
From Gamma to CBS:

Re�ning multiset transformations with broadcasting processes

David Sands and Martin Weichert

Department of Computing Science

Göteborg University and Chalmers University of Technology

412 96 Göteborg, Sweden

{dave,martinw}@cs.chalmers.se
Abstract

This paper presents a novel approach to the problem of im-

plementing programs in Gamma, a computation model of

chemical-reaction-like multiset transformations, by translat-

ing them into a process calculus with broadcasting communi-

cation, CBS. The concurrent message reception of broadcast-

ing communication �ts very naturally to the implicit paral-

lelism of the Gamma model: A value that may trigger reac-

tions with several others in the multiset is broadcast to the

potential receivers and may thus react with all of them at

the same time. This kind of triggering reactions, which we

call quasi-unary, is very common in Gamma programs and

is found in a large class of problems. The translation consti-

tutes a correct re�nement of the Gamma program and o�ers

possibilities for further optimisations for several classes of

problems. We address termination of Gamma programs and

identify several classes of programs where termination can be

detected and practically implemented.1

1 Introduction

This paper explores some connections between Gamma

and CBS. Gamma and CBS are two abstract program-

ming paradigms which embody two key coordination

mechanisms.

1See http://www.cs.chalmers.se/�martinw/papers/hicss98.ps

for full version of this paper.

Copyright 1998 IEEE. Published in the Proceedings of the

Hawai'i International Conference On System Sciences, January 6-

9, 1997, Kona, Hawaii.

Personal use of this material is permitted. However, permis-

sion to reprint/republish this material for advertising or promo-

tional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted com-

ponent of this work in other works, must be obtained from the

IEEE. Contact: Manager, Copyrights and Permissions/IEEE Ser-

vice Center/445 Hoes Lane/P.O. Box 1331/Piscataway, NJ 08855-

1331, USA. Telephone: + Intl. 908-562-3966.
1060-3425/98 $10.0
� The Gamma model is an abstract computation

model based on the chemical reaction metaphor

[BCL88, BL90, HLS92]. In the context of coordi-

nation mechanisms, Gamma serves as an abstract

model in which the essence of generative communi-

cation in an unstructured data-space can be stud-

ied. It provides a high level speci�cation language

for algorithms, and also a mechanism for specifying

concurrent semantics of programming languages, as

popularised in the �Chemical Abstract Machine�

[BB92].

� Calculus of Broadcasting Systems (CBS) [Pra95], a

simple CCS-like calculus with an intuitive commu-

nication model, single channel broadcast. Processes

speak one at a time and are heard instantaneously

by all other processes. Speech is autonomous, con-

tention being resolved non-deterministically. Hear-

ing only happens when someone else speaks.

Although a number of papers have, in passing, pointed

to similarities and possible connections between CBS

and Gamma (and between CBS and other coordina-

tion languages, such as the broadcast-based language LO

[AP90, ALPT93]), a more thorough investigation has not

been forthcoming. A connection between broadcasting

and the Gamma-inspired chemical abstract machine has

been forgred in the development of interaction abstract

machines [ACP93], which extend the chemical reaction

metaphor with a notion of broadcast communication.

This paper describes how a certain class of Gamma

programs can be realised very naturally in the CBS

paradigm. In this setting, broadcasting o�ers a novel

approach to the combinatorial problem of searching for

applicable reactions � the fundamental problem when

implementing Gamma programs. Informally, the class of

programs that can be realised in CBS are those in which

at most one element is changed during any reaction step.

We call this kind of reaction quasi-unary. This turns out
0 (c) 1998 IEEE

to be a very common case for Gamma programs, and

example Gamma algorithms in this class found in the

literature include, for example, knapsack, shortest-path,

longest upsequence, primes, and matrix multiplication.

For this class, the problem of implementing the implicit

search for applicable reactions is realised by broadcast.

This should provide a natural highly concurrent re�ne-

ment of the possible Gamma execution. Although we fo-

cus on non-reactive programs, quasi-unary reactions are

also common in reactive Gamma programs � for exam-

ple all the (higher-order) reactions of the reactive system

modelled in [Bou96] are quasi-unary.

Implementing the Gamma model There have been

a number of concrete experiments in implementing the

Gamma model. For example on

� MIMD machines in the original work of Banâtre et

al. [BCL88], and by Kuchen and Gladitz [KG93,

GK96];

� the connection machine [Cre91], and even

� Field-programmable gate arrays (FPGA's) [Vie96].

Each of these articles accepts that e�cient implemen-

tations cannot be realised in general, and that algorithm-

speci�c optimisations must be made to handle the com-

binatorial problems of searching for applicable reactions

and of termination detection; however no systematic ap-

proaches to this problem are described.

Some recent approaches to the problems of implement-

ing the general Gamma model seek to impose a coor-

dination layer on Gamma programs so that they can

be further re�ned in order to obtain reasonable imple-

mentations. Chaudron and de Jong [CdJ96] describe a

process-calculus-like language for re�ning the order of re-

actions occurring in a Gamma program. Fradet and Le

Métayer [FM96] focus on the organisation of the data

itself, so that structure and locality can be programmed

more naturally.

