4.3 For all terms N and M (of our restricted
syntaz) if M =xgep N then M g N.

PROOF. (Sketch) By induction on the proof of M =ygep
N. The base case requires us to show that the (oriented)
equations are contained in % This follows easily since
they are all either improvements or improvements mod-
ulo tick. In the inductive cases, the congruence and tran-
sitivity rules follow from the inductive hypothesis since g
is a precongruence. The only difficult case is symmetry.
It will be sufficient to prove that reversed equations are
contained in g For each equation L =yxgep R we have

from the laws an R’ such that R* % R and R’ > L. By
lemma 4.2 we know that RR R’, so RE L follows from
the fact that > C & and tramsitivity of 2. O

Corollary 4.4 The call-by-need calculus of [AFM?'95]
cannot improve (or worsen) a program by more than a
constant factor.

We are confident that this result can be extended to Ar-
iola and Blom’s sharing calculus Aosuare [AB97] since al-
most all the rules are represented more or less directly in
the collection of improvement laws. It is interesting to
note that we assembled our collection of laws “by need”,
considering what was required to tackle a number of ex-
amples, and it was encouraging to find that we had al-
ready covered almost all of Ariola and Blom’s rules. As it
stands however, our (value-copy) cost equivalence is not
as expressive as Ariola and Blom’s value-copy rule.* We
believe that Ariola and Blom’s value-copy rule is a cost
equivalence, but their formulation of the rule is rather
indirect, so it is not obvious to us how to prove this.

5 Syntactic Continuity

We wish to say something meaningful about recursive
functions with this theory, and a natural starting point is
to attempt to mimic the fixed-point induction Scott-style

4Thanks to Stefan Blom for providing an example, and to Zena
Ariola for pointing out an error in the use of an earlier formulation
of our value-copy rule.

(Azx.M)N =ygep let z = N in M (let-T)

let £ =V in Clz] =xgeo let z =V in C[V]
(letz=Lin M)N =g letz =Lin MN
lety=(letx=Lin M)in N=wmpletzx=Linlety=M in N

(let-V)
(let-C)
(let-A)

Figure 7: Axioms of the call-by-need calculus [AFM*95].

denotational semantics. Examples of this kind of oper-
ational analogue to Scott induction for other languages
may be found in e.g., [Pit97b, Smi91, MST96, San97,
Las98]; we present the first such result for a call-by-need
semantics.

We will use the following mechanism to describe the syn-
tactic unwindings of a recursive function. In the defini-
tion, the f; are distinct, new variables.

Definition 5.1 f=V & f, =0,
FrEYV E Y = V[fn/p).

Then, for an f defined by let {f = V} in f, we define
the n*® unwinding as let {f = V} in f,. If we expand
the definition of f = V, we see that this is really

let {fo=Q, i = V[fo/f],... . fa = V[fn-1/4]}
in fn.

Note that we have restricted our attention to f whose
defining body is a value; this unwinding trick would not
work for general cycles (since loss of sharing would render
the exercise pointless). To extend the method to cycles
would require some extension to the language, but this
would lead to the problem of showing that the extension
is conservative with respect to the improvement relation.

The point is that the functions let {f = V} in f, com-
pletely characterise the behaviour of let {f = V'} in f.
This is the essence of Scott induction. The main prop-
erty that justifies this is a syntactic notion of continuity,
which says that let {f = V'} in f is the least upper bound
of chain {let {f £ V} in fuo}n>0 and that any M which
uses f preserves this property.

We first show that {let {f = V} in M[fn/f]}n;() does
indeed form a chain with respect to >, and that let {f =
V} in M is an upper bound of that chain.

Lemma 5.1 Vn.let {f =V} in M[fr/f]
B let {f "= V}in M[fat1/f]
,lz let {f:V} in M.

PrOOF. We prove only the second improvement, that for
all n, let {f = V}in M[fn/f] > let {f = V} in M.
The first follows by a similar argument. We proceed by
induction on n. The base case follows easily by (gc¢) and
the Q laws, and the inductive case follows by (v'-elim),
since

Tlet {f =V} in M[fn/f] > “let {f =V} in M

by the derivation in figure 8. m|

To establish syntactic continuity, we will need the follow-
ing lemma (proof given in the appendix). It says that if
let {f =V} in M converges then there must exist some
unwinding that does so with the same cost.

Lemma 5.2 (Unwinding) For allT',S, and n,
(T, let {f=V}in M, S)|" =
Im(T, let {f =V} in M[fm/], S)U".

Theorem 5.3 (Syntactic Continuity) The following is a
sound proof rule:

Vnlet {f =V} in M[fo/f] & N
let {f=V}inM > N

PrOOF. Assume (T, let {f = V} in M, S)|”. Then
by the Unwinding lemma, there exists some m such that
(T, let {fZV}in M[fm/f], S)™. By the premise, we
have that (T, N, S)|S7”, and the result follows by the
context lemma. a

Syntactic continuity is also valid for mutually recursive
functions. This proof rule is sound for strong improve-
ment, but note that the base case of the premise requires
that N be contextually equivalent to Q. This tends to
limit the applicability of the strong improvement version
of syntactic continuity.

As an example of the use of syntactic continuity, we show
that an unwinding fixed-point combinator is improved
within a constant factor by a “knot-tying” fixed-point
combinator.

Proposition 5.4 If (B-ezpand) is valid, then

let rec = (Af.let £ = rec f in fz) in rec
R let fix = (\flet x = fa in z) in fiz.

PROOF. Let V = Aflet £ = “recf in > fz, and ab-
breviate V[T€¢n/pc.] by V5. We will show that for all n,
let rec = V in rec, > *“Aflet x = fx in z. Then the
result will then follow by syntactic continuity, since

YAfletz=fzinz
< *let fit = (\fletz = fz in z) (g¢)
inA\fletx=fzxinzx

< let fir = (Afletx = fxinz)in fiz (value-B)

We proceed via induction on n. The base case follows
trivially by (imp-Q) and () since let reco = in reco =
Q, and the inductive case follows by the derivation in
figure 9. We have g and not > because we use a slightly
slower version of rec. O

Ylet {f =V, fatr
< let {f = V}inlet {fu1

< Vlet {f =V, 9=V} in M[9/f]
o et {f=V}inM

= V[fn/f]} in M[fn+1/f]

= V[fn/f]} in M[fn+1/f]
= let {f =V} inlet {g = V[fn/f]} in M[9/f]

> let {f =V} inlet {g = V[f/f]} in M[9/f]

(let-let)

(rename)

(LH.)

