
A Parallel Programming Style
and Its Algebra of Programs

Chris Hankin1, Daniel Le Métayer2, David Sands3

1 Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, UK. (e-mail: clh@doc.ic.ac.uk)

2 IRISA, Campus Universitaire de Beaulieu
35042-Rennes Cédex, FRANCE. (email:lemetayer@irisa.fr)
3 Department of Computer Science, University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen Ø, DENMARK. (e-mail: dave@diku.dk)

Abstract. We present a set of primitive program schemes, which to-
gether with just two basic combining forms provide a suprisingly ex-
pressive parallel programming language. The primitive program schemes
(called tropes) take the form of parameterised conditional rewrite rules,
and the computational model is a variant of the Gamma style, in which
computation proceeds by nondeterministic local rewriting of a global
multiset.
We consider a number of examples which illustrate the use of tropes
and we study the algebraic properties of the sequential and parallel com-
bining forms. Using the examples we illustrate the application of these
properties in the verification of some simple program transformations.

1 Introduction

In his Turing Award lecture, John Backus [Bac78] advocated the design of pro-
gramming languages in terms of a fixed set of high-level constructors, or combi-
nators, capturing common computation patterns. In this paper we follow Backus’
programme in the context of parallel programming languages. This approach has
two main benefits: it leads to more hierarchical and more structured programs;
The set of combinators can be associated with a rich algebra of programs giving
rise to useful program transformations. Backus exemplified his recommendations
with the FP language. FP is a functional language based on a single data struc-
ture, the sequence. A set of combining forms is provided as the only means
of constructing new programs from primitive functions. Examples of combining
forms are:

αf :< x1, ..., xn > = < f : x1, ..., f : xn > (f ◦ g) : x = f(g : x)

Where : denotes application. The following is a typical law of the FP algebra:
α(f ◦ g) = (αf) ◦ (αg).

1 Partially funded by ESPRIT WGs 6345 (SemaGraph) and 6809 (Semantique).
2 Partially funded by SERC Visiting Fellowship GRH 19330.
3 Partially funded by ESPRIT WG 6809 (Semantique) and the Danish Natural Sci-

ences Research Council

Most existing functional languages do not follow such a radical approach and
allow the programmer to define his own combining forms as higher-order func-
tions. Nevertheless the extensive use of higher-order functions is a main feature
of the functional programming style because it favours readability, modularity
and program reuse [Hug89].

Functional languages have also been claimed as attractive candidates for
programming parallel machines. This belief is based on the fact that functional
programs are free of side-effects. However functional languages encourage the
use of recursion both for defining data structures and programs. In fact recur-
sion is the only means of defining new data structures in functional languages.
The problem with recursion is that it introduces an inherent sequentiality in
the way data structures can be processed. For example if lists are defined as
list α = nil | cons α (list α) then any list manipulating program must access
the elements of the list sequentially. It may be the case that this sequentiality is
not relevant to the logic of the program; so even functional languages can impose
the introduction of unnecessary sequentiality in a program. This drawback is also
identified in [Maa92] where a range of “parallel” datatypes are introduced.

To avoid this flaw, we propose a programming style based on multisets be-
cause the multiset (or bag) is the least constraining data structure possible.
Starting with a recursively built data structure on a base type α (for example
list α) and removing all the structure, produces a multiset of elements of type
α (not a set because the same element can occur several times in the structure).
If the structure of the data is relevant to the logic of the program then it can
be maintained in the multiset through a systematic encoding. For example a list
(x1, ..., xn) can be represented as a multiset of pairs (i, xi). The important point
is that this does not introduce any hierarchy between the values in the structure;
all the values are still available and accessible at the same level.

For similar reasons, we do not allow recursion in programs since this en-
courages sequential hierarchy between computations. We focus in this paper
on a collection of parameterised rewriting rules which form the counterpart of
Backus’s combining forms for multiset rewriting. These rules arise from previous
work on the Gamma formalism [BM93]. We show the usefulness of these rules in
terms of parallel program construction and we study their algebra of programs.

Section 2 is an informal introduction to the program schemes presented in this
paper. Their semantics are defined formally in Section 3. Section 4 is a study
of the confluence and termination of these schemes, describes the associated
algebra of programs, and presents some examples of their use. The conclusion is
a discussion of related works and avenues for further research.