2 Introduction to the Gamma

model

Gamma [BL90, BL93, HLS92] is a language based on lo-

cal multiset rewriting with an elegant chemical reaction

metaphor: A program state is a multiset of small data

units, which � in analogy to molecules in a chemical so-

lution�may interact locally according to a set of simple

reaction rules. This simple programmingmodel aims not

to impose any sequential ordering on the computation

other than those due to the problem itself. (For exam-

ple, many programming languages force a list or an array
1060-3425/98 $10.
to be traversed in a particular order even if the problem

statement itself does not require that.) This openness of

order of execution may be used to �rst specify a problem

in a quite general solution in Gamma and then re�ne it

into a more speci�c solution with a speci�c sequential �

or even parallel � execution of the computation steps.

The unique data structure of Gamma is a multiset of

data items, for example numbers or tuples, which we

will call cells. The behaviour of the data structure is

described by a set of rewrite rules (also called reaction

rules). For the purposes of this article we will consider

a Gamma program (ranged over by �) to be simply a

collection of such rewrite rules. A rewrite rule of the

form

lhs! rhs; if cond(lhs)

states that whenever elements matching lhs in the mul-

tiset satisfy condition cond(lhs), they may be replaced

in the multiset by the corresponding rhs.

If such a rewrite rule is in a program � and is applica-

ble in a multiset M , resulting in a multiset N , then we

will write M !� N .

A result (not �the� result!) is obtained when a stable

state is reached, i.e., when no more reaction can take

place. For example the following Gamma program com-

putes the maximum element of a non-empty (multi-)set:

a; b! a; if a � b

Whenever two elements a and b in the multiset satisfy

the condition a � b, they may be replaced by the single

element a, that is, the lesser element b simply disappears.

It is easy to see that reactions terminate i� the original

multiset has reduced to the singleton multiset containing

the maximum element (assuming a total ordering rela-

tion).

Assuming a certain multiset representation of the in-

put and output data, many basic problems can be solved

in Gamma with one single rewrite rule. Here are some

more of them:

Eliminating duplicates:

a; b! a; if a = b

Adding up all elements:

m;n! m+ n; if true

Finding prime numbers up to n:

m;n! m; if n is multiple of m

applied to the start set f2; : : : ; ng.

Some more interesting examples:

Sorting: To represent a sequence a1; : : : ; an in

Gamma, we will encode it as a multiset of pairs
00 (c) 1998 IEEE

f(a1; 1); : : : ; (an; n)g of a value and its index in the se-

quence. Two ill-ordered values will �exchange place� by

exchanging their index:

(a; i); (b; j) �! (a; j); (b; i); if a < b and i > j

Greatest common denominator (GCD) of a multiset of

numbers:

a; b �! a; b� a; if 1 � a � b (1)

An additional rule �a!; if a = 0� eliminates cells that

become 0.

3 Introduction to CBS

Processes in CBS [Pra93a, Pra93b, Pra95, Wei95] are

built from the basic operations v!, �output (broadcast)

the value v�, and S?, �input any value v from the set S�.

The operations used for translating Gamma programs

are described as follows:

� o, called the empty (or �dead�) process, does noth-

ing.

� The process v! � P can broadcast the value v and

then behave like process P . Thus, 3! � o transmits

the value 3 and then �dies�.

� The process fx j c(x)g? � P (x) is able to receive any

broadcast value v which satis�es the boolean con-

dition c(v) and then behave like process P (v). It

will (implicitly) ignore any broadcast v that does

not satisfy c(v). For example, fx j odd(x)g? �x! �o is

able to do v? (input value v) for any odd number v,

and react to it with an output v!, after which it dies.

Any even number is simply ignored by this process.

� The process P1 + P2 behaves either as P1 or as P2.

It may start with any action (input or output) that

P1 or P2 starts with; this �rst action determines

whether it will continue as P1 or as P2.

� P1 jP2 means �P1 and P2 acting in parallel�. In any

parallel composition of two or more processes any

process that is ready to speak may be picked (non-

deterministically) to do so. All the other processes

in parallel hear this at the same time and react ac-

cordingly: A process that is able to receive the value

broadcast must do so; any process that is not able

to receive it just remains unchanged.

� The process if c then P � behaves like P if

the boolean condition c holds, and does noth-

ing otherwise. We also introduce the notation
1060-3425/98 $10
if c then P1 else P2 � = if c then P1 � +

if :c then P2 �.

In fx j c(x)g? �P (x), x is bound in both c and P . The

operator � binds stronger than j, and + binds weakest.

Some additional syntactical sugar will occasionally be

used without further comment. Its meaning should in

any case be clear from context.

The meaning of CBS processes is given in form of la-

belled transitions. (The precise operational semantics is

given in the appendix, in the full version of the paper.)

The transition P
v!
�! P 0 means that the broadcast value

v emanates from the process P , after which the system

behaves as P 0. The transition P
v?
�! P 0 means that P

hears a broadcast value v, and subsequently behaves as

P 0. For example, the behaviour of the odd number pro-

cess above is expressed as:

fx j odd(x)g? � x! � o
v?
�! v! � o

v!
�! o

for any odd number v.