(let-let)
(value-copy), (gc)

Figure 8: The inductive case for lemma 5.1.

n .
let rec =V, recp41 = Vi in recp41

< let rec ZV,recny1 = Vi in 2V, (value-p)

<> let rec = V in 2 \flet x = “rec, fin > fx (gc), (defn. of V;,)

< * Af.let rec = V,x = “rec, fin* fx (let-float-val), (let-float-S2)
< * Af.let z = (let rec =V in rec,,) f in 2 fx (let-let), (let-E)

> ¥ Afletz = (*"Aglety=gyiny) fin*fz (I.H.), (rename)

< A\fletz=""lety=fyinyin*fz)

<o \fletz ="y y=fyin*fz (let-let)

> Afletz=y,y=fyin>fy (v -elim), (var-subst)

o ¥ Afletz=fzin? fa (gc), (rename)

> 3Afletz=fzinz (B-expand)

Figure 9: The inductive case for proposition 5.4.

The converse of the proposition is false, since the knot-
tying fixed-point combinator can give asymptotically bet-
ter programs.

‘We can also use syntactic continuity to establish the fol-
lowing proof rule, which is a syntactic, call-by-need ver-
sion of what is called fized-point fusion in [MFP91]. In
the statement, ¥V and W range over value contexts.

Theorem 5.5 (Improvement Fusion) If C is strict, and
CV[z]] & W[C[z]] where z ¢ FV (V,W,C)UCV (V,W,C),
then for all D such that z ¢ FV (D) UCV (D),

let {x = V[z]} in D[C[z]] & let {z = W[z]} in D[z].

PROOF. Assume C is strict, and that C[V[z]] > W[C[z]].

By syntactic continuity, it suffices to show, for all n and
all D such that z ¢ FV (D) UCV (D),

let {x = V[z]} in D[C[z,]] 2 let {x = W[z]} in D[z].
The base case follows by this calculation:
let {zo = Q} in D[C[zo]]
< let {zo = Q} in D[C[]] (Q2-8)
< let {zo = Q} in D[Q] (C strict)
< “DI¢)] (g¢)
< let {x = W[z]} in D[Q] (g¢)
> let {x = W[z]} in D[z] (Q >), (cong.)

and for the inductive case:
let {z "£' V[z]} in D[C[zni1]]
<> let {x = V[z]} in D[C[*'V[z,]]] (value-B),(gc)
let {z = V[z]} in D[* C[V[z,]]] (C strict)
let {z = V[z]} in D[*W[C[z,]]] (assumption)
let {x = W[z]} in D[*W]z]] (I.H.)
let {z = W[z]} in D[z] (value-B)

0 W WV W

O

Fixed-point fusion can be used to establish a number
of general fusion laws. It is also central to Tullsen and
Hudak’s [TH98] approach to program transformation in
Haskell.

6 The Improvement Theorem

In this section we introduce a second key technique for
reasoning about recursion, the improvement theorem. In
[San96] a call-by-name improvement theorem was intro-
duced as a means to prove the extensional correctness of
recursion-based program transformations. In this section
we show how these results carry over to the call-by-need
setting.

6.1 The Problem of Transformations

As a motivation for the improvement theorem, consider
the correctness problem for recursion-based program
transformations such as unfold-fold; the correctness of
such transformations does not follow from the simple fact
that the basic transformation steps are equivalences. To
take a simple example to illustrate the problem, consider
the following “transformation by equivalence-preserving
steps”. Start with the recursive function repeat which
produces the “infinite” list of its argument:

repeat x = x : (repeat x)

The following property can be easily deduced: repeat x =2
tail(repeat). Now suppose that we use this “local equiv-
alence” to transform the body of the function to obtain
a new version of the function:

repeat © = x : (tail (repeat x))

This definition is not equivalent to the original, since it
can never produce more than first element in the list.
How did equivalence-preserving local steps produce a
non-equivalent function? Analysing such transformations
more carefully we see that while it is true that

M2N = let{z=M}inL=Zlet{ =N}inL
(6.1)

it is no longer the case when the transformation from M
to N depends on the recursive definition of x itself:

let {r =M}in MZlet {r =M}inN
7= let { =M} in LZlet {x = N} in L.
But in order to reason about “interesting” program trans-
formations (e.g. unfold-fold, recursion-based deforesta-

tion, partial evaluation with memoization), inference
(6.1) is simply not sufficient.

The improvement theorem comes to the rescue:
let {c=M}inMPlet{x =M}inN
let {=M}inLPlet {x =N}inL

(6.2)

This is sufficient to establish the correctness of recursion-
based transformations by requiring — rather naturally
— that the local transformation steps are also improve-
ments. This was proved for an improvement theory based
on call-by-name, so the fact that the theorem gives “im-
proved” programs as well as correctness is not considered
to be particularly significant.

A question left open was whether the improvement the-
orem holds for a call-by-need improvement theory. We
can now supply the answer:

Theorem 6.1 (Improvement Theorem) The
proof rule is sound:

let {f=V}inVRlet{f=V}inW
let {f=V}inNDBlet{f=W}inN

following

The inference is also sound when > is replaced throughout
with < (the cost equivalence theorem,).

The improvement theorem and the cost equivalence the-
orem can also be stated for a set of mutually recursive
definitions. The proof of the theorem is appendix.

Notation In establishing a premise of the improvement
theorem, in the context of some recursive declarations

g= 17, a derivation of the form
let {G=V}inM D>let {7 =V}in M
>let {f=V}in M;...
will be written in the following abbreviated form:

G M > M,
> Ms...

when the declarations g are clear from the context.

The following example illustrates the use of the proof
rule, which shows that a representation of the stan-
dard lambda-calculus fixed-point combinator Y =
AMf((Az.f(xx)) Ax.f (xx)) (suitably converted to the
restricted syntax) is cost equivalent to the non-cyclic ver-
sion rec from proposition 5.4.

Proposition 6.2

let Y = Afletd=Ay.let z=yyin fz
r=dd
in fx
inY

< let rec = (Af.let = rec f in fx) in rec.

PROOF. By a simple 6-step derivation, we have that

YHFAletd=MAylet z=yyin fz
x=dd
in fx

S Aflete =Y fin fzx

Then the result follows by the Cost Equivalence Theo-
rem.]

Improvement Theorem vs. Syntactic Continuity Sup-
pose one wants to establish an improvement of the form

let {f=V}inNDlet {f =W} inN.

If the left-hand side is non-recursive (in f) then syntactic
continuity is of no help, since the unwindings (> 0) of
the left-hand side will all be identical; conversely, if the
right-hand side is non recursive (in f) then the improve-
ment theorem is not immediately useful, since proving
the premise amounts to directly proving the conclusion
of the rule. There are, however, many examples which
can be proved by both methods. In these cases the im-
provement theorem is often preferable since it is more
calculational in style.