2 Tropes: an Informal Introduction

We use a notation of the rewriting systems literature to denote multiset rewrit-
ing. The rule:

x1, ..., xn → A(x1, ..., xn)⇐ R(x1, ..., xn)

can be interpreted informally as the replacement into the multiset of elements
x1, ..., xn satisfying the condition R(x1, ..., xn) by the elements of A(x1, ..., xn).
Viewed as a single program the (in general nondeterministic) result is obtained
when no more rewrites can take place. A and R are functions. For example the
program: x1, x2 → x1 ⇐ (x1 = x2) computes the underlying set of a multiset
by replacing pairs of equal elements by a single one until there are no further
duplicate elements.

We consider only the rewriting of a single multiset in this paper and programs
are not strongly typed (elements of different types can coexist in the multiset).
When R(x1, ..., xn) = True, we omit the condition and write:

x1, ..., xn → A(x1, ..., xn)

Similarly if A(x1, ..., xn) = ∅ we write: x1, ..., xn → ⇐ R(x1, ..., xn)
We use two operators for combining programs, namely sequential composition

P1 ◦ P2 and parallel combination P1+P2. Their semantics are defined formally in
the next section. Not surprisingly, the intuition behind P1 ◦P2 is that the result
of P2 is passed as an argument to P1. On the other hand, the result of P1 + P2

is obtained by performing the rewrites of P1 and P2 in parallel. For example,
the following program returns the number of positive values in the initial integer
multiset: (x1, x2 → x1 + x2) ◦ ((x→ 1⇐ x > 1) + (x→ ⇐ x < 0)).

The interested reader can find more examples of the relevance of multiset
rewriting for parallel programming in [BM93]. We focus in this paper on five
parameterised rewrite rules called tropes for:

Transmuter, Reducer, OPtimiser, Expander, and Selector.
The tropes are defined in terms of multiset rewrites in the following way:

T (C, f) = x→ f(x)⇐ C(x)
R(C, f) = x, y → f(x, y)⇐ C(x, y)
O(<, f1, f2, S) = x, y → f1(x, y), f2(x, y)⇐ (f1(x, y), f2(x, y)) < (x, y)

and S(x, y) and S(f1(x, y), f2(x, y))
E(C, f1, f2) = x→ f1(x), f2(x)⇐ C(x)
Si,j(C) = x1, ..., xi → xj , ..., xi ⇐ C(x1, ..., xi)(where 1 < j ≤ i + 1)

Notice that the reducer and the selector strictly decrease the size of the multiset;
the expander increases its size; the transmuter and the optimiser keep its size
constant. We first provide the intuition behind each of these tropes, then we
present examples of composition of tropes and suggest the algebraic laws that
they should satisfy.

Transmuter: The transmuter applies the same operation to all the elements of
the multiset until no element satisfies the condition C. For example the following
program returns, for each initial triple (n, m, 0), a triple whose third component
records the number of times m is a multiple of n.

nt = T (C, f) whereC((n, m, k)) = multiple(m, n)
f((n, m, k)) = (n, m/n, k + 1)

Note the standard use of pattern matching in the definitions of C and f .

Reducer: This trope reduces the size of the multiset by applying a function to
pairs of elements satisfying a given condition. The counterpart of the traditional
functional reduce operator can be obtained with an always true reaction con-
dition. For instance: add = R(True, +) returns the sum of the elements of a
multiset.

Expander: The expander is used to decompose the elements of a multiset into
a collection of basic values. For example ones decomposes positive values n into
n occurrences of 1s.

ones = E(C, f1, f2) whereC(x) = x > 1
f1(x) = x− 1 f2(x) = 1

A multiset version of iota, which in FP generates a sequence from 1 to n, can
be defined as:

iota(n) = (T (C1, f1) + E(C2, f2, f3)) {(1, n)} where
C1((x, y)) = (x = y) f1((x, y)) = x
C2((x, y)) = (x 6= y)
f2((x, y)) = (x, y − 1) f3((x, y)) = y

Selector: The selector acts as a filter, removing from the multiset elements sat-
isfying a certain condition. For example: max = S2,2(≤), rem = S2,2(multiple).
So max returns the maximum element of a multiset and rem removes any el-
ement that is the multiple of another element (multiple(x, y) is true if x is a
multiple of y). The multiset of prime numbers smaller than n can be computed
as:

primes = rem ◦ S1,2(isone) ◦ iota where isone x = (x = 1)