CBS processes are often de�ned recursively. A process

de�nition like P = fx j odd(x)g? � x! � P thus describes a

process that echoes any odd number it hears and then

returns to its initial state � it will thus repeatedly echo

any odd number it hears:

P
v?
�! v! � P

v!
�! P

w?
�! w! � P

w!
�! P

u?
�! : : :

and so on for any odd numbers v, w, . . . We write P !

P 0 to mean that there exists some v for which P
v!
�! P 0.

Parallel composition is commutative and associative.

It can thus be seen as an operation on a multiset of

processes and we can write
Q

a2M P (a) = P (a1) j : : : j

P (am) for any �nite multiset M = fa1; : : : ; amg.

Equal processes. Two processes are considered equal

if they have the same behaviour, that is, if they have

the same set of transitions, which again lead to equal

processes. In process calculus, this is formally called

bisimulation. We write P � Q or simply P = Q for

equal (that is, bisimilar) processes P and Q.

4 From Gamma to CBS

Gamma reactions may be thought of as being executed in

parallel. Whenever disjoint subsets satisfy some reaction

condition, like a; b! c and d; e! f , we can think of one

reaction a; b; d; e! c; f combining the two.

The essential idea in our approach is that with broad-

casting and quasi-unary reactions we do not combine

reactions on disjoint sets (CBS uses an interleaving se-

mantics), but rather reactions that all share the same
.00 (c) 1998 IEEE

catalyst. Reactions a; b ! a; b0 and a; c ! a; c0 can be

combined into a; b; c! a; b0; c0.2

4.1 Quasi-unary reactions

We call a rewrite rule quasi-unary (or catalysing) if it is

of the form:

a; b �! a; b01; : : : ; b
0

m; if cond(a; b)

In a quasi-unary reaction, exactly two cells a and b

meet. Whereas one of them, a, remains unchanged, the

other may be replaced by zero, one or more other cells.

We say that a �catalyses� the reaction on b and write

b
a
�! b01; : : : ; b

0

m; if cond(a; b) (2)

to emphasise that a is needed for the reaction but does

not change itself.

Of all the examples above, the summing and the sort-

ing programs are not quasi-unary, since two reactants

change at the same time. The GCD reaction (1) how-

ever is, and we can write:

b
a
�! b� a; if 1 � a � b (3)

In section 6.1 we will meet a quasi-unary solution to

sorting as well.

4.2 Translating quasi-unary reactions

Now we can translate an arbitrary quasi-unary rule (2)

to the following process de�nition:

P (b) = b! �P (b)

+ fa j cond(a; b)g? �
�
P (b01) j : : : j P (b0m)

�

Any cell is always ready to announce its own value. It

will not change by doing so. It is also always ready to

hear a value that may catalyse it to change into some-

thing di�erent.

The above translation of a single rule extends to an

arbitrary set of quasi-unary and unary reactions, by in-

corporating a summand in the process description corre-

sponding to each possible reaction condition. For unary

reactions the process can modify its value autonomously.

For notational simplicity we will stick to the simple case

of a Gamma program consisting of a single reaction rule.

Executing the Gamma program on the multiset

fa1; : : : ; ang can now be implemented (possibly reduc-

ing the nondeterminism) by the parallel composition

P (a1) j : : : jP (an). The GCD example (3) becomes:

P (b) = b! � P (b)

+ fa j 1 � a � bg? � P (b� a)

2Both [CdJ96] and [CGZ96] extend the formal operational se-

mantics of Gamma to include this kind of transition rule.
1060-3425/98 $10
4.3 Correspondence between Gamma

and CBS

We denote the translation of a Gamma program � by b�,
which is a mapping Elements ! CBS. We extend this

pointwise to a function on multisets of elements in the

obvious way, so that (�x:P (x))M =
Q

a2M P (a).

The translation yields processes which have a degree of

evolving structure � re�ecting the possible addition or

elimination of elements from the multiset in the original

Gamma program. This evolving structure is very regular

in the sense that every transition has the form b�(M)!

b�(N). Stated more precisely:

Lemma 1 For all Gamma programs �, if b�(M) ! P

then P � b�(N) for some N .

The �rst correspondence result states that these transi-

tions can be simulated by the original Gamma program:

Proposition 1 (Simulation) For every multiset M ,

and Gamma program �: If b�(M)! b�(N) thenM !�

� N

What is more, termination of the Gamma program im-

plies stability of the CBS term:

Proposition 2 (Stability) We say that a CBS term P

is broadcast-stable if whenever P ! Q then P � Q. For

all M , if M 6!� then b�(M) is broadcast-stable.

Liveness A �nal property that one might hope for is

a liveness condition which states that the CBS transla-

tion will make progress whenever progress is possible.

However, there is a hidden subtlety in the operational

semantics of Gamma which any lower-level implementa-

tion must address: the transition rules for Gamma only

re�ect the successful reactions, and not the search pro-

cess, which inevitably must test the reaction condition

on many unsuccessful tuples. Corresponding to this, in

the translated program it is possible to repeatedly broad-

cast a value which cannot react further with any other

values in the system. One way around this problem is

to assume fairness in the CBS implementation. The no-

tion of fairness that is needed, informally, says that a

process which is continuously able to broadcast a given

value will eventually do so. This guarantees that every

process which is able to broadcast a catalyst will even-

tually be able to do so. For completeness we give the

formal statement below.