6.2 Improvement Induction

Finally, we mention one last proof rule which is closely
allied to the improvement theorem (in the sense that
a closely-related rule can be derived from the improve-
ment theorem); this corresponds to what we called im-
provement induction in [San97], where it was established
for any call-by-name or call-by-value language with SOS
rules fitting a certain syntactic rule-format.

Theorem 6.3 (Improvement Induction) For any M, N,
C, and substitution o, the following proof rule is sound:

M > “C[Mo] N < “C[No]
M>N

The proof is quite straightforward, and is given in the
appendix. A version which allows proof in the context of
recursive declarations is also valid.

Let us take a standard example to illustrate the
proof technique: the associativity of append (the list-
concatenation function). In order to show that it is an
improvement, we need to insert a tick into the recursive
branch; this is a consequence of the fact that our cost-
measure is rather fine-grained. To ease the notation, we
will make use of the syntactic identity for general appli-
cation from section 3, and we will use an infix form of
append.

Given the recursive declaration

(H) = Azs.Ays.case zs of
nil - ys

het—h:"(tH ys),
then (H) F (r Hy) H 2 & = H-(y H 2). To show this,

by improvement induction it is sufficient to find a context
C and substitution o such that

(H)F (Hy) H2z > "Cl((zHy) H2)d],
(H) F zH(yH2) & Cllz H(y H 2))a].

The solution is to take C to be

case x of

nil = “(yH 2)
h:t-letr=[]inh:r

and o = [t/,]. This context is easily derived by perform-
ing a cost equivalence calculation on the right-hand side
until a recurring instance of z H(y H 2) is discovered.
We omit the derivations.

By using suitably slowed versions of append on the right-
hand side, we can also show that this is only a linear
speedup in all contexts, ¢.e. that

(H) o H @+ 2) & @+ o) =

Using the above properties we have been able to prove,
with the help of the improvement theorem and an adap-
tation of the argument given in [San96], that a mecha-
nisable append-elimination transformation described in
[Wad88] can never slow-down programs by more than a
constant factor. What is interesting about this exam-
ple is that it shows that the improvement theorem can
obtain asymptotic speedups using only linear ones, since
in particular the transformation is able to turn the naive
quadratic-time definition of reverse into a linear-time ver-
sion.

7 Conclusions and Future Work

We have presented a rich operational theory for a call-
by-need based on an improvement ordering on programs.

The theory subsumes the (oriented) call-by-need lambda
calculi of Ariola et al. [AFM*95]. The most important
extensions are proof techniques for reasoning about recur-
sion. Syntactic continuity allows us to prove properties
of recursive programs via a kind of fixed-point induc-
tion, without sacrificing information about intensional
behaviour, like sharing. The improvement theorem and
improvement induction are rules for recursion which sup-
port more calculational proofs. Both are particularly use-
ful in proving the safety of program transformations.

Our unit of cost is the abstract machine reduction step.
This choice simplifies the technical development. A draw-
back is that it is very fine-grained, so one must carefully
track costs of optimisation steps. This bookkeeping can,
in larger examples, become rather tedious. However, it
should be possible to follow our programme with a much
more abstract cost measure. For example, one possi-
bility would be to count only the number of lookups®.
This should significantly simplify the tick algebra, with-
out compromising the ability to characterise relative ef-
ficiency within a constant factor.

An obvious further application of the theory is to for-
malise arguments about the running time of programs,
following Sands’ use of call-by-name cost equivalence for
this purpose [San95, San98b).

Another direction for future work would be to consider
the time-safety of a larger-scale program transformation,
such as deforestation [Wad90]. In such a transformation
we must inevitably consider conditions under which we
can unfold function calls. It is straightforward to define
simple syntactic conditions on contexts which guarantee
that

let {# = M} in C[#] > let {# = M} in C[M],

but in the case where holes occur under A-abstractions a
more global form of information is required: one needs to
know that the lambda expression in question will not be
applied more than once. The type system of [TWM95]
provides just such global information, so it would be in-
teresting to prove that their system (and generalisations
to full recursive lets [Gus98]) does indeed satisfy the de-
sired improvement property above. We saw in section 4.4
that the strictness property of a context can be charac-
terised exactly by

C[*2] & 7 Cla],

where z is fresh. Could it be the case that the “used at
most once” property might be semantically characterised
by “Clz] &> C["z]?

Acknowledgements We have benefited from numerous
discussions with Jorgen Gustavsson on various aspects of
this work, and we would thank him in particular for his
suggestions which led to a simplification of the proof of
the context lemma. Thanks also to Koen Claessen and
the referees for their helpful comments.

50f course, one would need to change the definition of v ac-
cordingly.

References

[AB97] Z. M. Ariola and S. Blom, Cyclic lambda
calculi, Proc. TACS’97, LNCS, vol. 1281,
Springer-Verlag, February 1997, pp. 77-106.

[AB9S] Z. M. Ariola and S. Blom, Lambda calculi plus
letrec, Tech. report, Dept. of Computer Sci-
ence, University of Oregon, 1998, Extended
version of [AB97]; submitted for publication.

[AF97] Z. M. Ariola and M. Felleisen, The call-by-
need lambda calculus, Journal of Functional
Programming 7 (1997), no. 3, 265-301.

[AFM™95] Z. Ariola, M. Felleisen, J. Maraist, M. Oder-
sky, and P. Wadler, A call-by-need lambda
caleulus, Proc. POPL’95, the 22" ACM
SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, ACM Press,
January 1995, pp. 233-246.

[AK9T] Z. M. Ariola and J. W. Klop, Lambda calcu-
lus with explicit recursion, Information and
Computation 139 (1997), no. 2, 154-233.

[AMST97] G. A. Agha, I. A. Mason, S. F. Smith, and
C. L. Talcott, A foundation for actor compu-
tation, Journal of Functional Programming 7
(1997), 1-72.

[AO93] S. Abramsky and C.-H. L. Ong, Full abstrac-
tion in the lazy lambda calculus, Information
and Computation 105 (1993), 159-267.

[BLR96] Z.-E.-A. Benaissa, P. Lescanne, and K. H.
Rose, Modeling sharing and recursion for
weak reduction strategies using explicit substi-
tution, Proc. PLILP’96, the 8 International
Symposium on Programming Languages, Im-
plementations, Logics, and Programs, LNCS,
vol. 1140, Springer-Verlag, 1996, pp. 393—407.