Optimiser: O(<, f1, f2, S) optimises the multiset according to a particular cri-
terion (expressed through the ordering <) while preserving the structure of the
multiset (described by the relation S). Consider for example the sorting of a
sequence (x1, ..., xn). The sequence is represented as a multiset of pairs (i, xi)
and the program proceeds by exchanging ill-ordered values:

sort = O(�, f1, f2, S) where
f1((i, a), (j, b)) = (i, b), f2((i, a), (j, b)) = (j, a)
((i, a), (j, b)) � ((i′, a′), (j′, b′)) ≡ (b < b′)
S((i, a), (j, b)) = (i > j)

Let us now take a few examples involving various combinations of tropes to
suggest the transformations that we will study in the rest of the paper. The
primes program defined above can be used to compute the prime factorization
of a natural number.

pf(n) = (gen + del) ◦ nt ◦ int ◦ primes(n)

gen = E(C, f1, f2) where
C((x, y, k)) = (k > 0)
f1((x, y, k)) = (x, y, k − 1)
f2((x, y, k)) = x

del = S1,2(C) where
C((x, y, k)) = (k = 0)

int = T (C, f) where
C(x) = integer(x)
f(x) = (x, n, 0)

The transmuter nt defined earlier in this section computes the number of times
n is a multiple of each prime number. The transmuter int acts as an interface
between primes and nt, transforming each prime number x into a triple (x, n, 0).
The parallel combination gen + del decomposes each triple (x, y, k) into k occur-
rences of x. For example if n = 23 ∗ 3 ∗ 112, then pf(n) = {2, 2, 2, 3, 11, 11}.
We will show in the next sections that gen + del can be transformed into
del ◦ gen, which means that the deletion of unnecessary elements can be post-
poned until the end of the computation. We also have that nt ◦ int ∼ nt + int
showing that both transmuters can be executed concurrently.

As a final illustration of the use of tropes, let us consider an image processing
application: the edge detection problem [Sed88]. Each point of the image is
originally associated with a grey intensity level. Then an intensity gradient is
computed at each point and edges are defined as the points where the gradient
is greater than a given threshold T . The gradient at a point is computed relative
to its neighbours: only points at a distance d less than D are considered for the
computation of the gradient. The gradient at a point is defined in the following
way:

G(P) = maximum(neighbourhood) − minimum(neighbourhood)
where neighbourhood = {intensity(P ′) | distance(P, P ′) < D}

We use a multiset of quadruples (P, l, min, max). P is the coordinates of the
point, l is its intensity level and min and max are the current values of re-
spectively minimum(neighbourhood) and maximum(neighbourhood). The ini-
tial value of min and max is l. The evaluation consists in decreasing min and
increasing max until the limit values are reached. This is achieved by two op-
timisers decmin and incmax. The selector disc discards the points where the
gradient is less than the threshold and the transmuter rf removes unnecessary
fields from the remaining elements.

edges(n) = (disc + rf) ◦ (decmin + incmax)
decmin = O(�, f1, f2, S) where

f1(X, Y) = (X.P, X.l, Y.l, X.max), f2(X, Y) = Y
(X ′, Y ′) � (X, Y) ≡ (X ′.min < X.min)
S(X, Y) = distance(X.P, Y.P) < D

incmax = O(≺, f1, f2, S) where
f1(X, Y) = (X.P, X.l, X.min, Y.l), f2(X, Y) = Y
(X ′, Y ′) ≺ (X, Y) ≡ (X ′.max > X.max)
S(X, Y) = distance(X.P, Y.P) < D

disc = S1,2(C) where
C(X) = quadruple(X) and ((X.max − X.min) < T)

rf = T (C, f) where
C(X) = quadruple(X) and ((X.max − X.min) ≥ T)
f(X) = (X.P, X.l)

The algebra of programs developed in the rest of the paper allows us to perform

the following transformations:

disc + rf =⇒ disc ◦ rf
disc + rf =⇒ rf ◦ disc
decmin + incmax =⇒ decmin ◦ incmax
decmin + incmax =⇒ incmax ◦ decmin

These transformations can be used to tune a program to a particular architec-
ture by increasing or decreasing its potential for parallelism. In the next section
we provide a formal account of the semantics of tropes. Then we come back to
the transformations suggested above and present their conditions of application.