Proposition 3 Under the above fairness assumption

about CBS executions, if M !� N for some M 6= N ,

then there exists an M 0 such that b�(M) !� b�(M 0) and

N !�

� M 0.
.00 (c) 1998 IEEE

5 Speeding it up: One broadcast

does it all

In this section we consider a further optimisation which

allows us to reduce unnecessary broadcasts. First we in-

troduce a re�nement of quasi-unary Gamma programs

which reduces the number of reactions by iterating the

reaction function until the reaction condition is false. For

these programs we consider two related optimisations of

the corresponding CBS programs which allow us to do

a once-only (�one-shot�) broadcast. An added bonus of

these optimisation is that they guarantee progress with-

out the need for fairness.

Speed-up by broadcasting Howmany times is a cat-

alyst value needed? In Gamma, there is in principle no

limitation on how many times a cell might react with

others � with or without changing its own value. There

are however some general considerations that will help us

to limit, and even cut down on, the number of reactions

a particular cell engages in.

For simplicity we will consider a quasi-unary reaction

of the form

b
a
�! fa(b); if cond(a; b) (4)

i.e., where the reaction does not change the size of the

multiset. The right hand side is here written as fa(b), a

function of both a and b. (As a function depending on

two arguments we could equivalently write it as f(a; b),

but the notation fa(b) will be more convenient for our

purpose later on.)

The translation from Gamma to CBS entails that

there may be several cells b1; : : : ; bm around that satisfy

the reaction condition to react with catalyst a, that is,

cond(a; b1) = . . . = cond(a; bm) = true, and the multi-

set a; b1; : : : ; bm may do several reaction steps in Gamma

to become a; fa(b1); : : : ; fa(bm). It is exactly this kind of

reactions that �ts well with broadcast communication, as

all of these Gamma reactions will merge into one single

transition in the process calculus case:

P (a) j
�
P (b1) j : : : j P (bm)

�
a!
�!

P (a) j
�
P (fa(b1)) j : : : j P (fa(bm))

�

Thus broadcasting may reduce the number of steps by

the order O(n) where n is the number of cells.

Iterated reactions The fact that a catalyst is broad-

cast does not rule out the case where the same cell

b can be catalysed by the same value a more than

once, that is when the resulting value fa(b) again
1060-3425/98 $10
satis�es the reaction condition cond(a; fa(b)) = true.

In this case there may still be need for an iterated

broadcast communication of a, to trigger the reactions

b
a
�!fa(b)

a
�!fa(fa(b)) �! : : : An example of this is

the greatest common denominator algorithm (3) with

cond(a; b) = 1 � a � b and fa(b) = b� a, with reaction

chains like 70
20
�! 50

20
�! 30

20
�! 10. In such a case, it is

actually not at all necessary for cell b to �be informed�

about a's value again � it already �knows� after the �rst

reaction that the catalysing value a exists in the envi-

ronment and that it therefore can go all the way from b

to fa(fa(b)) if cond(a; fa(b)) =true, and so on. Actually,

if we have a termination proof of the Gamma program,

we can even assume that every transition goes as far as

possible in applying fa, by de�ning the following:

f+a (b) = fma (b), where

m = minfm j cond(a; fma (b)) = falseg

and replacing the original reaction rule (4) by:

b
a
�! f+a (b); if cond(a; b)

Example: Iterated GCD For the GCD algorithm

(3), the iterated reaction function has a simple closed-

form: f+a (b) = b mod a.

The improved Gamma program is:

b
a
�! (b mod a); if 1 � a � b

In general, turning a quasi-unary reaction function fa
into the iterated reaction f+a in a Gamma program is

well de�ned and preserves the input-output behaviour

on the program's termination domain. The termination

domain of a Gamma program �, written Dom(�) is the

set of multisets for which � must terminate (i.e. cannot

run forever). The termination domain is of relevance to

programs which satisfy a given pre/postcondition speci-

�cation: a totally correct Gamma program with respect

to precondition p and postcondition q is such that when-

ever M satis�es p then we must have M 2 Dom(�).

In the terminology of [HLS92], replacing fa by f+a is a

program re�nement in the upper (total-correctness) or-

dering.

One-shot announcements Once we have converted

the Gamma reactions to iterated form, we now consider

the question of reducing the number of broadcasts. We

consider two types of optimisation:

1. Value one-shot broadcast In this optimisation

a cell does not broadcast a given value more than

once (unless the value changes); In this case we can

optimise the reaction condition by augmenting each
.00 (c) 1998 IEEE

P (b; new) = if new then b! � P (b; false) �

+ fa j cond(a; b)g? �
�
P (b01; true) j : : : j P (b0m; true)

�

Figure 1: CBS process de�nition for value one-shot broadcast
CBS process with an additional, boolean parameter

new, initially set to true. The CBS process de�ni-

tion is given in Figure 1.