[Cur91] P.-L. Curien, An abstract framework for en-
vironment machines, Theoretical Computer
Science 82 (1991), no. 2, 389-402.

[Fie90] J. Field, On laziness and optimality in
lambda interpreters: Tools for specification
and analysis, Proc. POPL’90, the 17" ACM
SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, ACM Press,
January 1990, pp. 1-15.

[GP9g] A. D. Gordon and A. M. Pitts (eds.), Higher
Order Operational Techniques in Semantics,
Publications of the Newton Institute, Cam-
bridge University Press, 1998.

[Gus98] J. Gustavsson, A type based sharing analysis
for update avoidance and optimisation, Proc.
ICFP’98, the 3™ ACM SIGPLAN Interna-
tional Conference on Functional Program-
ming, September 1998, pp. 39-50.

[HM95] J. Hughes and A. K. Moran, Making choices
lazily, Proc. FPCA’95, ACM Conference
on Functional Programming Languages and
Computer Architecture, ACM Press, June
1995, pp. 108-119.

[Jef93]

[Jef94]

[Jos89]

[Las98]

[Lau93]

[Mar91]

[MFPY1]

[Mil77]

[Mor98]

[MOW9S]

[MST96]

[MT91]

[Nie96]

A. Jeffrey, A fully abstract semantics for con-
current graph reduction, Tech. Report 93:12,
School of Cognitive and Computing Sciences,
University of Sussex, 1993.

A Jeffrey, A fully abstract semantics for con-
current graph reduction, Proc. LICS’94, the
9*" IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press, July
1994, pp. 82-91.

M. B. Josephs, The semantics of lazy func-
tional languages, Theoretical Computer Sci-
ence 68 (1989), no. 1, 105-111.

S. B. Lassen, Relational reasoning about func-
tions and nondeterminism, Ph.D. thesis, De-
partment of Computer Science, University of
Aarhus, May 1998.

J. Launchbury, A natural semantics for lazy
evaluation, Proc. POPL’93, the 20%* ACM
SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, ACM Press,
January 1993, pp. 144-154.

L. Maranget, Optimal derivations in weak
lambda-calculi and in orthogonal term rewrit-
ing systems, Proc. POPL’91, the 18" ACM
SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, ACM Press,
January 1991, pp. 255-269.

E. Meijer, M. Fokkinga, and R. Pater-
son, Functional programming with bananas,
lenses, envelopes and barbed wire, Proc.
FPCA’91, ACM Conference on Functional
Programming Languages and Computer Ar-
chitecture (J. Hughes, ed.), LNCS, vol. 523,
Springer-Verlag, August 1991, pp. 124-144.

R. Milner, Fully abstract models of the typed
A-calculus, Theoretical Computer Science 4
(1977), 1-22.

A. K. Moran, Call-by-name, call-by-need, and
McCarthy’s Amb, Ph.D. thesis, Department
of Computing Sciences, Chalmers University
of Technology, Sweden, September 1998.

J. Maraist, M. Odersky, and P. Wadler, The
call by need lambda calculus, Journal of Func-
tional Programming 8 (1998), no. 3, 275-317.

I. A. Mason, S. F. Smith, and C. L. Tal-
cott, From operational semantics to domain
theory, Information and Computation 128
(1996), no. 1, 26-47.

I. Mason and C. Talcott, Equivalence in func-
tional languages with effects, Journal of Func-
tional Programming 1 (1991), no. 3, 287-327.

J. Niehren, Functional computation as con-
current computation, Proc. POPL’96, the
23 ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages,
ACM Press, January 1996, pp. 333-343.

[Pit94]

[Pit97a]

[Pit97b]

[PIPS96]

[PJS98]

[Ros96]

[San91]

[San95]

[San96]

[San97]

[San98a]

A. M. Pitts, Some notes on inductive and co-
inductive techniques in the semantics of func-
tional programs, Notes Series BRICS-NS-94-
5, BRICS, Department of Computer Science,
University of Aarhus, December 1994.

A. M. Pitts, Operational semantics for
program equivalence, March 1997, Invited
talk at MFPS XIII, the 13" Conference
on Mathematical Foundations of Pro-
gramming Semantics, slides available at
http://www.cl.cam.ac.uk/users/ap/talks/
mfps97.ps.gz.

A. M. Pitts, Operationally-based theories of
program equivalence, Semantics and Logics of
Computation (P. Dybjer and A. M. Pitts,
eds.), Publications of the Newton Institute,
Cambridge University Press, 1997, pp. 241-
298.

S. Peyton Jones, W. Partain, and A. San-
tos, Let-floating: moving bindings to give
faster programs, Proc. ICFP’96, the 1** ACM
SIGPLAN International Conference on Func-
tional Programming, ACM Press, May 1996,
pp. 1-12.

S. Peyton Jones and A. Santos, A
transformation-based optimiser for Haskell,
Science of Computer Programming 32
(1998), no. 1-3, 3-47.

K. H. Rose, Operational reduction models
for functional programming languages, Ph.D.
thesis, DIKU, University of Copenhagen,
Denmark, February 1996, available as DIKU
report 96/1.

D. Sands, Operational theories of improve-
ment in functional languages (extended ab-
stract), Proc. 1991 Glasgow Functional Pro-
gramming Workshop, Workshops in Com-
puting Series, Springer-Verlag, August 1991,
pp. 298-311.

D. Sands, A naive time analysis and its the-
ory of cost equivalence, Journal of Logic and
Computation 5 (1995), no. 4, 495-541.

D. Sands, Total correctness by local im-
provement in the transformation of functional
program, ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 18
(1996), no. 2, 175-234.

D. Sands, From SOS rules to proof princi-
ples: An operational metatheory for func-
tional languages, Proc. POPL97, the 24*
ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ACM
Press, January 1997.

D. Sands, Computing with contexts: A
simple approach, Proc. HOOTS 1II, the
24 Workshop on Higher Order Opera-
tional Techniques in Semantics (A. D.

[San98b]

[Ses97]

[Smi91]

[SP196]

[SPJ97]

[Tal9g]

[THOS]

[TWMOY5]

[Wads8]

[Wad90]

[Yos93]

Gordon, A. M. Pitts, and C. L. Tal-
cott, eds.), Electronic Notes in Theo-
retical Computer Science, vol. 10, EI-
sevier Science Publishers B.V., 1998,
at http://www.elsevier.nl/cas/tree/store/
tcs/free/noncas/pc/menu.htm.

