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Abstract

We consider operational semantics of contexts (terms with holes) in the set-
ting of lazy functional languages, with the aim of providing a balance between
operational and compositional reasoning, and a framework for semantics-based
program analysis and manipulation.

Introduction

In this note we initiate a new direction in the semantics of functional programs. The
approach is based on operational semantics; our aims are to provide a operational
route to high-level semantic issues, such as program analysis and source-to-source
transformation. We investigate the idea of giving a direct operational semantics to
program contexts—that is, “incomplete” programs containing a number of holes in
the place of some subexpressions.

The idea of providing an operational semantics for contexts has been studied
by Larsen (et al) for process algebras [Lar86][LX91]. In that setting, a context is
viewed as an action transducer, which consumes actions provided by its internal
processes (the holes) and produces externally observable actions. The operational
semantics of contexts contains transitions of the form

C
b
-

a
C′

which is interpreted as: by consuming action a, context C can produce action b and

change into C′.

We describe some initial steps towards providing an operational semantics for
contexts in a functional setting.

Functional Action-Transducers

In the process setting a context is viewed as an action transducer. What is the cor-
responding notion for a context in the functional setting? In a functional language,
the role of an “action” is played by the observables of the language: namely a lazy
data constructor— cons, true, “λ”.

We take a bold step, and demand that the “actions” should themselves be
contexts—but not arbitrary contexts. They should be contexts built from the ob-
servables of the language. We will call these observable contexts. Observable con-
texts will be ranged-over by O, O′, etc. For some context C containing occurrences
of a single hole, if we have a transduction of the form:

C
O

′

-

O
C′
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then we will require that:

C[O] ' O′[C′] (∗)

where the notation C[e] denotes context C with e placed “in the hole”, and '
denotes the usual operational equivalence, extended to capture-free contexts in the
obvious way. This equation does not capture everything we expect from a context
semantics. What we expect is that the transduction should be as lazy as possible
— ie. we could not have found a smaller “input” O that would have given the same
observable “output” O′. If the language is sequential[Ber78] then we expect the
semantics to give us the minimal O.

For example, a context of the form if [ ] = 0 then C1 else (leaf C2) (con-
taining multiple occurrences of a single hole), where leaf is a constructor, would
have a transduction:

if [ ] = 0 then C1 else (leaf C2)
leaf [ ]

-

suc [ ]
C2 ◦ suc[ ]

where ◦ is context composition, so C2 ◦ suc[ ] denotes the context C2[suc[ ]].

Problems Giving a full operational semantics for contexts is difficult because:

• contexts can consume without producing an observable.

For example if [ ] = 0 . . . can consume a constructor without necessarily being
able to produce anything. (Similar situation would arise in Larsen’s work if
one did not consider the silent action τ to be observable.)

• The number of occurrences of a given hole may increase under transduction
(assuming we use some mechanism like β-reduction in our semantics).

• The number of distinct holes in a context can increase under transduction, in
the presence of n-ary constructors.

eg. If C1 has a single hole, and C1
-

cons[ ]1 [ ]2
C2 then C2 has two distinct

holes.

• How do we treat higher-order functions?

• Contexts can capture variables by means of binding operators

eg. case e of

nil ⇒ e′

cons h t ⇒ C2

.

A Simplified Case

As a first step we study only a very simple language. We avoid almost all of the
above problems by considering a language with the following features:

• First-order functions

• No binding operators

• Unary constructors and constants (= nullary constructors) as the only values.

2



The language we consider consists of first-order recursion equations with possible
pattern-matching on the first argument (non-nested), based on unary or nullary
constructors. Here are some example definitions:

add 0 x = x

add (suc y) x = suc (add y x)

twice x = add x x

Notation Let u range over both unary constructors (eg. suc) and constants (eg.
0,true etc.). The observable contexts are then given by

O ::= [ ] | u | u O

For simplicity of presentation, we will only consider contexts with a single hole
(occurring zero or more times). (We will consider an expression to be a context
with zero occurrences of the hole.) For this restricted language, the extension to
handle polyadic contexts (contexts with several distinct holes) is straightforward
(eg. borrowing the notations from [LX91]).

In the context transductions, if u is a unary constructor, then we write observable
context u [ ] as simply u, and occurrences of the trivial context [ ] will simply be

omitted from the transductions, so we will write C
suc

- C′ in place of C
suc [ ]

-

[ ]
C′.