2. Cell one-shot broadcast A variant of the above

in which a cell broadcasts at most one value. The

CBS process de�nition is given in Figure 2.

Neither of these optimisations is sound in general. The

necessary condition for them to be sound is, roughly

speaking, that if the processes were to do repeated broad-

casts, then these would not trigger any further reactions.

In many Gamma programs, we have quasi-unary rules

that are �one-shot�. It is, however, not always obvious

that this is the case. We will �rst look at some examples

where these optimisations can be applied, before stat-

ing su�cient conditions on the condition and reaction

function to enable these optimisations.

An Example Value One-Shot Reaction: GCD

The reaction is value one-shot, since once we have broad-

cast c, the reaction ensures that all other elements will

be smaller than c, and since the reaction never increases

the size of the values, this reaction condition is never

re-enabled. The process above becomes:

P (b; new) = if new then b! � P (b; false) �

+ fa j 1 � a � bg? � P (b mod a; true)

Example Cell One-Shot Reaction: Transitive clo-

sure of a relation The transitive closure problem is,

given a relation R on a (�nite) set A, compute R+, its

transitive closure. We will �rst sketch the derivation of

a Gamma program for this problem. To solve this in

Gamma we can represent any relation R0 as a (multi)set

of cells, each containing one element of A and the set of

its �right neighbours�:

M (R0) = f(a; Sa) j a 2 A; Sa = fb j (a; b) 2 R0

gg

The initial condition I is: M = M (R) and the �nal

condition T is M = M (R+). A suitable invariant is

9R0 : M = M (R0) ^ R � R0 � R+. Reactions must

still take place as long as :T holds, together with the

invariant, that is, when R � R0 � R+, i.e.,

9a; b; c : (a; b) 2 R0; (b; c) 2 R0; (a; c) 62 R0
1060-3425/98 $10.0
This condition is equivalent to:

9(a; Sa); (b; Sb) : b 2 Sa ^ Sb 6� Sa

This gives a suitable reaction condition on the cells

(a; Sa) and (b; Sb). As an appropriate reaction we can

complete Sa with the missing elements of Sb:

(a; Sa); (b; Sb) �! (a; Sa [Sb); (b; Sb); if b 2 Sa^Sb 6� Sa

The reaction rule is quasi-unary:

(a; Sa)
(b;Sb)
�! (a; Sa [Sb); if b 2 Sa ^ Sb 6� Sa

and we can translate it to CBS.

P (a; Sa) = (a; Sa)! � P (a; Sa)

+ f(b; Sb) j b 2 Sa ^ Sb 6� Sag? �P (a; Sa [Sb)

It can be shown (using the su�cient condition given in

section 5.1) that once the condition b 2 Sa ^ Sb 6� Sa is

false for a particular b, it can never become true again

by any subsequent reactions. The reaction rule is thus

cell one-shot and we get:

P (a; Sa; new) =

if new then (a; Sa)! �P (a; Sa; false) �

+ f(b; Sb) j b 2 Sa ^ Sb 6� Sag? � P (a; Sa [Sb; new)

This also gives us an easy termination proof, sinceP
a jSaj increases in every reaction step and is bound

above by jAj2.

The resulting CBS process can further be re�ned

�manually�. If, for example, it is felt inappropriate to

communicate whole sets in single messages (which might

be limited in size), each message (a; fb1; : : : ; bmg)! could

be replaced by a sequence (start; a)! � b1! � : : : � bm! � done!

of one-element messages.

5.1 Su�cient Conditions for One-Shot

Optimisations

Here we state su�cient conditions for the respective one-

shot optimised CBS programs. We consider the simple

case of a reaction of the form

b
a
�! f+a (b); if cond(a; b)

Let f�a denote the function which is like f+a on the do-

main of cond(a;), and behaves like the identity function

elsewhere.
0 (c) 1998 IEEE

P (b; new) = if new then b! � P (b; false) �

+ fa j cond(a; b)g? �
�
P (b01; new) j : : : j P (b0m; new)

�

Figure 2: CBS process de�nition for cell one-shot broadcast
Proposition 2 The value once-only optimisation is

sound under the following condition:

8c; d; e : :cond(c; d)) :cond(c; f+e (d))

The intuition is that once c has been broadcast,

:cond(c; d) holds for all d (since the reaction is iter-

ated). Then the condition :cond(c; f+e (d)) ensures that

c cannot react with any descendent of d.

Proposition 3 The cell once-only optimisation is

sound under the following condition:

8c; d; e : :cond(c; d))

:cond(f�e (c); f
�

e (d)) ^:cond(f
�

d (c); d)

In this case, once c has broadcast we have :cond(c; d).

We need to ensure that this holds for all descendent of

both d and c. The immediate descendents of c and d

arise through either a broadcast of a third element e, in

which case the condition :cond(f�e (c); f
�

e (d)) guarantees

that these cannot react, or d itself could be broadcast,

explaining the second conjunct. The case where c is

broadcast is not considered, since the premise ensures

that this cannot change d.

The GCD reaction is easily seen to satisfy the con-

dition of Proposition 2; it is routine to verify that

the transitive-closure example satis�es the condition of

Proposition 3.

