
On Confidentiality and Algorithms
or

Programming Under the Constraints of Noninterference

Johan Agat
�

Gatespace AB
agat@gatespace.com

David Sands

Department of Computing Science
Chalmers

dave@cs.chalmers.se

Abstract

Recent interest in methods for certifying programs for se-
cure information flow (noninterference) have failed to raise
a key question: can efficient algorithms be written so as to
satisfy the requirements of secure information flow?

In this paper we discuss how algorithms for searching
and sorting can be adapted to work on collections of secret
data without leaking any confidential information, either di-
rectly, indirectly, or through timing behaviour. We pay par-
ticular attention to the issue of timing channels caused by
cache behaviour, and argue that it is necessary to disable
the effect of the cache in order to construct algorithms ma-
nipulating pointers to objects in such a way that they satisfy
the conditions of noninterference.

We also discuss how randomisation can be used to imple-
ment secure algorithms, and discuss how randomised hash
tables might be made practically secure.

1 Introduction

The setting which motivates this work is that of confiden-
tiality and privacy in mobile code. Assume that some user
wants to run a program that originates from an untrusted
source. For example, the program can have been download-
ed from an untrusted site on the Internet. When the program
is run, it has to be given access to some data that the user
regards as confidential (i.e., high security data) in order to
compute the desired results. While running, the program
also needs to have access to the Internet in order to fetch
various kinds of information from databases etc. Examples
of such programs might be a financial advisor program or a
home-doctor application.�

This work was performed at Department of Computing Science
Chalmers University of Technology and Göteborg University, Sweden; a
preliminary version appears in the first author’s PhD thesis [3]

This setting has been the motivation behind a recen-
t resurgence of interest in the analysis and certification of
confidentiality properties of programs [12, 19, 18, 11, 17,
2]. These papers are all based on Denning and Denning’s
work [6], and focus on the development of semantic security
conditions and program analyses based on a zero informa-
tion flow property usually called noninterference [9].

A fundamental question is left open by these and other
works: is it possible to write programs which are noninter-
fering? In this paper, we will discuss the programming con-
straints imposed by noninterference and their implications
on the complexity of algorithms operating on secret data.
It is important to investigate this in order to get an idea of
whether the demands of absolute noninterference are realis-
tic; can any interesting programs be written, given that they
have to satisfy the demands of noninterference?

2 Noninterference

From the perspective of the analysis of programs, rather
than more general and more abstract “systems”, Cohen’s
work on information transmission [5] anticipates the essen-
tial ideas behind noninterference. Cohen formally defines
(amongst other things) a notion of strong dependency. A
variable l strongly depends on a variable h over the execu-
tion of a program P, if different initial values of h can result
in different values of l when P has terminated. Noninter-
ference is a very strong security criterion that specifies the
absence of strong dependence on secret inputs. Informally
formulated, it can be expressed more generally as follows:

Varying the high security inputs to a program
should have no effect on the parts of its behaviour
that are observable by the attacker.

To begin to investigate the consequences of noninterference,
we must first decide what parts of the program’s behaviour
are to be considered observable by an attacker (referred to

as observable behaviour in the rest of the paper). This will
influence how information can be leaked and thus also the
requirements on secure programs. We assume that there are
some kind of low security output actions available to the
program. Such actions could be, for instance, internet com-
munications observable by the attacker, and perhaps also di-
rect communication by opening a socket to a machine that
the attacker controls. We also assume that the attacker can
observe the values communicated with low security output
actions. Moreover, since the system executing the code has
no control whatsoever over the attacker, we have to assume
that he/she is able to observe the time when each output
action is performed. Thus, the program can implement a
covert channel (see Lampson [14]) to transmit information
to the attacker by varying its timing behaviour depending
on the high security data it wants to leak.

For secure programs we thus have to require that the
values of the high security data should not affect the val-
ues communicated through low security output actions, nor
should the high data affect the time at when these observ-
able actions are performed.

2.1. High Inputs and Integrity

For multilevel security systems concerned with preserv-
ing the confidentiality of sensitive data, we take the stan-
dard approach regarding data integrity: information may
flow upwards in the security lattice from “low” to “high”
confidentiality levels, but not from high to low. This means
that the attacker has the ability to add known (low confiden-
tiality) elements to collections which contain secrets.

It is worth noting that without this possibility it would
be much more difficult for an attacker to leak information.
If the program was not allowed to construct input to algo-
rithms consisting partly of secret data and partly of known
data, and instead had to use input entirely consisting of the
secret inputs to the program, only information about the rel-
ative relationships of the secret inputs could be leaked. 1

2.2. Information Leakage

To achieve noninterference and be absolutely certain that
the attacker cannot infer anything about the secret data ma-
nipulated by the program we have to restrict how high secu-
rity data is used by the program. There are many program-
ming language constructs that have the potential to leak se-
cret information. We briefly describe how this can be done
with a few examples. Assume that h stores some high secu-
rity value.

1A more fine-grained security classification can be used for keeping
track of public data, possibly secret data, and definitely secret data, where
both public and definitely secret can be considered to be of type possibly
secret, but not the other way around. This approach is used by Abadi in [1]
to guarantee the integrity of cryptographic keys.

Output Actions The most obvious method to leak secret
data would be to simply send it to the attacker with
some kind of output action:

output(h);

To prevent such direct information flows, the values
output in actions observable by the attacker must not
be influenced by secret data.

Loops and Recursion These constructs affect the overal-
l running time of the program and may also affect its
termination behaviour. The following small code frag-
ment leaks the least significant bit of h by inserting a
delay between the output of "start" and "stop"
when that bit is 1.

output("start");
l = 1000000;
while ((h&1 == 1) && l>0)

l--;
output("stop");

Branching and Timing Testing and branching on high se-
curity data can cause information to leak in several
ways. If any low outputs or other actions that have an
observable effect are performed in any of the branches,
the outcome of the test may be leaked. Two examples
of this are:

if (h>0)
output("yes");

else
output("no");

if (h>0)
l = "yes";

else
l = "no";

output(l);

Any variance in execution time of the branches of a
high security if-statement can also be used to leak in-
formation:

s = 1;
for (i=0; i<w; i++){
if (k[i])

C = (s*M) mod n;
else

C = s;
s = C*C;

}
The example above is an implementation of the modu-
lar exponentiation algorithm that computes

�������
	��
into the variable C, where k is represented as an array
of w bits, with the most significant bit at index 0. The
modular exponentiation algorithm can be used in RSA
encryption, where M is the clear-text message, k is the
encryption key, and C is the cipher-text. This imple-
mentation is not secure, since the two branches of the
if-statement have different timing behaviours, and as
shown by Kocher [13], the entire encryption key k can

thus be learned by an attacker capable of measuring
the execution time of the algorithm.