3 Semantics of Combining Forms for Tropes

In this section we consider the operational semantics of programs consisting of
tropes, together with the two combining forms introduced in the last section:
sequential composition, P1 ◦ P2, and parallel combination, P1 + P2

P ∈ Programs ::= Tropes | P ◦ P | P + P

To define the semantics for these programs we define a single step transition
relation between configurations. The terminal configurations are just multisets,
and the intermediate configurations are program/multiset pairs written 〈P, M〉.

We define the single step transitions first for the individual tropes. For each
instance of the tropes t : x̄→ Ax̄⇐ Rx̄ define

〈t, M〉 →

{

〈t, M − ā ∪ Aā〉 if ∃ā ⊆M.Rā
M otherwise

So a program consisting of a single trope terminates when there are no applicable
reactions in the multiset. Since no program defined using sequential composition
can terminate in one step, single step terminal transitions are only defined for
programs not containing sequential composition; thus the remaining terminal
transitions are defined by the following rule:

〈P, M〉 →M 〈Q, M〉 →M

〈P + Q, M〉 →M

The remaining transitions are defined using the concept of active contexts.
An active context, A is a term containing a single hole []:

A ::= [] | P + A | A + P | P ◦ A

Let A[P] denote active context A with program P in place of the hole.
The idea of active contexts is that they isolate parts of a program that can

affect the next transition, so that for example, the left-hand side of a sequential
composition is not active (but it can become active once the right-hand side

has terminated). The remaining transition rules are defined by the following two
rules:

〈t, M〉 → 〈t, M ′〉

〈A[t], M〉 → 〈A[t], M ′〉

〈Q, M〉 →M

〈A[P ◦ Q], M〉 → 〈A[P], M〉

The first says that if there is a possible reaction in an active context then it can
proceed, while the second says that if the right hand side of a sequential com-
position can terminate, then it can be erased. As usual, we use →∗ to represent
the reflexive and transitive closure of →. Notice that since a program does not
uniquely factor into a sub-program in an active context, the one-step transition
relation is not deterministic, but it should not be difficult to see that it is total on
non-terminal configurations (under the assumption that the transition relation
on single tropes is total).

Inspection of the semantics shows that “programs” are not fixed. This leads
us to the notion of the residual part of a program – the program component of
any configuration that is an immediate predecessor of a terminal configuration
(multiset). The residual part of a program P , written P , is defined by induction
on the syntax:

t = t P1 ◦ P2 = P1 P1 + P2 = P1 + P2

This provides us with a simple (ie. weak) postcondition for programs. We
define a predicate Φ on a program and a multiset to be true if and only if the
residual part of the program is terminated with respect to the multiset.

Definition 1 (The postcondition Φ) Φ(P, M)⇔ 〈P , M〉 →M

Intuitively, Φ(P, M) holds if M is a possible result for the program P . The
significance of this is that the predicate Φ(P,) can be constructed syntactically
by considering (the negations of) the reaction conditions in P .

We can now define an ordering on programs. Intuitively, P1 v P2 when-
ever, for each possible input M , if P1 can diverge (i.e. rewrite forever, written
〈P1, M〉↑) then so can P2, and if P1 can terminate producing some multiset N
then so can P2.

Definition 2

P1 v P2 ⇔ ∀M.((〈P1, M〉↑ ⇒ 〈P2, M〉↑)
∧ (∀N.〈P1, M〉 →∗ N ⇒ 〈P2, M〉 →∗ N))

We write P ∼ Q if P v Q and Q v P .

Without further ado, we present a key result from [HMS92] which establishes
when sequential composition correctly implements parallel combination.

Theorem 1. (∀M.(Φ(Q, M) ∧ 〈P, M〉 →∗ N)⇒ Φ(Q, N))⇒ P ◦ Q v P + Q

This theorem can be used to remove parallel combinations, replacing them by
sequential compositions. The reverse transformation is only applicable under
more stringent conditions. Given that P ◦ Q v P + Q, then P ◦ Q is a correct
“interleaving” of the steps involved in executing P + Q; if we know that P + Q
always terminates (is strongly normalising, written (P + Q) ↓must) and that
it is confluent (deterministic) then all interleavings have the same effect and
P + Q v P ◦ Q. This is the second key result from [HMS92] which allows us
to parallelise sequential programs. Before presenting the theorem, we formally
define confluence.