6 Termination detection

Usually we want Gamma programs to terminate. One

problem with termination is proving that a program

eventually will terminate � this can suitably be done

with a function from multisets to a well-founded order-

ing, where every reaction strictly decreases the value of

that function (for Gamma examples see [BL90]).

Even if we know that a program eventually must reach

a terminating state, we will still have to face the problem

of detecting if this already has happened or if there are

still more reactions possible.

[HLS92] studies a sequential composition operator be-

tween Gamma programs. The sequential composition

�2 ��1 of two Gamma programs �1 and �2 is a program

that �rst executes �1, and then, if and when �1 termi-

nates, goes on with �2, with the �nal state (multiset) of
1060-3425/98 $10.
�1 being the starting one for �2. This is similar to se-

quential compositionP1 �P2 in process calculus. However

the di�culty in Gamma lies in detecting the termination

of �1 � �nding out when no more reactions are possible.

In process calculus the �rst component P1 is usually just

a single process where we have no di�culty detecting the

termination.

Let us consider a Gamma program �1 consisting of a

quasi-unary reaction:

b
a
! b01; : : : ; b

0

m; if cond(a; b)

We want to code this program into a CBS process de�-

nition P (b) in such a way that it can be sequentially com-

posed with another program �2 which has been coded

into Q(b). That means that if and when no more reac-

tions of �1 are possible, all the cells must, immediately

and synchronously, stop behaving according to �1 and

start behave according to �2: Every cell P (b) must turn

into some cell Q(b).

The termination condition in general is: �no more re-

actions are possible�. For one binary (including quasi-

unary) reaction, this is written formally as: 8a 2 M :

8b 2M : :cond(a; b).

In several programs, it can be shown, by some

problem-speci�c properties, that the global termination

condition is equivalent to some other, simpler condition.

We can characterise several simpli�ed termination con-

ditions which often arise in practice:

1. �local-unary�: A condition of the form: 9a 2 M :

done(a).

2. �global-unary�: A condition of the form: 8a 2M :

done(a).

3. �number of cells�: A condition of the form: jM j = 1

(or some other constant).

4. �number of broadcasts�: The program terminates

if and when a constant number of broadcasts has

occurred.

5. �number of reactions�: Similar for the number of

reactions.

For each kind of condition we will show how termina-

tion can be programmed in CBS.
00 (c) 1998 IEEE

6.1 �local-unary�

A condition of the form: 9a 2M : done(a). Termination

is detected locally by any one cell if it satis�es a condition

on its stored value(s). With broadcast communication,

the cell for which done becomes true can then transmit

a signal done to all the other cells, after which all cells

synchronously start with another program Q instead.

Whenever we have a quasi-unary reaction

b
a
�! b01; : : : ; b

0

m with a local-unary termination con-

dition done, we can code this automatically into

CBS:

P (b) =

if done(b) then done! �Q(b)

else b! �P (b)

+ fa j cond(a; b)g? �
�
P (b01) j : : : jP (b0m)

�
+ fdoneg? �Q(b)

�

Example: Sorting We start with the multiset

f(a1; 1); : : : ; (an; 1)g and use the following quasi-unary

reaction:

(b; j)
(a;j)
�! (b; j + 1); if a � b

We can easily see that the following invariant properties

hold:

1. fa j (a; j) 2Mg = fa1; : : : ; ang

2. 9(a; j) 2M : j = 1

3. 8(b; j) 2M; j > 1 : 9a � b : (a; j � 1) 2M

4. 8(b; j) 2 M; j > 1 : 9a1 � : : : � aj = b :

(a1; 1); : : : ; (aj; j) 2M

(by induction, using the previous property)

The system will terminate:

i� no more reactions are possible,

() all cells have di�erent rank (we assume the

ordering relation is total),

() the occurring ranks are exactly f1; : : : ; ng (by

the last invariant),

() there exists exactly one cell with rank n.

Therefore we have the �local-unary� termination con-

dition 9(a; j) 2M : done(a; j), where done(a; j) = (j =

n).

The reaction rule is �one-shot�: after any reaction

(b; j)
(a;j)
�! (b; j + 1), the rank j + 1 can only further in-

crease and never come back down to j again. We apply

the coding above and add an additional argument new

for the one-shot property.
1060-3425/98 $10
P (b; j; new) =

if j = n then done! �Q(b; j)

else if new then (b; j)! � P (b; j; false) �

+ f(a; j) j a � bg? � P (b; j + 1; new)

+ fdoneg? �Q(b; j)

�

6.2 �global-unary�

A condition of the form: 8a 2M : done(a)

Termination can be detected whenever all cells satisfy

a certain condition on their stored values. We can use a

global-unary termination condition if we have a Gamma

rule b
a
�! fa(b); if cond(a; b) (i.e., the number of cells

does not increase). The idea is to keep a counter of how

many cells still need to reach the termination condition

done. A cell that reaches done announces this publicly

to decrement the counter. This counter could be kept in

an extra cell, di�erent from all the others. Instead, we

choose here to let each cell keep a copy of the counter,

which makes for a more uniform solution. Due to the

broadcasting communication, we can let all cells decrease

their counters in lock-step. A boolean parameter told

keeps track on whether the cell has already announced

itself.