Exceptions Since the exception mechanism can cause the
flow of control to abruptly jump, it is very suitable
for implementing information leaks. As an example
of this, we consider devision by zero:
try {

h = 10/h;
output("h != 0");

} catch (ArithmeticException e) {
output("h == 0");

}

In a secure program, confidential data cannot be used
in such a way that it causes exceptions to be thrown.
This means that, e.g., array indexing cannot be per-
formed with a high security index value unless it is
guaranteed to be within the bounds of the array. Oth-
er partial operations, such as pointer dereferencing, for
instance, must be subjected to similar constraints.

A consequence of this restriction is that:

the size of secret data manipulated by a se-
cure program cannot be kept entirely secret.

Since any program only can consume a finite amoun-
t of memory, information leaks can be implemented
by allocating all of the available memory and thereby
causing the program to crash.

Primitive Operators The application of some primitive
operators can actually reveal information about the val-
ues of their arguments. For instance, on most computer
architectures, multiplication is performed much faster
if one of the operands is zero. To get noninterference,
primitive operators must have implementations that do
not reveal anything about the values of the operands
through their execution time. Due to subtle things like
cache behaviour, this includes also reading from, and
writing to, the memory.

Requiring that the timing of observable actions be inde-
pendent of the high security data manipulated by the pro-
gram puts considerable constraints on how secure programs
can be constructed. In fact, the implications of these re-
quirements on program development are quite harsh even
on the parts of the program that do not perform any ob-
servable output actions. Consider a procedure that operates
on high security data without performing any output action-
s. To be both secure and reusable, that procedure must be
implemented in such a way that its execution time is inde-
pendent of the values of the high data it manipulates. If this
requirement is not fulfilled, the procedure cannot be called
in an arbitrary context and thus its re-usability is very limit-
ed.

3 Writing Secure Procedures

In the rest of this paper, we will discuss how secure pro-
cedures can be constructed, considering in particular how
some algorithms for searching and sorting can be made non-
interfering. We will concentrate on the effects that loops,
recursion and branching have on execution time, and only
discuss algorithms and procedures that are total in their high
security arguments and which do not perform any observ-
able outputs.

3.1. Loops and Recursion:
the Worst-Case Principle

An algorithm with a termination condition that depends
on high security data can be rewritten such that this depen-
dence is removed, provided that there is an upper bound on
the algorithm’s execution time. The idea is to modify the
algorithm so that it always exhibits its worst-case behaviour
with respect to its high security inputs. This can be done
in two ways: by adding a dummy loop or by using another
termination condition that is only dependent on low securi-
ty data. Assume that
 and � are the high and low-security
arguments to the algorithm and that the normal implementa-
tion would execute in time ����
������ . Furthermore, assume that
the worst-case execution time with respect to
 is bounded
by � wc ����� .
Dummy loop. A total execution time of ����������� can be

achieved by sequencing the normal implementation of
the algorithm with some piece of code that executes in
exactly time � pad � � wc ����� �!����
��"��� . While theoretically
possible, this is probably very tricky to do correctly in
practice.

Low termination condition. A simpler approach to
rewrite the algorithm is to find a low security termi-
nation condition that corresponds to the worst-case
execution. Given that the body of the loop or recursive
procedure can be rewritten in such that its execution
time is independent of h, this will result in a secure
algorithm. The body will have to perform useful work
for the algorithm as long as there is something to do
and keep on doing redundant operations otherwise.

Whichever method is used, with this approach the lower
bound complexity of the algorithm be pushed up to the up-
per bound complexity. In other words, for a noninterfering
algorithm operating on secret data of a given size, the worst-
case and best-case executions have to be exactly equal. This
technique is an effective design principle for noninterfering
programs which we will refer to as the worst-case principle.

3.2. Branching

One approach to preventing timing leaks is to forbid
branching on high data [18]. If branching on high data is not
allowed, there are essentially no interesting algorithms that
can be implemented. By forbidding decisions to be made on
high data, only algorithms that are essentially parametric in
their high security arguments are allowed. High data can be
copied, moved about and passed to total primitive operators
but not take part in any other computations.

Fortunately, there is nothing that prevents branching on
high data as long as it does not affect the observable low be-
haviour of the algorithm. Again, some dummy code could
be added after the branching structure to compensate with
time depending on which branch was taken, but again, it
is probably very difficult do this correctly in practice. The
simplest method of achieving secure branching on high da-
ta is to make sure that all branches have the same execution
time and observable effect on the execution state. This is
the approach taken by the first author in [2, 3].

3.3. Searching and Sorting

In Sections 4 and 5, we describe different data structures
and algorithms for searching and sorting a collection of high
security objects. Both searching and sorting are fundamen-
tal building blocks of many other algorithms, so finding se-
cure versions of these should provide a hint on how other
algorithms can be implemented securely.

All algorithm implementations assume that the size of
the collection, i.e., the number of objects operated on, is of
low security. This is a necessary assumption since attempt-
ing to keep the size of a collection secret is futile. The run-
ning time of any algorithm that inspects more than a con-
stant number of objects in the collection must depend on
its size. If the collection has some maximum size which
is bounded by a low value # , we can apply the worst-case
principle and pad the collection with dummy elements to
that is has size exactly # .

3.3.1 Two Different Assumptions on What Is Observ-
able

Even very small differences in the execution state, like the
state of the cache, for instance, can be observed in the ex-
ecution time of a program. Consider the following code
fragment:

if (h>0)
z = x;

else
z = y;

z = x;

Under the assumption that neither x nor y are cached
before this code is run, the execution time of the last assign-
ment will reveal the outcome of the test h>0. The assign-
ment z = x , and thereby the whole code fragment, will
execute slightly faster if the test is true than if it is false.
Even though the two branches of the if-statement perfor-
m the same kind of computations, they reference different
variables and thus their effects on the cache are different. If
the test was true, x will (almost certainly) be cached at the
end of the if-statement and thus referencing x again will be
slightly faster than if y was cached instead.

We will say that a program which exhibits variances
in execution time due to cache behaviour has a cache-
leak. The capacity of covert timing channels implement-
ed through cache-leaks is not likely to be very high, but it
is certainly high enough that they should not be neglected.
To reinforce this point, a simple experiment we have made
(Appendix A) suggests that covert timing channels based on
cache-leaks can have a capacity of at least $ bit per second,
based on an experiment on a 300 MHz SUN UltraSPARC-
IIi.