Definition 3 P is confluent, written Con(P), iff ∀M.Con(P, M) where Con(P,M)
is the predicate:

〈P, M〉 →∗ 〈P1, M1〉 ∧ 〈P, M〉 →∗ 〈P2, M2〉 ⇒
∃〈P3, M3〉.(〈P1, M1〉 →∗ 〈P3, M3〉 ∧ 〈P2, M2〉 →∗ 〈P3, M3〉)

Theorem2. (P ◦ Q v P +Q∧Con(P +Q)∧ (P +Q) ↓must)⇒ P +Q ∼ P ◦ Q

We close this section which a theorem that collects together a number of
properties first presented in [HMS92].

Theorem3. 1. + is associative and commutative, ◦ is assoc., ◦ is monotone.
2. (P1 + P3) ◦ P2 v (P1 ◦ P2) + P3

3. (P1 + P3) ◦ (P2 + P3) v (P1 ◦ P2) + P3

4. (P v P + P) ∧ (P ∼ P ⇒ P ∼ P + P)
5. (P1 + P2) ◦ (Q1 + Q2) v (P1 ◦ Q1) + (P2 ◦ Q2)
6. P1 ◦ (P2 + P3) v (P1 ◦ P2) + (P1 ◦ P3)

4 Properties

We show in this section how some general results, including some of those pre-
sented above, can be specialised to derive useful properties of tropes. We first
study the conditions under which a program is confluent and terminating. Then
we prove a number of laws concerning compositions of tropes.

4.1 General Confluence and Termination Properties

The computation model of Gamma is closely related to conditional term rewrit-
ing. We call a program simple if it does not contain any sequential compositions.
One property of the semantics defined earlier is that for any simple program P , if
〈P, M〉 → 〈Q, N〉 then P = Q. Consequently, a simple program P can be viewed
as defining a multiset rewriting relation which is an associative, commutative,
conditional rewriting system. Arbitrary programs may not be viewed in this way
because of the combinations of + and ◦ that are allowed. There are, however,
some general results for Abstract Reduction Systems [Klo90] which are useful.

For simple programs confluence may be proved using one of the standard de-
compositions, such as Newman’s Lemma (see eg. [Klo90]). A most useful method
for proving the termination of Gamma programs (see [BM90]) is the Dershowitz-
Manna multiset ordering [DM79] in which a well-founded multiset ordering can
be derived from a well-founded ordering on the elements of the multiset.

We now consider how these properties interact with the combinators that we
have introduced. It is easy to verify that the sequential composition of two pro-
grams which are confluent (strongly normalising) will result in a combined pro-
gram which is confluent (resp. strongly normalising). Now we consider programs
of the form P1 + P2 where P1 and P2 are simple. We call the multiset-rewriting
relations associated with the two sub-programs→∗

1 and →∗

2, respectively, and
we will say that they commute if they satisfy a diamond property of the following
form:

∃M3. M1
∗

1←M →∗

2 M2 =⇒M1 →
∗

2 M3
∗

1←M2.

Now if →∗

1 and →∗

2 are individually confluent and they commute, then the
combined rule system is also confluent; this a consequence of the Hindley-Rosen
Lemma which is proved by a simple diagram chase. Termination, however is not
necessarily preserved - we require a stronger condition than commutativity. If we
add the condition that →2-rewrites cannot create→1-redexes, then termination
of the combined rule system follows from the separate termination of the two
programs.

The generalisation of these last two paragraphs to arbitrary programs con-
structed from the combinators is a matter for further investigation.

4.2 Confluence and Termination of Tropes

Transmuter: For termination we require a well-founded ordering, <, on the
multiset such that: C(x) ⇒ f(x) < x. Since a transmuter only selects one
element at a time, it is trivially confluent.

Reducer: Termination follows trivially from cardinality considerations. In turn-
ing to confluence, we consider the reducer R(C, f). We require the following
notion: the symmetric predicate C is f -preserved iff:

C(x, y) ∧ C(x, z)⇒ C(f(x, y), z) ∧ C(y, f(x, z)).