D. Sands, Improvement theory and its appli-
cations, In Gordon and Pitts [GP98], pp. 275—
306.

P. Sestoft, Deriving a lazy abstract machine,
Journal of Functional Programming 7 (1997),
no. 3, 231-264.

S. F. Smith, From operational to deno-
tational semantics, Proc. MFPS VII, the
7% Conference on Mathematical Founda-
tions of Programming Semantics (S. Brookes,
M. Main, A. Melton, M. Mislove, and
D. Schmidt, eds.), LNCS, vol. 598, Springer-
Verlag, March 1991, pp. 54-76.

J. Seaman and S. Purushothaman Iyer, An
operational semantics of sharing in lazy eval-
uation, Science of Computer Programming
27 (1996), no. 3, 289-322.

P. Sansom and S. Peyton Jones, Formally-
based profiling for higher-order functional
languages, ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 19
(1997), no. 1, 334-385.

C. L. Talcott, Reasoning about functions with
effects, In Gordon and Pitts [GP98], pp. 347
390.

M. Tullsen and P. Hudak, An intermedi-
ate meta-language for program transforma-
tion, YALEU/DCS/RR 1154, Yale Univer-
sity, June 1998.

D. N. Turner, P. Wadler, and C. Mossin,
Once upon a type, Proc. FPCA’95, ACM
Conference on Functional Programming Lan-
guages and Computer Architecture, ACM
Press, June 1995, pp. 1-11.

P. Wadler, The concatenate vanishes, Tech.
report, University of Glasgow (UK), 1988, ap-
peared as a note on an FP electronic mailing
list, December 1987.

P. Wadler, Deforestation: Transforming pro-
grams to eliminate trees, Theoretical Com-
puter Science 73 (1990), 231-248.

N. Yoshida, Optimal reduction in weak-
lambda-calculus with shared environments,
Proc. FPCA’93, ACM Conference on Func-
tional Programming Languages and Com-
puter Architecture, ACM Press, June 1993,
pp. 243-254.

A Proofs of Main Theorems

This appendix gives an outline of the technical develop-
ment and proofs of the main results. Most proofs follow
a direct style reasoning which is reminiscent of proofs
about functional languages with effects by Mason and
Talcott et al. [MT91, AMST97, Tal98]. In order to make
this style of proof rigourous we generalise the abstract
machine semantics so that it works on configuration con-
texts — configurations with holes. To ensure that tran-
sitions on configuration contexts are consistent with hole
filling one must work with a more general representation
of contexts. One such approach is described in [Tal98].
‘We use an alternative approach to generalising contexts
which is due to Pitts [Pit94].

A.1 Substituting Contexts

Following Pitts [Pit94], we use second-order syntax to
represent (and generalise) the traditional definition of
contexts given in section 3.2. We give a fuller description
in [San98a]; other examples of their use are to be found
in [Las98, Mor98]. The idea is that instead of holes [:]
we use second-order variables, ranged over by &, applied
to some vector of variables. The syntax of generalised
contexts is:

C,D u= &-%
z|Xx.C|Cz|cZ
let {# =D} inC
case C of {c; @5 - D;}.

V and W will range over value contexts, I and A over
heap contexts, and S and T over stack contexts. Each
“hole variable” £ has a fixed arity, and ranges over meta-
abstractions of the form (Z) M where the length of Z is the
arity of £. In the meta-abstraction (£)M, the variables
Z are bound in M. Holefilling is now a general non-
capturing substitution: [(f)M/g] The effect of a substi-
tution is as expected (remembering that the & are consid-
ered bound in (£)M). Coupled with the meta-abstraction
is of course meta-application, written £-Z. We restrict
application of & to variables so that hole-filling cannot
violate the restriction on syntax. In the definition of sub-
stitution we make the following identification:

(&M -§ = M[J/g].

This definition of context generalises the usual definition
since we can represent a traditional context C by C[{ - Z]
where Z is a vector of the capture-variables of C; filling C
with a term M is then represented by (C[¢ - f])[(f)M/g]

Example The traditional context let = [] in Ay.[:] can
be represented by let x = £ -(z,y) in Ay.£ -(z,y). Filling
the hole with the term z y is represented by:

(let & =& -(z,9) in \y.& (2,9)[(&:9) Y]

let z = (z,y) 2y -(2,9) in Aw.(z,y) vy -(z,w)
=letz=zyin Aw.zw

Il

which is a-equivalent to what we would have obtained by
the usual hole-filling with capture. Note that the gener-
alised representation permits contexts to be identified up
to a-conversion.

Henceforth we work only with generalised contexts. We
will write C[(Z)M] to mean C[(f)M/g] when C contains
just a single hole variable £&. We assume that the arities
of hole variables are always respected.

We implicitly generalise our definitions of improvement
to work with generalised contexts. This is not quite iden-
tical to the earlier definition since with generalised con-
texts, when placing a term in a hole we obtain a substitu-
tion instance of the term. This means in particular that
improvement is now closed under substitution (variable-
for-variable) by definition — a useful property. This dif-
ference is a relatively minor technicality which we will
gloss over in this appendix.

A.2 Open Uniform Computation

The basis of our proofs will be to compute with config-
urations containing holes and free variables. Thanks to
the capture-free representation of contexts, this means
that normal reduction can be extended to contexts with
ease. See [San98a] for a thorough treatment of gener-
alised contexts and how they support generalisation of
inductive definitions over terms.

Firstly, in order to fill the holes in a configuration we
need to identify configurations up to renaming of the heap
variables (recalling that update-markers on the stack are
also binding occurrences of heap variables).

We tacitly extend the operational semantics to open con-
figurations with holes. Note that holes can only occur in
the stack within the branches of case alternatives. In
what follows 6 will range over substitutions composed
of variable for variable substitutions and substitutions of
the form [(fw)Ml/&], and ¥ range over configuration con-
texts.

We have the following key property.

Lemma A.1 (Extension) If (I, C, S) —=* (A, D, T)
then

(i) for all T’ and S’ such that (I"'T, C, SS') is well-
formed, (I, C, S8') =* (A, D, TS').

(i) for all 6, (T, C, SY§ —=* (A, D, T)6

Proor. (i) follows by inspection of possible open reduc-
tions over configuration contexts. (ii) amounts to the
standard substitution lemma; see [San98a] for a general
argument. O

def

Definition A.1 (I, C, S)y"*
where 0 is a closing substitution.

39.(T, C, S)8y,

The following open uniform computation property is cen-
tral. It allows us to evaluate open configuration contexts
until either the computation is finished, or we find our-
selves in an “interesting” case.

Lemma A.2 (Open Uniform Computation) If
well-formed and well-typed configuration context
([, C, S) =" % », and ([, C, S, then X has one
of the following forms:

(i) (B, V, €),
(i) (A, & -4, T), for some hole &, or
(iii) (b, z, T), z € FV(T,C,S).