In the rest of this paper we will consider two disjoint
assumptions as to whether cache-leaks can be observed or
not, and discuss their effect on how secure programs must
be written. The two assumptions are:

Cache-leaks can be hidden. There are a number of meth-
ods that can be used to effectively close cache-leaks.
For instance, the compiler can be instructed to emit
extra memory reference instructions before each refer-
ence to a variable, such that it is evicted from the cache.
A simpler, but perhaps not as efficient approach, would
be to have a parallel process running that continuous-
ly garbles the cache. Thereby, any cache-leak based
covert timing channel is drowned in noise, which fur-
ther reduces its capacity. The ultimate protection from
cache-leaks would of course be to turn off the cache,
but this might not always be practical or even possible.

Cache-leaks cannot be hidden. To be absolutely certain
that a branch on high data does not introduce any
cache-leaks, all branches have to modify the cache in
the same way. This essentially means that the algo-
rithms memory reference pattern must be independent
of high data. As we shall see, this requirement essen-
tially prevents the writing of programs that manipulate
pointers or references.

4 Searching

Since algorithms for searching are very tightly coupled
to the data structure that is used to store the elements, we
consider a few such data structures in their entirety. Data
structures for searching normally support three operations:

Insert, Delete and Find. Naturally, all these operation must
be implemented securely in order to achieve noninterfer-
ence. Neither the values already stored in the data structure,
nor the values used as arguments to the operations can be
allowed to affect their execution time.

4.1. Hash-Tables

The often most efficient and perhaps most common-
ly used data structure for searching is the Hash-table. It
consists of two components: an array % of size & , and
a hash-function that maps objects to indices of % , i.e.,'�(�*)+)*),�"&-�.$0/ . Since the size of the set from which ob-
jects are drawn is normally many times larger than & , there
are several objects that the hash-function will map to the
same index. When such collisions occur for some object-
s at an index 1 , %2��13� can be made to point to a secondary
search structure which is used to store the colliding objects.
If the size of the hash-table is properly dimensioned with
respect to the number of objects stored in it, and if the hash-
function has good spreading properties, all of the operations
Insert, Delete and Find can be made with an average com-
plexity of 45�6$�� . To maintain these nice properties when the
hash-table starts to fill up and collisions become more fre-
quent, the array % can be replaced with a larger one and
all the elements must then be rehashed into the new array.
Done properly, this will not affect the average cost of In-
sert, Delete and Find operations by more than a constant
factor.

The 4-��$�� average complexity of deterministic hash-table
operations also assumes that the objects inserted have some
random distribution. In the worst-case, all objects will hash
to the same index and the complexity of all operations will
be that of the search structure used for collisions. Follow-
ing the worst-case principle, this means that a secure hash-
table, where 7 elements have been stored, would have to
provide Insert, Delete and Find operations with execution
times that mimic the corresponding operations on a secure7 -element structure of the kind used for collisions. Imple-
menting and using such hash-tables is thus pointless since
they will only impose extra slow-downs compared to the
just using the secondary search structure.

4.2. Search Trees

The idea of modifying Insert, Delete and Find so that
they mimic the worst-case behaviour, works fine for al-
l kinds of search trees. All operations on a search tree must
know the depth of the tree and, e.g., an invocation of Find
must always search to the bottom of the tree and then per-
haps continue to perform dummy operations if the deepest
branch was not taken. Similar behaviours are required from
the Insert and Delete operations. To get good performance,

if (h>0) {
Insert ��89�":<;�� ;
Insert ��89�": =*� ;

}
else {

Insert ��89�": =*� ;
Insert ��89�":<;�� ;

}
Find ��89�":0� ; // : can be any object

Figure 1. Variable h influences the state of the
cache.

a search structure with a worst-case complexity of 4-��> �@? 7��
must be used, for example AVL-trees or 2-3-trees.

4.3. Linear Search

None of the search structures described above above are
cache-leak free. It is obvious that any deterministic opera-
tion with a better than linear complexity cannot be cache-
leak free since it will not reference all objects stored in the
structure. Such an operation will thus have different effect-
s on the cache depending on the search structure and the
object operated on.

The only way to get a cache-leak free search structure
is to ensure that all operations always reference every ob-
ject stored in the structure. In addition, this must be per-
formed in an order which is independent of the values of
the objects stored in the structure. Moreover, when pointers
to objects rather than actual objects are stored in the search
structure, the order in which the objects are referenced must
be independent of their values, and the order in which they
where inserted. This last requirement can be motivated by
the following example. Let 8 be a search structure that s-
tores pointers to objects and let : ; and : = be two objects lo-
cated at memory addresses such that they occupy the same
cache block. If the order that objects in 8 are referenced
by a Find operation depend on the order in which they are
inserted, e.g., if the last inserted object is referenced first,
then the code given in Figure 1 will generate a cache-leak.
Assuming a directly mapped cache, this code will, depend-
ing on h, cache either :@; or : = but not both. This example
generalises easily to other types of caches by using more
objects that occupy the same cache block.

It is unclear to us how to implement a deterministic
search structure, operating on pointers to objects, that is
noninterfering and does not have cache-leaks. We conjec-
ture that it is not possible. Any deterministic implementa-
tion of Find will traverse the objects in a fixed order and
thus how the pointers to the objects are stored in the struc-
ture will affect the order in which they are referenced. With

any Insert operation that is also deterministic, the internal
arrangement of the objects stored in the search structure
have to depend on the values of the objects it stores and/or
the sequence of operations performed on it. In Section 6, we
discuss how randomisation can be used to achieve security
and freedom from cache-leaks.

5 Sorting

In this section, we will discuss three algorithms for sort-
ing arrays: Quicksort, Heapsort and Mergesort. Obviously,
a sorting algorithm can be used to introduce a timing vari-
ance if its running time depends on the distribution or order
of the elements in the collection it sorts. However, since all
general sorting algorithms have to examine every element
in the collection – or more precisely, every sort key – they
might seem less suited for introducing cache-leaks than al-
gorithms for searching. Nonetheless, if the order in which
the objects are referenced can vary with the values or initial
order of those objects, then the algorithm might leak high
information into the state of the cache.

For algorithms that sort arrays where the sort key is a
literal “unboxed” value, like integers for instance, this is
only a problem if the array is larger than the cache, so that
there are two indices in the array that will occupy the same
cache block. Even then, the timing variances introduced are
very small since data larger that the cache – usually at least
several kilobytes – must be sorted in order to get a timing
variance of a few cache misses.