P (b; ctr; told) =

if ctr = 0 then Q(b)

else if done(b) ^ :told

then done! � P (b; ctr � 1; true) �

+ b! �P (b; ctr; told)

+ fa j cond(a; b)g? � P (b0; ctr; told)

+ fdoneg? � P (b; ctr � 1; told)

�

Even without such a unary termination condition

done, but with the optimisation for value-one-shot re-

actions, we still have the general unary condition on ev-

ery cell that it has (temporarily) nothing to say. Every

cell with a new value will announce that value once and

then fall (temporarily) passive, still listening to incoming

broadcasts. A suitable incoming broadcast may reacti-

vate the passive cell. If in such a system the number of

cells remains constant = n, then it will terminate i� the

number of �passive� cells is = n. A cell knows if it is

passive (new = false), but it does not know in general

how many of the others are. In order to �nd out, we

can let any passive cell participate in a �roll count� at

any time, by announcing done! once and counting the

incoming done!'s. If, and only if, all cells are passive, the

roll count will reach n for all of them, at the same time,

and they can simultaneously change into something else.

In any other case, the roll count cannot reach up to n;

instead, a �real� broadcast will interfere, to which all the

passive cells react by resetting their counters to zero (and
.00 (c) 1998 IEEE

possibly by turning into active cells again, depending of

the value of that broadcast). We therefore get:

P (b; new; ctr; told) =

if ctr = n then Q(b)

else if new

then b! � P (b; false; 0; false) �

+ fa j cond(a; b)g? � P (fa(b); true; 0; false)

+ fa j :cond(a; b)g? �P (b; new ; 0; false)

+ if :new ^ :told

then done! � P (b; false; ctr + 1; true) �

+ if :new

then fdoneg? �P (b; false; ctr + 1; told) �

�

This coding will guarantee termination detection for

the value-one-shot reaction with constant number of

cells. As it stands, it is far from being any e�cient im-

plementation, because of all the intervening done! broad-

casts. In the worst case, every real broadcast will be fol-

lowed by a number of done!'s; in the best case there will

be only n done!'s at the very end. At the same time, this

coding may be used as a template for problem-speci�c

optimisations. In many cases the :new condition can be

augmented with an additional (problem-speci�c) condi-

tion on b indicating that a cell, even though it is passive

itself, may know that there are non-passive cells around

and that it therefore can abstain from participating in

the �roll count�. Such an optimisation can considerably

cut down on the number of �unnecessary� done! mes-

sages.

6.3 �number of cells�

A similar case is the condition jM j = k, where the cells

vanish until there are only k (usually one) of them left.

(Here too it only works if the number of cells does not

increase.) We can keep track with a counter in a similar

way. For example, the GCD program reduces to exactly

one cell if every cell that reaches 0 disappears. We use a

counter argument ctr again, plus the boolean argument

new for the one-shot property:

P (b; new; ctr) =

if b = 0 then done! � o

elsif ctr = 1 then Q(b)

else if new then b! � P (b; false; ctr) �

+ fa j a � bg? �P (b mod a; true; ctr)

+ fdoneg? � P (b; new; ctr � 1)

�

As another example, �nding the maximumof a multiset:
1060-3425/98 $10
P (b; new; ctr) =

if ctr = 1 then Q(b)

else if new then b! �P (b; false; ctr) �

+ fa j a � bg? � done! � o

+ fdoneg? � P (b; new; ctr � 1)

�

6.4 �number of broadcasts�

In some algorithms it may be the number of broadcasts

that is constant, regardless of the sequence in which they

take place. In this case, if every cell keeps counting down,

we do not need any additional communication. This pro-

gram will terminate after exactly n broadcasts, if all the

cells are initialised to ctr = n:

P (b; ctr) =

if ctr = 1 then Q(b)

else b! � P (b; ctr � 1)

+ fa j :cond(a; b)g? � P (b; ctr � 1)

+ fa j cond(a; b)g?

�

�
P (b01; ctr � 1) j : : : j P (b0m; ctr � 1)

�

�

This will usually be combined with the one-shot optimi-

sation.

An example for this termination condition is the pro-

gram for transitive closure, where we have exactly n cells,

and each of them will broadcast exactly once.

6.5 �number of reactions�

Similarly, it could be the number of reactions which

could be constant. For example we can predict that the

sorting algorithm terminates after exactly
n�(n�1)

2
reac-

tions, though we cannot know the number of broadcasts

it needs. In such a case, we can equip each cell with a

counter which is initialised to the number of expected

reactions and run the following process:

P (b; ctr) =

if ctr = 0 then Q(b)

else b! � P (b; ctr)

+ fdoneg? � P (b; ctr � 1)

+ fa j cond(a; b)g?

�

�
(done! � o) jP (b01; ctr) j : : : jP (b0m; ctr)

�

�

This can of course also be combined with the one-shot

optimisations.