PROOF. Assume ([, C, S) =™ ¥ -». We consider the
reduction of (I, C, S) and proceed by induction on n
with cases on the structure of C. We show three illustra-
tive cases only. The others are similar.

C =¢& -¢. Thisis a type (ii) context, so we are done.

C = z. Since we have termination, £ must be bound in
either [or is free in FV (I',C,S) (since if it was bound
in 8§, (I, C, S) would diverge). In the former case,
I = A{z = D}. By (Lookup), {2A{z = D}, z, S) reduces
to (A, D, #x : S). By the inductive hypothesis, we know
that (A, D, #x : S) reduces to a configuration context
of type (i), (ii), or (iii), and therefore (A{x = D}, z, S)
does also, as required. In the latter case, (I, z, S) is a
type (iii) context, and we are done.

C = V. There are four sub-cases, depending upon the
structure of S; we consider only the case when S = x :
T. Since (I, C, S) is well-typed, V = Ay.D, and by
(Subst), (T, Ay.D, = : T) reduces to (I, D[Z], T).
The inductive hypothesis applies, and the result follows
as above. m|

A.3 Translation
We can extend the definition of trans to cover open con-

figurations and configuration contexts, and can therefore
extend translation thus:

Lemma A.3 (Translation) For all D,I,C,S such that
D = trans([, C, S), there erists k > 0 such that
(0, D, e) =" (T, C, S).

PROOF. Simple induction on S. O

A.4 Proof: the Context Lemma

The proof of the context lemma relies upon two lemmas,
the latter of which is the most complex.

Lemma A4 M > N if and only if for all ¥ and n,
Y[(@)MN" = X[@)NS".

PROOF. (Sketch) (<=). Trivial; let ¥ = (0, C, €).
(=). By a simple induction on n, using translation. 0O

Note that the proof of the next lemma does not rely upon
any specific cost-measure.

Lemma A.5 If for allT, S, and n

then for all ¥ and n, X[(Z)My"
where £ D FV (M, N).

= Z[@NU,

PROOF. Assume the premise and suppose X[(Z)M]y".
We proceed via induction on n. By open uniform com-
putation, ¥ reduces in k > 0 steps to one of:

(1) (A7 v, 6)7 (2) (Aa 6:’?: S’)

(There are only two possibilities since (I, C, S) is
closed.) In case (1), we are done. In case (2), we have

Y[(&)N] —»* (A[()N], N[z, S@N]). (A1)

By open uniform computation, (A, M[J/z], S') reduces

in k' > 0 steps to one of:

(2.1) (A, W, €), (2.2) (N, €2, T).

(Again, there are only two possibilities since

(A, MJlz], S') is closed.) In case (2.1), we have
that (A[(Z)N], (£)M -4, S'[(Z)N]) reduces in k' steps
to (A'[(Z)N], W[(Z)N], €), so

(A[@)N], M[F, S'[(@)N])<"*
= (A[(@)N], N[z, SI@NSF (ass.)
= Y[(F)NS" (A1)
as required. In case (2.2), we know that k' > 0, since
M[J/z] # € - Z. We have
(N(@)M], (@M -F, S'[(@M]) -*
(M[(@)M], (B)M -2, T(@)M]), (A.2)
and
(M(@)N], (@M -F, S'[(@N]) »*
(K[(@)N], @N-Z, T[(@)N]). (A3)

Therefore
(X'[(@)M], Mg, (@M (A2)
= (X'[(@)N], M[Zg], T(@N)W"** (LH)
= (X'[(@)N], N[Fg, T@NWFF (ass)
= (A(@N], Mg, SUHN)HI"* (A3)
= (A[(@)N], N[Fz, ST@NW™ (ass)
= T[(F)NYS" (A1)
as required. [m|

The generalised statement of the context lemma is:
For all terms M and N, if

VI, S,0,n.(T, Mo, S)}|* = (T, No, S)J<"
then M > N.

This follows from lemmas A.4 and A.5, and the fact that
Mo = (Z)M - i for o = [Y/z].

A.5 Validating the Tick Algebra

We present proofs of the validity of (value-B) and
(value-copy), and sketch a proof of the correspondence
between evaluation contexts and configuration contexts
of the form (T, [], S). The proofs of the more complex
laws (e.g. (var-B), (var-abs), (var-subst), and (v'-float))
have a similar structure to that for (value-g3), except they
require more use of open uniform computation.

A.5.1 Proof: (value-3)
Recall (value-p):

let {z =V, = D[z]} in C[z]
< let {z =V,§=D[*V]}in C[*V].
Let W = >V throughout. It suffices to show
VI, S.(Tz{z =V}, Clz], S[z] "
(TWHz =V}, CIW], S[W])"

where z ¢ dom([,S), and the only hole is [-], a non-
capturing hole. We prove the forward direction only; the
reverse direction is similar.

Suppose ([z]{z = V}, Clz], S[z])|". We proceed
by induction on m. By open uniform computation,
(I, C, S) reduces in k > 0 steps to one of

(1) (Aa V, 6): (2) (A: []: -I]—)a (3) (Aa T, —ﬂ—)

In case (1), we are done. In case (2), by extension,
(Lookup) and (Update), we have

(Tel{z =V}, Clz], S[z]) =" (2[z]{z =V}, , Tla])
=’ (bll{z =V}, V, T[a]),
and by extension and the definition of W,
(TWH=z =V}, C[W], S[W])
= (aWie =V}, W, TW])
= (AWl{z =V}, V, TIW]).
Since (Alz]{z =V}, V, T[z])J*~**+D by the inductive

hypothesis we have (A[W]|{z = V}, V, T[W] Yo (k+2)
and the result follows.

In case (3), we have (A[z]{z = V}, V, T[z])4"* 2,
as above. Furthermore, by extension, (Lookup) and
(Update), we have

(TWHz =V}, C[W], S[W])
=" (AW){z =V}, @, T[W])
=" (AW{z =V}, V, T[W]).
From the inductive hypothesis, we have (A[W]{z =
VY, V, T[W])y" %72, and the result follows.
A.5.2 Proof: (value-copy)
Recall (value-copy):
let {& = V[, 7=V60,Z=M}inN
< let {# = V0,7 = Mo} in No,
where o = [f/?j] and 6 = [¥/;).
It suffices to show that for all I, S, and n,
(T{& = V[Jlg], 7=V}, N, S)4"
<= (I{Z = Véo}, No, S)".

We show only the forward direction. To show the re-
verse, we need only establish termination, which follows
by the fact that call-by-name and call-by-need agree on
termination.