When it comes to sorting arrays where the sort key is
accessed by dereferencing a pointer, then the problem of
cache-leaks is much more severe. To see why, we observe
that every deterministic sorting algorithm must inevitably
reference the keys in an order that depends on the values of
the keys. Interestingly, it does not matter if the sequence of
compares and swaps of elements in the array that the algo-
rithm performs are completely independent of the values of
the objects pointed to by the array. The reason is that, since
the sorting algorithm is deterministic, the last pair of object-
s that are compared is completely determined by the input
array. Even if the last two indices compared by the sorting
algorithm are always 1 and A , the objects that are referenced
from these indices in the finally sorted array are inevitably
determined by the values of the objects sorted.

To describe how this can be exploited, we consider the
following scenario. Assume that sort is a deterministic
procedure that sorts an array where keys are accessed via
pointers in the elements of the array. Keys are compared
and objects are moved. Each comparison will dereference
two pointers and thereby cache the two corresponding ob-
jects. Suppose that for the instance of sorting a four-element
array, the last comparison that sort performs is between
the last two elements in the array. A secret boolean h can

A BC

A BC

D

Cache:

Main Memory:

D

Figure 2. Illustration of objects A and D col-
liding in the cache.

then be leaked by modifying the values of, and then sorting
four objects A, B, C and D, such that A and D collide in
the cache, as illustrated by Figure 2. Assuming a directly
mapped cache is used, only one of A and D can be cached
simultaneously. To leak whether h is larger than B , the four
objects can be assigned values as follows:% � B C �
��D$ E �
 F �
2GH$
If h is larger than B , the last two elements in the sorted ar-
ray, and thus the last two compared, will be D and C. Thus,
information about the value of h is leaked by whether A is
cached or not after the sorting has finished.

5.1. Quicksort

The most commonly used algorithm for sorting is proba-
bly Quicksort. It can sort an array in-situ, i.e., without using
any extra space, and it has a low constant factor overhead.
The average-case performance of Quicksort is 45��7I> �@? 7�� ,
but the worst-case performance is 45�J7 = � . The average-case
complexity relies on that choosing a pivot element and par-
titioning the array in two parts of roughly equal size can be
done in 45�J7�� .

To adapt the deterministic version of Quicksort to se-
curely sort high data is probably impossible without either
loosing the 45�J7I> �<? 7�� complexity or introducing impracti-
cal constant factor slow-downs. The reason for this is that
the pivot element controls the recursive calls and thereby the
termination of Quicksort. To keep the 4-��7K> �<? 7�� complex-
ity, an 4-��7�� method of partitioning an array into two halves
of roughly the same size must be used. To achieve nonin-
terference, this method must be such that the sizes of the
two partitions only depend on the size of the array and not
the values it stores. The recursive calls can then be made
on parts of the array solely determined by its length, 7 .
Performing such a partitioning corresponds to finding the
median in linear time. The most well known and straight
forward algorithm of finding the median is itself based on
Quicksort and thus has a worst-case complexity of 4-�J7 = � .
With a considerably more involved2 algorithm developed by

2Dor and Zwick themselves describe the green factories, which are the

Dor and Zwick [8], the median can be found using less thanB07 comparisons in the worst-case. This algorithm seems to
require an extra 4-��7�� amount of memory however, so using
it as the basis of the partitioning step of Quicksort would,
in addition to introduce a large constant factor overhead, al-
so ruin its in-situ properties. As the speed of Quicksort to
a large extent relies on fast partitioning, other sorting algo-
rithms, like for example Heapsort, will probably be faster
if the partitioning is slowed down too much. How the me-
dian selection algorithm developed by Dor and Zwick can
be adapted to noninterference is unclear to the authors but
it ought to be possible by always running it according to the
worst-case.

As we shall see in section 6.3, randomisation offers a
much simpler approach.

5.2. Heapsort

Heapsort is an in-situ algorithm with worst-case com-
plexity of 45��7I> �@? 7�� . It is not as commonly used as Quick-
sort however, since it has a higher constant factor overhead
and often runs slower in practice. Heapsort has two phases:

1. The elements to be sorted are first arranged to form a
heap, which is an almost complete binary tree where
each node is no smaller than any of its children. This
phase can be done in 45�J7�� . The heap can be represent-
ed within the array which is to be sorted, which gives
Heapsort its in-situ properties.

2. Once the heap has been built, the largest element is at
its top. The sorted array is then constructed by remov-
ing the top element and reestablishing the heap proper-
ty 7 times. The heap property can be reestablished in4-�J> �<? 7�� , thereby giving Heapsort its 4-��7K> �<? 7�� com-
plexity.

Both of these phases can be implemented securely without
changing their complexity. The method used to do so is very
similar to that used to implement noninterfering search-
trees. All operations that move elements down (or up) in the
heap should always perform the same number, L5�J> �<? 7�� , of
compare-and-swap operations. In Appendix B, Java source
code for a noninterfering version of Heapsort is provided.

5.3. Mergesort

Merge sort performs a logarithmic number of linear time
merges, which gives it a worst- and average-case complex-
ity of 45�J7I> �<? 7�� . The standard merge sort algorithm can
be implemented in-situ for linked lists but requires an ex-
tra 45��> �@? 7�� space to sort arrays. The extra space is needed

central part of the selection algorithm, as being “extremely complicated”
and that fully describing them would be “too long for a journal paper”.

to perform the merging. In [4], Batcher describes a tech-
nique called odd-even merging, that happens to be very
suitable for meeting the demands of noninterference. This
method of merging was developed for hardware sorting net-
works and has a complexity of 42��7I> �@? 7�� . The sequence
of compare-and-swap operation performed by the odd-even
merge is determined solely by the lengths of the arrays that
are merged. Thus, by using this technique, a variant of
Mergesort can be implemented which has a complexity ofL5�J7I> �<? = 7�� and is cache-leak free for arrays of objects.
Moreover, this algorithm can actually be implemented in-
situ for arrays! Of course, the discussion in the beginning
of Section 5 still applies, so even this variant of Mergesort
can give rise to a cache-leak when it sorts arrays of pointer-
s to objects. Appendix C contains Java source code for an
implementation of Mergesort based on Batcher’s odd-even
merging.

6 Randomised Algorithms

In this section, we will discuss randomised algorithms
that operate on high security data. Such algorithms might
not satisfy the conditions of noninterference, due to the high
security data somehow being involved in computations that
affect the program’s observable behaviour, but they can still
be secure in practice.

Randomised algorithms suggests that probabilistic non-
interference is the most suitable security criterion to use.
Semantic models for probabilistic noninterference has been
investigated by, e.g., McLean [15], Gray [10], and in the
programming language setting by Volpano and Smith [20],
and Sabelfeld and Sands [17]. The basic idea of proba-
bilistic noninterference is that the distribution of a secure
program’s observable behaviour should not vary with the
distribution of high security inputs to the program. Proba-
bilistic noninterference is, like standard noninterference, a
zero insecure information flow criterion.