7 Conclusion

We have studied the multiset programming model

Gamma and presented a translation from an important

class of Gamma programs to a process calculus with
.00 (c) 1998 IEEE

broadcast communication. The translation faithfully

simulates reaction in Gamma and can therefore be seen

as a correct re�nement of the original program. At the

same time it shows how broadcast communication, an

otherwise often neglected paradigm of communication,

is particularly suited to exploit the inherent parallelism

of Gamma programs, without imposing too much un-

necessary sequentiality. We addressed the problematic

question of termination of Gamma programs and identi-

�ed several classes of programs where a suitable invari-

ant can guarantee termination detection. These Gamma

programs can then mechanically be translated to broad-

casting processes. There exists a simulator [Wei95], writ-

ten in Haskell, for such processes, in which they then can

be run as programs.

References

[ACP93] Jean-Marc Andreoli, Paolo Ciancarini, and Remo

Pareschi. Interaction abstract machines. In G. A.
Agha, P. Wegner, and A. Yonezawa, editors, Re-

search Directions in Concurrent Object Oriented

Programming, pages 257�280. MIT Press, 1993.

[ALPT93] JM. Andreoli, L. Leth, R. Pareschi, and B. Thom-

sen. True Concurrency Semantics for a Lin-

ear Logic Programming Language with Broad-
cast Communication. In Proc. Conf. on The-

ory and Practice of Software Development (TAP-

SOFT 93), volume 668 of LNCS, pages 182�198,
France, 1993. Springer.

[AP90] J.-M. Andreoli and R. Pareschi. Linear objects:

Logical processes with built-in inheritance. In

D.H.D. Warren and P. Szeredi, editors, 7th Int.
Conf. Logic Programming. MIT Press, 1990.

[BB92] G. Berry and G. Boudol. The chemical abstract

machine. TCS, 96(217-248), 1992.

[BCL88] J-P. Banâtre, A. Coutant, and D. Le Métayer.

A parallel machine for multiset transformation
and its programming style. In Future Genera-

tion Computer Systems, volume 4, pages 133�144.

1988.

[Bes93] Eike Best, editor. Proceedings CONCUR'93,
volume 715 of LNCS, Hildesheim, August 1993.

Springer Verlag.

[BL90] J.-P. Banâtre and D. Le Métayer. The Gamma
model and its discipline of programming. Science

of Computer Programming, 15:55�77, 1990.

[BL93] J.-P. Banâtre and D. Le Métayer. Programming

by multiset transformation. CACM, 36(1):98�111,
January 1993. (INRIA research report 1205, April

1990).

[BM92] J.-P. Banâtre and D. Le Métayer, editors. Re-

search Directions in High-level Parallel Program-
1060-3425/98 $10.
ming Languages. Springer-Verlag, LNCS 574,
1992.

[Bou96] M. Bourgois. Advantages of formal speci�cations:

a case study of replication in Lotus Notes. In Proc.

Conference on Formal Models in Open Object-
based Distributed Systems, LNCS, Paris, March

1996. Springer-Verlag.

[CdJ96] M. Chaudron and E. de Jong. Towards a com-

positional method for coordinating Gamma pro-

grams. In P. Ciancarini and C. Hankin, editors,
Coordination'96 Conference, volume 1061 of Lec-

ture Notes in Computer Science, pages 107�123.

Springer-Verlag, 1996.

[CGZ96] P. Ciancarini, R. Gorrieri, and G. Zavattaro. An

alternative semantics for the parallel operator of
the calculus of Gamma programs. In J.-M. An-

dreoli, C. Hankin, and D. Le Métayer, editors,

Coordination programming: mechanisms, models
and semantics. IC Press, 1996.

[Cre91] C. Creveuil. Implementation of gamma on the
connection machine. In [BM92], 1991.

[FM96] P. Fradet and D. Le Métayer. Structured Gamma.

Technical Report 989, IRISA, 1996.

[GK96] K. Gladitz and H. Kuchen. Shared memory im-

plementation of the gamma-operation. Journal of

Symbolic Computation, 21(4-6):577�591, April�
June 1996.

[HLS92] C. Hankin, D. Le Métayer, and D. Sands. A calcu-
lus of Gamma programs. Research Report DOC

92/22, Department of Computing, Imperial Col-

lege, 1992.

[KG93] Herbert Kuchen and Katia Gladitz. Parallel im-

plementation of bags. In Proceedings of the Con-
ference on Functional Programming Languages

and Computer Architecture, pages 299�307, New

York, NY, USA, June 1993. ACM Press.

[Pra93a] K. V. S. Prasad. A calculus of value broadcasts. In
PARLE'93, volume 694 of LNCS. Springer Verlag,

June 1993.

[Pra93b] K. V. S. Prasad. Programming with broadcasts.

In [Bes93], pages 173�187, 1993.

[Pra95] K. V. S. Prasad. A calculus of broadcasting sys-

tems. Science of Computer Programming, 25:285�

327, 1995.

[Vie96] M. Vieillot. Mise en oeuvre de l'opérateur Gamma

à l'aide de circuits logiques recon�gurable. PhD
thesis, Irisa, Rennes, 1996.

[Wei95] Martin Weichert. FCBS: A forked calculus of
broadcasting systems. Licentiate thesis, Univer-

sity of Göteborg and Chalmers University of Tech-

nology, November 1995.
00 (c) 1998 IEEE