Consider the (hole-less) open configuration context
(", N, S), in which the Z and § may appear free. By
open uniform computation, this reduces in & > 0 steps
to one of:

(1) (A: w, 6): (2a) (Aa Liy T)a (2b) (Aa Yi, T)

In case (1), we are done. In case (2a), by extension,
(Lookup) and (Update), we have

=V6}, =, T)

and furthermore,
(A{Z = V[ilgl, 7=V}, Vilihgl, TH"~ 2. (A.4)

Similarly, by extension, (Lookup) and (Update), we have
also that

(D{# = Vbo}, No, S)
—F(A{& =Vb0}, wio, T)
-2 (A{Z = Vbo}, Vibo, T).
By elementary properties of substitution,
VilUhgll¥) = VilBhg ¥/,

so the inductive hypothesis applies (with N = Vi[7z]),
yielding the desired result.

In case (2b), by extension, (Lookup) and (Update), we
have

(T{Z = V[§gl,7=V6}, N, S)
—F (M@= Vg, =V}, yi, T)
_)2 (A{f: V[ﬁ/-‘],ﬁ: 179}, Viev T)7

and furthermore,
(A{Z = VITgl, 7=V}, Vib, T~ * (A5)

Similarly, by extension, (Lookup) and (Update), we have
also that

1
>
~~—
8
I
<i
SN
q
o
=
>
9Q
~

The inductive hypothesis applies (with N = V;0), yield-
ing the desired result.

A.5.3 Proof Sketch: Lemma 4.1

Recall the statement of lemma 4.1: Ag is equal to
{trans(T, [], S) | allT and S}. So we need to show
that:

(i) VI, S. 3E. trans(T, [], S} =E, and
(ii) VE. dr, S. trans(T, [], S)=L.

First note that Aa (the set of all applicative contexts)
is in 1-1 correspondence to update-marker free stacks,
realised by the following isomorphism (writing [z] for the
singleton stack):

[=
(h2)° = 2]
(case A of alts)® = A°alts

(+)° takes Aa into the set of update-marker free stacks.
Call its inverse (-)°.

Then show that (I, A[C], S) = (I, C, A°S) and that
trans([", A[C], S) is identical to trans(I, C, A°S) by
induction on the structure of A.

To show (i), generalise the statement to show that for
all T and S both trans(I', A, S) and trans(I'{zo =
Aolz1), ... ,2n = An}, Alzo], S) are evaluation contexts
by induction on the number of update markers in S.

To show (ii), proceed by case analysis on E, and produce
a I and S in each case. The difficult case is when

E=let {§§ = M,zo = Po[z1],... ,Zn = An}
in Alzo).

Here, let T be {# = M} and let S be

DS Hxy - A FT1 AGF LA,

A.5.4 A lemma for (case-E) and (let-E)

The following lemma can be used to validate (case-E) and
(let-E). CV (E) denotes the capture variables of L.

Lemma A.6 For all E, there ewist I',S, such that
dom(I',S) € CV(E) and VA, T{A, E, T) ="
(AF7 []7 ST)

PROOF. By lemma 4.1, there exist I' and S such that

trans(T', [], S) = E, so by translation {0, E, €) —*
(T, [], S), and thus by extension, provided dom(T", S) C
CV(E), (A, E, TY—=* (AT, [], ST). O

A.6 Congruence of Entailment

In examples, we often want to perform calculation in the
context of recursive declarations. A notation for this was
introduced in section 6; a derivation of the form

let {F=V}in M D>let {f=V}in M
Dlet {f=V}inMs...

was written:
gk M > M,
> Ms...

when the declarations § are clear from the context. This
is of limited use without the following congruence rule:

grM>N

7T @M s @M (F-cong)

for all contexts C such that Z 4§ CV (C). As usual, Z D
FV (M,N)

To prove the validity of this rule, we require some lem-
mata. This next lemma is used to prove lemma A.8.

Lemma A.7 For allT,S, and n

(T{E =V}, M, S}"
(To{& =V,ij=Vo}, Mo, So)|".

where o = [Y/z]-

PROOF. (Sketch) (=) Simple induction on n, with cases
of the structure of M.

(<) It is sufficient to show that termination is implied.
This is true for the call-by-name theory, and therefore
here also. a

To prove (F-cong) and improvement theorem, we will
need the following lemma, which is stated without proof.
It follows in a straightforward fashion from lemma A.7.
(It may seem to follow from the context lemma, but the
Z may appear free in I" in the conclusion, so it does not.)

Lemma A8 Iflet {Z=V}in M D> let { =V} in N
then for allT and S,

(T{z =V}, M,)" = (T{F=V}, N, §)§5".
We will use this next lemma in the proof of (-cong).

Lemma A.9 Provided the V are closed, and & § domo,
let {Z=V}inMDlet {f=V}inN
let {# =V} in Mo > let {# =V} in No

PRrOOF. It is sufficient to show this for a single renaming
[#/yl; where y ¢ domo. Then the case when z ¢ Z follows

from the fact that > is closed under variable for variable
substitution. So without loss of generality, let o = [i/].
By the reasoning in figure 10, we have that

let {F=V}inMDlet {f=V}inN
= let {& =V} in Mo'o" > let {# =V} in No'o”

But 0’0" = [7][%i/,] = [¥ify] = o, since z was fresh, and
we have the desired result. a

let {Z=V}in MDlet {=V}inN
= let {Z =V} in Mo’ > let {Z =V} in No’

= let {z = Vi[#/,]} inlet {# =V} in Mo’ > let {z = Vi[¥y,]} in let {# =V} in No’
= let {z = Vi[%,,],# =V} in Mo’ B let {z = Vi[*,,],# =V} in No’

= let {# =V} in Mc'c" > let {Z = V}in No'o”

o = [#ly], # fresh
(cong.)

(let-let), (v -elim)
(

ge),o" = [Ti/,]

Figure 10: Calculational portion of the proof of lemma A.9.

Moving to general contexts, to show (F-cong), it will be
sufficient to prove, under assumption of the premise, that
for all C with hole variable £ and Z such that arity £ = |Z]
and 7 § %,

let {Z =V} in C[(2)M] > let {# =V} in C[(2)N].
By the definition of >, it will suffice to show that for all
[and S,

(T(HMNE =V}, C[()M], S[(H)M])|" =

(T(AN{Z =V}, C[(HN], S[(HN])I=".
Assume the premise. We proceed via induction on n.
Consider ¥ = (T, C, S). Clearly ¥ —* ¥’ -, so by open
uniform computation, Y’ takes on one of the following

forms:

(1) (A7 Vv, 6)7 (2) (A: Li, —I]—)v (3) (A’ £, TI-)

In case (1), we are done. In case (2), by (Lookup) and
(Update), we have that

(B[(HMNE =V}, zi, T[(H)M]) -
(A(H)ME =V}, Vi, T((Z)M]).
So by the inductive hypothesis,
(A(DNUE =V}, Vi, TN 7
which in turn, by (Lookup) and (Update), implies
(B(B)NHE =V}, @i, T(HN]HF.