Probabilistic noninterference is still a very strong a se-
curity condition because it concerns information dependen-
cies and does not allow any insecure information flow at
all. However, even some programs that have insecure infor-
mation flow might actually be secure in practice, given that
this flow is sufficiently small from an information-theoretic
perspective.

We will now take a second look at some of the algo-
rithms and data-structures discussed in Sections 4 and 5, to
see how randomisation can be used to achieve probabilis-
tic noninterference or to limit the probability of information
leakage so much that security is achieved in practice.

6.1. Hash-Tables

The reasoning in Section 4.1 assumes that the hash-
function is fixed and that each of the operations on the hash-
table thus have to protect against an attacker who knows
which objects will collide. Instead of using a fixed hash-
function, one can be chosen uniformly at random from a
2-universal hash family each time a hash-table is created
(see, e.g., [16]). Security can be achieved in practice for all
operations without losing the 45��$�� complexity. The defin-
ing property of 2-universal hash-functions is that the prob-
ability for collision between two distinct objects is less or
equal to $ M0& , where & is the size of the hash-table’s internal
array. The operations on the hash-table still have the worst-
case complexity of the search structure used for collisions,
but the expected time for any operation is bounded. Even
though the time to perform an Insert, Delete or Find de-
pends on the objects previously inserted into the hash-table,
this cannot be utilised in practise to produce a covert timing
channel. Due to the randomisation, the worst-case is just as
(un)likely for any sequence of operations.

Although the hash-function is chosen randomly, it is
fixed once the hash-table is created. Thus a program that
uses a randomised hash-table might test it with some cun-
ning sequence of operations and thereby learn which ob-
jects collide. Once colliding object have been discovered,
the attacker can use this to create timing differences in or-
der to leak information. The operations on the hash-table
are thus not probabilistically-noninterfering, but fortunate-
ly, the success of such testing in practice can be made arbi-
trarily hard. To resolve a collision, it is likely that rather few
instructions have to be executed. Given that a collision can
be resolved with less than a hundred instructions, the extra
time associated will be less than $ (ONQP seconds on a reason-
ably fast computer. It is thus safe to assume that an external
attacker, only observing the Internet communications of the
program, cannot observe the timing variance resulting from
one single collision. To observe a collision, it then has to be
repeated some thousands of times, for instance by repeat-
edly inserting and deleting the same element. To make it
harder for the program to learn about the hash-function, the
hash-table operations can be implemented to always behave
as if some constant number, RS�T$, of collisions occur. ThusR objects must collide at the same index in the hash-tables
internal array before any timing variance in the operations
can be observed. If we also pick a hash-function uniform-
ly at random from a R -universal hash-family (see [7] for
details), the probability of any R elements colliding at the
same index is $ M0&VU . For a hash-table of size & that holds
at most 7 elements before it increases its size and rehashes,
the probability that R objects collide at the same index is:$& U W 7 ROX � 7ZY& U R[Y\�J7]�^R_�,Y

Assuming a load factor3 of $, i.e., no more than & elements
are stored in the hash-table before its capacity is increased
and rehashing occurs, we get:$& U W 7 R_X ` 7ZY7 U R[Y\�J7a�^R_�,Y ` 7ZYR[Y 7ZY � $R[Y
Learning about the hash-function through testing can thus
be made arbitrarily difficult by choosing a larger R . This
reasoning gives us an upper bound on the collision proba-
bility of any given Insert operation.

To prevent the attacker from learning about the hash-
function by repeatedly inserting and deleting elements, the
hash-table can protect itself by continuously replacing the
hash-function with a new randomly generated one. This re-
quires rehashing of all elements in the hash-table but the4-�6$�� expected complexity of the hash-table operations can
be kept if the hash-function is replaced after every b9c & op-
erations, where b is a constant.

Remark Note that a hash-table implemented in this way
will still not be noninterfering, but it is most likely to be
secure enough for all practical purposes. Returning to the
assumptions above, we try to estimate the difficulty of us-
ing this hash-table for implementing timing leaks. Assume
that an observable timing variance does not occur until R
objects have collided at the same index. With the assump-
tion that the R th collision takes $ (_N[P seconds longer than
the first Rd�e$ collisions and that the attacker can only ob-
serve deviations with a granularity of $ (N[f seconds, the at-
tacker needs to perform $ (gf operations on the R th colliding
object to transmit any information (e.g., repeated Inserts
and Deletes or one Insert followed by repeated Finds). S-
ince the hash-table rehashes after bScV& operations, an upper
bound on the probability for succeeding with leaking one
bit becomes: $R[Y c b9c*&$ (f
If we choose R �ih (, then for a hash-table with a size of
1MB and b � $ (, this probability is less than jO) j!c0$ (ON ;�k .
6.2. Linear Search

With randomisation, we can implement search structures
that support Find, Insert and Delete operations that are se-
cure and cache-leak free. To avoid cache-leaks, all elements
are referenced by the Find and Delete operations, but in a
randomly chosen order. Thereby, the operations reference
the objects stored in the search structure in an order that is
independent of all previous operations performed on it.

3The load factor of a hash-table is the ratio of the maximal number of
elements stored in the hash-table and its size. In this case l�m,nporq .

The randomisation does not necessarily have to be made
in the Find and Delete operations. With a linked list im-
plementation, for instance, Insert can add an element at a
random place in the list. The Find and Delete can then
simply traverse the entire list since that will reference all
elements and do so in a random order.

6.3. Quicksort

Randomisation provides the possibility of a noninterfer-
ing and cache-leak free version of Quicksort. As is well-
known, by choosing the pivot element at each step by a uni-
formly random choice, Quicksort has an expected complex-
ity of 45�J7I> �<? 7�� for every input [16].

To consider the noninterference properties of this stan-
dard randomised variant, let us begin with the usual simpli-
fying assumption that all elements in the array are distinct.
At each recursive step of the algorithm, the selection of a
random pivot implies that the size of the two subproblems
(those elements smaller than or larger than the pivot elemen-
t, respectively) is dependent purely on the random choice.
Each possible split being equally likely, it is easy to see that
the sizes of the subproblems, and hence the distribution of
running times of the algorithm, for any input consisting of
distinct elements, is not dependent on the values or the or-
dering of the keys in the original array. In other words, the
algorithm is probabilistically noninterfering.