A sufficient condition for a reducer to be confluent is that f is associative
and commutative and that C is f -preserved.

Optimiser: The detailed consideration of the optimiser is omitted from this
paper due to lack of space. It has proved difficult to derive general conditions for
termination and confluence of this trope but we have identified two special cases
which are useful in program development. These will be described elsewhere.

Expander: We consider the expander, E(C, f1, f2) applied to a multiset S. De-
fine SC to be the subset of S whose elements satisfy the predicate C. Suppose
that we have a well-founded ordering, <, on SC . We say that a function, f , is
reductive on SC if for all x ∈ SC , either f(x) 6∈ SC or f(x) < x. A sufficient
condition for termination of an expander is that the two functions f1 and f2 are

reductive on SC . Since an expander has a single variable on the left hand side,
there are no overlapping redexes and confluence is trivial.
Selector: Termination of this rule follows trivially by cardinality considerations.
Given the generality of the rule, it is difficult to give conditions for confluence.
Restricting ourselves to rules of the form S2,2(C), a sufficient condition is that
C is antisymmetric and transitive.

4.3 Laws

We start with some definitions of derived relations which will provide us with
some useful notations. Given R, a reaction condition of arity n, we define:

RM (x)⇔ ∀ā ⊆M. x ∈ ā⇒ ¬R(ā)
Informally, RM (x) says that element x is unable to partake in a reaction within
multiset M . If this holds for arbitrary M , we just write R(x), with the intuition
that x cannot partake in any reaction for which R is the associated reaction
condition. We say that two reaction conditions are exclusive if the sets of elements
that satisfy them are guaranteed to be disjoint:

Exclusive(R, R′)⇔ ∀x.(R(x) ∨ R′(x))
We can now start to list some properties of tropes. The first set are general laws,
expressed in terms of individual reactions written abstractly as condition/action
pairs (R, A):

Theorem4. 1. Exclusive(R, R′) and (∀a ∈ A(x1, . . . , xn).R′(a)) implies
(R, A) + (R′, A′) ∼ (R, A) ◦ (R′, A′)

2. If 〈(R, A), M〉 → 〈(R, A), N〉 and ∀x ∈M\N. R′
M (x) imply that4

∀y ∈ N\M. R′
N (y), then (R, A) + (R′, A′) w (R, A) ◦ (R′, A′)

The first part is quite intuitive, since the condition expresses complete interference-
freedom of R and R′. The second part has a somewhat stronger precondition
which can be informally read as: if all the removed elements of a (R, A)-reaction
were R′-stable for the original multiset then all the new elements will be stable
for the resulting multiset. This is sufficient to guarantee that after termination
of (R′, A′) subsequent reactions by (R, A) could not generate any elements that
enable R′, and hence the refinement.

The next theorem states some properties of particular tropes and their in-
teractions obtained by specialising the above properties:

Theorem5. 1. (C ′(x) ∧ C(x)⇒ C(f ′x)) ⇒
Si,j(C) + T (C ′, f ′) w T (C ′, f ′) ◦ Si,j(C)

2. Si,j(C1 ∨ C2) ∼ Si,j(C1) + Si,j(C2)
3. (¬C(x) ∧ C ′(x)⇒ ¬C(f ′(x)))⇒
T (C ′, f ′) + E(C, f1, f2) w T (C ′, f ′) ◦ E(C, f1, f2)

4. (¬C ′(x) ∧ C(x) ⇒ ¬C ′(f1(x)) ∧ ¬C ′(f2(x)))⇒
T (C ′, f ′) + E(C, f1, f2) w E(C, f1, f2) ◦ T (C ′, f ′)

5. ∀P.Si,j(C) + P w Si,j(C) ◦ P

4 Notation: M\N is multiset difference, so, eg. {1, 1, 2}\{1, 3} = {1, 2}.

Now we use the various properties to prove some of the transformations
mentioned in Section 2.

Lemma 6. 1. gen + del ∼ del ◦ gen
2. nt + int ∼ nt ◦ int
3. disc + rf w disc ◦ rf
4. disc + rf w rf ◦ disc
5. decmin + incmax w incmax ◦ decmin
6. decmin + incmax w decmin ◦ incmax

Proof. 1. Then we have that the two reaction conditions are exclusive, and
therefore, since del has an empty action, we have the desired result by The-
orem 4 (1).