Then the desired result follows by open uniform compu-
tation.

In case (3), we have that
(B(AHMNE =T}, MITA, TEMDF. (A6)
By lemma A.9, the assumption implies that
let {Z =V} in M[J/5] > let {Z =V} in N[J/5]
which in turn, by lemma A.8 and (A.6), implies
(B(HMUE =V}, N3, TUHM)S"F (A7)
‘We are required to show instead

Consider (A, N[¥/5], T). By (A.7), this reduces in k'
steps some ¥ -». By open uniform computation, ¥ has
one of the following forms:

(8.1)(A", W, €), (8.2)(A", z;, T'), (8.3)(4", &-w, T').

In case (3.1), we are done. In case (3.2), we appeal to
case (2) above. In case (3.3), since N[J/z] # & -, k' >0,

by the inductive hypothesis, we have
(N[(Z)NWE =V}, N[9/3, T[(Z)N])ys" " *

and the desired result follows by open uniform computa-
tion.

A.7 Proof: the Unwinding Lemma

To prove the Unwinding lemma we will need the following
lemma, which we state without proof.

Lemma A.10 For all M,T,S,V and n,
(P{z £V}, M, S = (I{z "E'V}, Mo, So)y"
where 0 = [Tk+1/p.] and {z:}E) 4 FV (V).

Recall the statement of the Unwinding lemma:
For ollT, S, and n,

(T, let {f=V}inM, SH" =
Im(T, let {f =V} in M[fm/f], S)".

It suffices to prove that for all T', S, and n such that
{zitico & FV(T,S),

(T{z =V}, M, S)" = (To{z =V}, Mo, So)|"

where ¢ = [%n/;] (i.e. m = n). Suppose (I'{z =
V}, M, S)J". We proceed by induction on n. By open
uniform computation, (I'; M, S) reduces in k > 0 steps
to one of
1) (A, W, e), (2)(A 2, T).

(Type (ii) cannot occur, since there is no hole in-
volved.) By extension, the corresponding result holds
for (I', M, S)o, and hence for (I'o, Mo, So), since zp,
is free in (", M, S).

Therefore, in case (1), by extension, (Lo{z =
V}, Mo, So) reduces in k steps to (Ac{r =

V}, Wo, €) and we are done, since £ = n. In case
(2), by extension, (Lookup), and (Update),

(To{z =V}, Mo, So) =" (Ac{z =V}, z,, To)
>(Ac{z =V}, Vo, To).
Similarly, (I'{z = V}, M, S) reduces in k + 2 steps
to (A{z = V}, V, T). By the inductive hypothesis,

we know that (Ac'{z L vV}, Vo', To')Ukl where ¢’ =
[*x/,] and k' = n — k — 2. By repeated application of
lemma A.10, we have that (Ac{xr = V}, Vo, To)Uk’
and hence (T'o{x £V}, Mo, So)™ as required.

A.8 Proof: the Improvement Theorem

We prove the improvement theorem generalised to
mutually-recursive definitions:

The following proof rule is sound:

Vj e Llet {fi =Vi},, inV; 2 let {fi = Vi},, in W;

~

let {fi =Vi},c; in NDlet {fi = Wi}, in N

By the context lemma it suffices to show that for all T', S,
and n,

(T{f =V}, N, S}y = (D{f =W}, N, S)I<"

Assume the premise, and suppose that (F{f =

\7}, N, S)|™. We proceed by induction on n. By open
uniform computation, (I, N, S') reduces in k > 0 steps
to one of

(1) (A: ‘/: 6)7 (2) <A7 fia T)

In case (1), we have by extension that (T{f =
W}, N, S) reduces in k steps to (A{fz W}, V, €)
and k = n, so we are done. In case (2),

(F{f: ‘7}, N, S) _)k (A{f: ‘7}, fis T)
=P (AMf=V}, Vi, T) (AS8)
and

(F{fZW}’ N, S) _)k (A{f: W}a fis T)
S (A{f=W}, Wi, T) (A.9)

SO
(MF =V}, vi, T D (A8)
= (A{f =V}, Wi, T (ass,, lem. A.8)
= (A{f =W}, Wi, TS *F (1H)
= (D{f =W}, N, S)s". (A.9)

A.9 Proof: Improvement Induction

‘We prove instead the more general version, involving en-
tailment:

For any set of recursive declarations f, terms M, N and
substitution o, the following proof rule is sound:

FfEMD>YC[Ms] f+ N < “C[Ng]
FEMD>N

Furthermore, we generalise C[Mo] to C[(Z¥)M]. By
lemma A.8, the premises imply more general statements.
For example, the first premise implies

vn,T, 8. (T{f =V}, M, S)|* =

(D{f =V}, “Cl@M], SHS" (ass.(i))

We will refer to the corresponding generalisation of the
second premise as (ass.(ii)). We show instead the more
general statement, that for all ¥ and n,

L(@MN" = T[(@NNS"

Suppose X[(Z)M]y". We proceed by induction on n. By
open uniform computation, ¥ reduces in k£ > 0 to one of

(2) (A, 537; ﬂ—)-

In case (1), we are done. In case (2), first note that,
letting ¢ = [Jz], (B)M-§ = Mo, and C[(Z)M]o =
Co[(Z)M] since £ D FV (M), and similarly for N. Then
we have that

(1) (2, V, €),

Y[(Z)N] =* (A[()N], No, T[(Z)N]) (A.10)
and
(B(@)M], Mo, T[(@)M])4" "
= (A[(#)M], “C[(#)M]o, T[(F)M])Y="* (ass.(i))
= (A[(@)M], C[(F)M]o, T(@)M])s"~*FD ()
= (A[(@)M], Col(@)M)], T[(@)M])y< "+
= (A[(F)N], Col(@)N], T[(@N])4<"~*FD (LH.)
= (B[(&)N], C[(F)Nlo, T[(@&)N] <"~ *+Y
= (A[(@®)N], “C[(&)Nlo, T[(@HN])<""* ()
< (A[(&)N], No, T[(Z)N])y<"* (ass.(ii))
= Y[(Z)N] <" (A.10)