The question of what to do when there are repeated ele-
ments in the original array is potentially more difficult. But
a simple brute-force solution is adequate in theory: extend
each key with a unique index, thus forcing them to be dis-
tinct. Comparison must compare the elements and the ad-
ditional indices in all cases. The practical drawback of this
approach are the additional constant-factor costs in time and
space.

Regarding cache-leaks: by flipping a coin to determine
the order in which each pair of recursive subproblems are
solved, cache-leaks are also eliminated. This is because the
objects are then referenced in a completely random order.
Thus all elements are equally likely to be resident in the
cache after sorting.

6.4. Cache-Leak Free Sorting

Randomisation can be used to make any secure sorting
algorithm that operates on pointers to objects cache-leak
free. The algorithm can first be used to sort the array, and
then all elements are referenced a second time, in a random
order so that neither the values of the objects sorted nor the
sorting algorithm will affect which objects are cached.

7 Discussion and Conclusions

Under the constraints of noninterference we have shown
that sorting can still be made with a sI�J7I> �<? 7�� complexi-
ty, but even with runtime/compiler support available, hash-
tables cannot be implemented to support noninterfering op-
erations. Thus, searching a collection of secret objects can-
not be made faster than sI�J> �<? 7�� if strict noninterference is
required.

We conclude this paper with two conjectures on the re-
strictiveness of noninterference and its implication on the
complexity for searching and sorting. Our first conjecture
regards the most conservative case when the memory ref-
erence pattern must be independent of high security data to
avoid cache-leaks.

Conjecture 1
(Noninterference, Pointers and Cache-Leaks)
If a program’s cache behaviour cannot be prevented from
affecting its running time in an observable way, then search-
ing and sorting a collection where keys are accessed via
pointers cannot be achieved in a noninterfering way.

This conjecture is based on the fundamental difficulty with
pointers and cache-leaks discussed in Sections 4.3 and 5. To
simply disallow the use of pointers and references to keys in
order to deal with this problem is not a very realistic solu-
tion. Normal programs need to pass references and derefer-
ence pointers. For languages like Lisp and Java, passing ref-
erences is even inherent in their implementations. Without
references and pointers, programs that manipulate linked
data structures of any kind cannot be implemented. Note
that array indices behave just like pointers and references
where cache-leaks are concerned.

As discussed Section 3.3.1, it is realistic to assume that
cache-leaks can be effectively eliminated with the help of
the runtime environment, the compiler, or by algorithm-
specific measures as suggested e.g. for sorting in sec-
tion 6.4. (The practical costs of eliminating cache leaks
could, of course, be prohibitively high in some situations.)

Given that cache-leaks can be eliminated we are lead to
our second conjecture:

Conjecture 2 (Noninterference and Pointers)
Provided that a program’s cache behaviour can be pre-
vented from affecting its running time in an observable
way, searching a collection of secret objects still needs anL5�J> �<? 7�� asymptotic complexity to guarantee noninterfer-
ence. Sorting a collection of secret objects in a way that
satisfies noninterference, can be made with a complexity ofL5�J7I> �<? 7�� .
This would have consequences on the complexity of many
other algorithms that must satisfy noninterference. Since

the lower bound for searching is raised to sI��> �@? 7�� , a s-
lowdown will be imposed on very many algorithms that are
adapted to be noninterfering. For most programs, however,
this slowdown will be bounded in practice. The reason be-
ing that, for algorithms that store all objects in main mem-
ory, the depth of the balanced tree used as search structure
will be limited by the size of the main memory. For a com-
puter with at most one gigabyte of memory, the factor will
be less than 30.

For practical purposes, these slowdowns would need
to be weighed against the the randomisation-based tech-
niques to implement practically-secure hash-tables suggest-
ed in Section 6.1, which carry a number of constant-factor
overheads in creating random hash-functions, rehashing and
hiding possible collisions.

To conclude, since the lower sI�J> �<? 7�� bound for search-
ing will often be bounded by a reasonable constant factor,
the slow-downs imposed by noninterference on most algo-
rithms will be limited in practice. We thus consider it likely
that feasibly efficient noninterfering versions of common al-
gorithms relating to searching and sorting can be construct-
ed.

8 Acknowledgements

The material presented in this paper has benefit-
ed very much from discussions with our colleagues
Andrei Sabelfeld, Josef Svenningsson and Devdatt Dub-
hashi.Thanks also to the anonymous reviewers for many in-
sightful and constructive comments.

References

[1] M. Abadi. Secrecy by typing in security protocols. In
Proceedings of Theoretical Aspects of Computer Soft-
ware, Third International Symposioum, volume 1281
of LNCS, pages 611–638. Springer-Verlag, 1997.

[2] J. Agat. Transforming out timing leaks. In POPL’00:
The 27:th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 40–53.
ACM, ACM Press, January 2000.

[3] J. Agat. Type Based Techniques for Covert Channel
Elimination and Register Allocation. PhD thesis, De-
partment of Computing Science, Chalmers University
of Technology, Sweden., January 2001.

[4] K. E. Batcher. Sorting networks and their application-
s. In AFIPS Spring Joint Computer Conference, vol-
ume 32, pages 307–314, 1968.

[5] Ellis S. Cohen. Information transmission in sequential
programs. In Richard A. DeMillo, David P. Dobkin,

Anita K. Jones, and Richard J. Lipton, editors, Foun-
dations of Secure Computation, pages 297–335. Aca-
demic Press, 1978.

[6] D. E. Denning and P. J. Denning. Certification of pro-
grams for secure information flow. Communications
of the ACM, 20(7):504–513, July 1977.

[7] M. Dietzfelbinger. Universal hashing and k-wise inde-
pendent random variables via integer arithmetic with-
out primes. In R. Reischuk and C. Puech, editors, S-
TACS 96, 13th Annual Symposium on Theoretical As-
pects of Computer Science, volume 1046 of Lecture
Notes in Computer Science, pages 569 – 580. Springer
Verlag, Feb 1996.

[8] D. Dor and U. Zwick. Selecting the median. In Pro-
ceedings of the 6th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 28–37, 1995.

[9] J. Goguen and J. Meseguer. Security policies and se-
curity models. In Proceedings of the IEEE Sympo-
sium on Security and Privacy. IEEE Computer Soci-
ety Press, April 1982.

[10] J.W. Gray III. Probabilistic interference. In Proceed-
ings of the IEEE Symposium on Security and Privacy,
pages 170–179, Oakland, California, May 1990. IEEE
Computer Society Press.

[11] N. Heintze and J. G. Riecke. The SLam calculus: pro-
gramming with secrecy and integrity. In Conference
Record of the Twenty-Fifth Annual ACM Symposium
on Principles of Programming Languages, pages 365–
377. ACM, 1998.