2. Since the two tropes consume elements of different types, we have that their
conditions are exclusive. Moreover, elements produced by nt are stable for
int. Consequently the result follows by Theorem 4 (1).

3. Follows immediately from Theorem 5 (5).
4. Suppose that (quadruple(X)∧ (X.max−X.min) ≥ T . Then we have C(X)

and C(f(X)) thus, we have the required result by Theorem 5 (1).
5. and 6. follow by application of Theorem 4 (2). The verifications of the pre-

conditions are straightforward.

5 Concluding Remarks

The programming style defined and studied in this paper stemmed from previ-
ous work on program construction in the Gamma formalism [BM93]. The main
achievements of this paper are:

– The formal definition of the tropes and their semantics.
– The study of their algebra of programs.

A collection of examples illustrating the relevance of the programming style
advocated in this paper can be found in [BM93].

Our main objectives are closely related to those of the Unity designers [CM88].
In contrast with their approach we have emphasized the development of a cal-
culus of program transformation whereas they have focussed on logical aspects
of program refinement. The use of the multiset as a basic data structure for
parallel programming (and subsequent program transformation) has also been
investigated in the functional programming setting by Roe [Roe91]. Conditional
rewriting as a general model of parallel programming has been advocated by
Meseguer [MW91] who shows how various computational formalisms can be ex-
pressed in this framework.

In [HMS92] we developed a formal semantics for a Gamma variant and stud-
ied its properties (some of which appear as Theorem 3). The weakness of our
earlier work was that we did not specify the details of the primitive rewrites,
the (R, A)-pairs; as a consequence our calculus was restricted to quite general

transformations. In this paper we have introduced five primitive program forms,
the tropes, as a basis for parallel programming. We have shown how many of
the examples can be recast using the tropes and the two combining forms. Being
specific about the primitive forms allows us to develop a much richer calculus;
the new rules are summarised in Theorems 4 and 5. We have shown how these
rules may be used to transform some of the earlier examples.

The multiset rewriting paradigm has also been applied in the context of reac-
tive systems [MW91] [BM93]. Further work will include the study of the tropes
in that context. The semantics of the tropes in section 3 involves two different
kinds of rewritings: active steps which rewrite the multiset and passive steps dur-
ing which the program is modified. The latter does not have any obvious analogy
in the term rewriting approach. The work reported here will form the starting
point for a deeper study of the similarities and differences with commutative and
associative term rewriting systems.

Acknowlegement Thanks to T. Mogensen for comments on an earlier draft.

References

[Bac78] J. Backus. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Communications of the ACM,
21(8):613–641, August 1978.

[BM90] J.-P. Banâtre and D. Le Métayer. The Gamma model and its discipline of
programming. Science of Computer Programming, 15:55–77, 1990.

[BM92] J.-P. Banâtre and D. Le Métayer, editors. Research Directions in High-level
Parallel Programming Languages. Springer-Verlag, LNCS 574, 1992.

[BM93] J.-P. Banâtre and D. Le Métayer. Programming by multiset transformation.
CACM, January 1993.

[CM88] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[DM79] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.
Comm. ACM, 22:465–476, 1979.

[HMS92] C. Hankin, D. Le Métayer, and D. Sands. A calculus of Gamma programs.
Research Report DOC 92/22, Department of Computing, Imperial College,
1992.

[Hug89] J. Hughes. Why functional programming matters. The Computer Journal,
2(32):98–107, April 1989.

[Klo90] J.W. Klop. Term rewriting systems. Technical Report CS-R9073, CWI, 1990.
[Maa92] A. Maasen. Parallel programming with data structures and higher-order func-

tions. Science of Computer Programming, 18:1–38, 1992.
[MW91] J. Meseguer and T. Winkler. Parallel programming in Maude. In [BM92],

1991.
[Roe91] P. Roe. Parallel Programming using Functional Languages. PhD thesis, Glas-

gow University, 1991.
[Sed88] R. Sedgewick. Algorithms. Addison-Wesley, 1988.

This article was processed using the LaTEX macro package with LLNCS style