[12] D. Le Métayer J.-P. Banâtre, C. Bryce. Compile-time
detection of information flow in sequential programs.
In Proc. European Symposium on Research in Com-
puter Security, volume 875 of LNCS. Springer Verlag,
1994.

[13] P. C. Kocher. Timing attacks on implementation-
s of diffie-hellman, rsa, dss, and other systems.
In Neal Koblitz, editor, Advances in Cryptology –
CRYPTO’96, volume 1109 of LNCS, pages 104–113.
Springer-Verlag, 1996.

[14] Butler W. Lampson. A note on the confinement prob-
lem. Communications of the ACM, 16(10):613–615,
Oct 1973.

[15] John McLean. Security models and information flow.
In Proceedings of the IEEE Symposium on Securi-
ty and Privacy, pages 180–187, Oakland, California,
May. IEEE Computer Society Press.

[16] R. Motwani and P. Raghavan. Randomised Algorithm-
s. Cambridge University Press, 1997. ISBN 0 521
47465 5.

[17] A. Sabelfeld and D. Sands. Probabilistic noninterfer-
ence for multi-threaded programs. In Proceedings of
the 13th IEEE Computer Security Foundations Work-
shop, Cambridge, England, July 2000. IEEE Comput-
er Society Press.

[18] D. Volpano and G. Smith. Eliminating covert flows
with minimum typings. Proc. 10th IEEE Computer
Security Foundations Workshop, pages 156–168, June
1997.

[19] D. Volpano and G. Smith. A type-based approach to
program security. In TAPSOFT’97, volume 1214 of
LNCS, pages 607–621. Springer-Verlag, April 1997.

[20] D. Volpano and G. Smith. Probabilistic noninterfer-
ence in a concurrent language. Proc. 11th IEEE Com-
puter Security Foundations Workshop, pages 34–43,
June 1998.

A. A Cache-Leak Based Covert Timing Chan-
nel

This section presents a small C-program that uses cache
behaviour to encode the value of a bit in its execution time.
The program is tailored to use the internal data cache of
a SUN UltraSPARC-IIi CPU. As it is provided, the pro-
gram is merely intended to serve as a proof of concept that
cache behaviour can be used to implement covert timing
channels. However, if the calls to ftime() in the function
covert send(), are replaced by function calls that send
a network packet to a receiving host, the program would
implement a true covert channel.

The source code of the C-program is given below. On a
SUN Ultra 10 with a 300 MHz SUN UltraSPARC-IIi pro-
cessor with a normal load, the program can leak more than() t bits per second. In a 30 minute test run, when the ma-
chine was used for editing and reading mail etc., but no
other continuous computations than the covert channel pro-
gram was run concurrently, 990 out of 1100 bits were suc-
cessfully transmitted. This gives a failure rate of

()u$Vv and
a bit rate of

() t0j bits correctly leaked per second.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>
#include <sys/timeb.h>

/***
From:
http://www.sun.com/microelectronics/

whitepapers/UltraSPARC-IIi/03.html#3.7

The UltraSPARC-IIi data cache is a 16 KB direct
mapped, software selectable write-through
non-allocating cache that is used on load or
store accesses from the CPU to cacheable pages
of main memory. It is a virtually-indexed and
virtually-tagged cache. The D-cache is
organized as 512 lines, with two 16-byte
sub-blocks of data per line. Each line has a
cache tag associated with it. On a data cache
miss to a cacheable location, 16 bytes of data
are written into the cache from main memory.
***/

#define Garb_N (1024*4+128) /* size-
of(int) = 4 */
#define N (1024*4)
static int garbArr[Garb_N];
static int xs[N];
static int ys[N];

/*
* This function flushes data out of the cache by
* filling it with garbage. Since 16 bytes are
* read into the cache at each cache miss, it is
* enough to read every 2 elements of an int
* array to fill the cache.
*/

void garbleCache(void) {
int i;
register int garb;
for(i=0; i<Garb_N; i += 2)

garb = garbArr[i];
}

/*
* This function introduces delays. By first
* reading either xs or ys and then reading xs,
* the value of cache_xs is encoded in the
* execution time. A call to garbleCache() is
* used to make sure neither xs nor ys is cached
* before the encoding starts. The whole
* procedure is repeated n times to produce a
* longer delay.
*/
void delay(int cache_xs, int n) {
register int garb;
int *arr, i;
while (n-- > 0) {
garbleCache();
if (cache_xs)

arr = xs;
else

arr = ys;
for(i=0; i<N; i += 2)

garb = arr[i];
for(i=0; i<N; i += 2)

garb = xs[i];
}

}

/*
* This function "sends" a secret bit h. It does
* so by producing three delays. First, the
* delay of a bit set to 1 and then the delay of
* a bit set to 0 and finally the delay of h.
*/
void covert_send(int h, unsigned timers[]) {
struct timeb t;
int n = 1000;
ftime(&t);
timers[0] = t.time *1000 + t.millitm;
delay(1, n);
ftime(&t);
timers[1] = t.time *1000 + t.millitm;
delay(0, n);
ftime(&t);
timers[2] = t.time *1000 + t.millitm;
delay(h, n);
ftime(&t);
timers[3] = t.time *1000 + t.millitm;

}
/*
* This function is the "receiver". It measures
* the three delays introduced by covert_send()
* and then guesses the value of h depending on
* if it is closer to the delay of a 1-bit or the
* delay of a 0-bit.
*/
int covert_recieve(int h) {
unsigned timers[4];
int d1, d0, dh;
do {

covert_send(h, timers);

d1 = timers[1] - timers[0];
d0 = timers[2] - timers[1];
dh = timers[3] - timers[2];

} while (d1 >= d0); /* Redo noisy samples. */
return abs(d1-dh) < abs(d0-dh);

}

/*
* Simple main function to test and measure the
* timing channel.
*/

int main(int argc, char *argv[]) {
int g, h=1;
int ok, nOk=0, nFailed=0;
unsigned start, tot_time;
struct timeb t;
ftime(&t);
start = t.time*1000 + t.millitm;
while(1) {
g = covert_recieve(h);
ftime(&t);
tot_time = t.time*1000 + t.millitm - start;
ok = g == h;
if (ok) nOk++; else nFailed++;
printf("Expecting %d, got %d. %s "

"\tTotal: %5d tot %5d ok. "
"Failrate: %.4f Time: %10d ms"
" Ok bitrate: %1.3f b/s\n",
h, g, ok? "OK " : "FAILED",
nOk+nFailed, nOk,
((float)nFailed)/((float)nOk+nFailed),
tot_time,
((float)nOk)/((float)(tot_time/1000))
);

h = !0;
}
return 0;

}

B. Noninterfering Heapsort

The Java code for a secure version of Heapsort is present-
ed in this section. It consists of a class Heapsortwith one
public method sort(), that sorts an array of ints. The
sorting method meets the demands of noninterference in the
sense that the number of compares and swaps made are in-
dependent of the values in the array it sorts.
class Heapsort {
public void sort(int arr[]) {

int len = arr.length;
sort(arr,len);

}
private void sort(int arr[], int len) {

int arrlen = arr.length;

// 1, Build the heap by joining
// smaller heaps into larger.
int depth=1; //The maximal depth of any heap.
int modDepthAt = (((arrlen-1)>>1)-1)>>1;
for (int hp=arrlen>>1; hp>=0; hp--) {
// arr[hp] should be joined.
if (hp == modDepthAt) {

depth++;
modDepthAt = modDepthAt << 1;

}
swiftDown(arr, hp, arrlen, depth);

}
depth = 0;
modDepthAt = 0;
for(int i=0; i<arrlen; i=(i<<1)+1) {

depth++;
modDepthAt = (modDepthAt<<1)+2;

}
modDepthAt = (modDepthAt-1)>>1;
// 2, Do the sorting.
// Heap part of arr shrinks to left.
for (int hp=arrlen-1; hp>0; hp--) {

swap(arr, 0, hp);
// Now, the Heap ends at hp.
if (hp == modDepthAt) {

depth--;
modDepthAt = (modDepthAt-1)>>1;

}
swiftDown(arr, 0, hp, depth);

}
}
/* Assumes that all elements "below" elemIx form
* a heap in arr, but arr[elemIx] might not be
* larger than its children. Creates a heap
* staring at elemIx by performing depth
* compare-and-swap operations. The array, or
* the heap part of the array ends at hpLimIx.
*/
private void
swiftDown(int arr[], int elemIx,

int hpLimIx, int depth) {
for (int i=0; i<depth; i++) {

// chL is the index of the left child.
int chL = (elemIx<<1) +1;
int chR = (elemIx<<1) +2;
int ch;
chL = chL < hpLimIx ? chL : elemIx;
chR = chR < hpLimIx ? chR : elemIx;
// Decide where to move arr[elemIx]
if (arr[chL] <= arr[chR])

ch = chR;
else

ch = chL;
if (arr[ch] > arr[elemIx])

swap(arr, ch, elemIx);
else

dont_swap(arr, ch, elemIx);
elemIx = ch;

}
}
private void
swap(int arr[], int ix1, int ix2) {
int tmp1 = arr[ix1];
int tmp2 = arr[ix2];
arr[ix1] = tmp2;
arr[ix2] = tmp1;

}
private void
dont_swap(int arr[], int ix1, int ix2) {
int tmp1 = arr[ix1];
int tmp2 = arr[ix2];
arr[ix1] = tmp1;
arr[ix2] = tmp2; } }

C. Noninterfering, in-situ Mergesort

This section presents Java code that implements an in-
situ version of Mergesort, operating on an array of ints.
The merging-method used is the odd-even merge described
by Batcher [4], for constructing hardware sorting networks.
This sorting algorithm performs a sequence of compare and
swap operation that is completely determined by the length
of the array that it sorts.

class MergeSort {
public void sort(int arr[]) {

insituOddEvenMergeSort(arr,0,arr.length,1);
}
private void insituOddEvenMergeSort

(int arr[], int startIx, int len, int step) {
// Nothing to do if arr
// contains 1 element or less
if (len <= 1)
return;

// 1, Split arr in the middle.
int len1 = len >> 1;
int len2 = (len >> 1) + (len&1);
int startIx2 = startIx + len1*step;
// 2, Sort the two halfs recursively
// and merge.
insituOddEvenMergeSort(arr, startIx,

len1, step);
insituOddEvenMergeSort(arr, startIx2,

len2, step);
insituOddEvenMerge(arr, startIx, startIx2,

len1, len2, step);
return;

}
/**
* Merges two arrays embedded in arr. The first
* array starts at arr[startIx], has len1
* elements separated by step. The second array
* starts at arr[startIx2] and has len2
* elements, also separated by step.
*
* The merge results in one array embedded in
* arr, starting at arr[startIx1], with len1
* elements separated by step and continuing from
* arr[startIx2] with len2 elements separated by
* step.
*
* "Odd" indexes are startIx + 0,2,4,... *step
* "Even" indexes are startIx + 1,3,5,... *step
*/

private void
insituOddEvenMerge(int arr[], int startIx1,

int startIx2, int len1,
int len2, int step) {

if (len1 == 0 || len2 == 0) return;
if (len1 == 1 && len2 == 1) {
cmpSwap(arr, startIx1, startIx2);
return;

}
int odd1_startIx = startIx1;
int even1_startIx = startIx1 + step;
int odd2_startIx = startIx2;
int even2_startIx = startIx2 + step;
int merge_step = step <<1;

int odd1_len = (len1 +1) >>1;
int even1_len = len1 >>1;
int odd2_len = (len2 +1) >>1;
int even2_len = len2 >>1;

insituOddEvenMerge(arr, odd1_startIx,
odd2_startIx, odd1_len,
odd2_len, merge_step);

insituOddEvenMerge(arr, even1_startIx,
even2_startIx, even1_len,
even2_len, merge_step);

int oddMlen = odd1_len + odd2_len;
int evenMlen = even1_len + even2_len;

int i;
for (i=0; (i+1)<oddMlen && i<evenMlen; i++) {

// The 2i’th and 2i+1’th elem in the merged
// array should be the cmpSwap of odd
// element i+1 and even element i.
int oddIx = (i+1) < odd1_len ?

odd1_startIx + (i+1)*merge_step :
odd2_startIx + (i+1-odd1_len)*merge_step;

int evenIx = i < even1_len ?
even1_startIx + i*merge_step :
even2_startIx + (i-even1_len)*merge_step;

if (evenIx < oddIx)
cmpSwap(arr, evenIx, oddIx);

else
cmpSwap(arr, oddIx, evenIx);

}
return;

}
/**
* Compares and possibly swaps two values of arr.
* After the call, arr[ix1] <= arr[ix2]. The
* same number of reads and writes to arr are
* made regardless of the values of arr[ix1] and
* arr[ix2]. */
private void
cmpSwap(int arr[], int ix1, int ix2) {
int elem1 = arr[ix1];
int elem2 = arr[ix2];
if (elem1 > elem2) {

arr[ix1] = elem2;
arr[ix2] = elem1;

}
else {

arr[ix1] = elem1;
arr[ix2] = elem2;

}
}
}