If u is a constant, then u can also be denoted u(). We add the unit expression () to
the language of contexts.

Language Rules

We define the following transductions involving terms of the language:

u C
u
- C (1)

f ~C - e{~x := ~C} if f ~x = e (2)

C1

u
-

O
C2

f C1
~C -

O
e{y := C2}{~x := ~C ◦ O}

if f (u y) ~x = e (3)

In the last rule, the composition ~C ◦Con′ denotes the vector of contexts obtained by
composing each context in ~C with Con′. To check that the rule satisfies the desired
property (∗), assume that from the antecedent we have

C1 ◦ O ' u C2

then
(f C1

~C) ◦ O ' f (C1 ◦ O) (~C ◦ O)

' f (u C2) (~C ◦ O)

' e{y := C2}{~x := ~C ◦ O}

These rules are straightforward, since they follow the “small-step” semantics of
the language (ie. they are non compositional.) We recover the ability to reason
compositionally using the following context rules:
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Context Rules

[ ]
u
-

u
[ ] (u unary) (4)

[ ]
u
-

u
() (u constant) (5)

C - C (6)

C1

O1
-

O
′

1

C2 C2

O2
-

O
′

2

C3

C1

O1◦O2
-

O
′

1◦O
′

2

C3

(7)

C1

O1
-

O2

C′

1
C2

O2
-

O3

C′

2

C1 ◦ C2

O1
-

O3

C′
1
◦ C′

2

(8)

The last rule is the uniform rule of [Lar89][LX91], and it characterises all the trans-
ductions of composed contexts.

Properties

Closed expressions can be viewed as contexts containing zero holes. In this way
the rules above can be seen to subsume the usual large-step and small-step struc-
tural operational semantics. Suppose the large step semantics defines an evaluation
relation ⇓ (we omit the routine definition), then we have the following:

e ⇓ a ⇐⇒ e
u
- e′ ∧ (u e′ ≡ a)

For example, if I is the identity function, then we have the following example proof:

compose

2

I (suc 0) - (suc 0)

1

(suc 0)
suc

- 0

I (suc 0)
suc

- 0

But this is not the whole story for evaluation of closed expressions. Unlike the

structural operational semantics for ⇓, the proof of e
u
- e′ is not unique. An

important point is that by use of the composition rule (8) we can vary the com-
positionality. This means that when we need to prove a property of a function
application f e, we can split this into a context f [ ] and the sub-term e, and derive
the transition of the composed system in terms of these components.

As an example, using the functions defined earlier, consider the term twice (I (suc0)).
We can prove that

7

2
twice [ ] → add [ ] [ ]

A

twice [ ]
suc

-

suc add [ ] (suc [ ])
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where A is the sub-proof:

7

4,1

[ ]
suc

-

suc [ ]

add [ ] [ ] -

suc suc add [ ] (suc [ ])
suc

- add [ ] (suc [ ])

add [ ] [ ]
suc

-

suc add [ ] (suc [ ])

and so using the composition rule we obtain:

8

twice [ ]
suc

-

suc add [ ] (suc [ ]) I (suc 0)
suc

- 0

twice (I (suc 0))
suc

- add 0 (suc 0)

Note that in the example, because of the use of the compositional rule, there is
only one sub-proof for the expression I (suc 0), whereas under the standard call
by name SOS we would have two sub-proofs.

We conjecture that proofs which always treat function calls compositionally in
this way (we need to generalise to n-ary contexts to do this for n-ary functions)
have size proportional to the number of evaluation steps required under standard
call-by-need computation. This form of proof corresponds to the demand function

used in Bjerner and Holmström’s call-by-need time-analysis [BH89].

Further Work

In the remainder of this paper we consider the directions for further development,
which mostly concern tackling the problems of richer languages.

Polyadic Contexts

The above semantics is easily extended to handle polyadic contexts, but if we go
beyond just unary constructors then the extension quickly becomes notationally
complex. The problem is that consuming an observable context may give rise to
several new holes, and producing a observable context means that a transduction
may result in several contexts. Our proposal for dealing with these problems is to
adopt a different kind of transduction. Instead of requiring that a transduction

C
O

′

-

O
C′

implies that C ◦ O ' O′ ◦ C′, the requirement is that

C ◦ O ' O′ ◦ C′ ◦ O

In this way the “type” of the holes in the derived context C ′ is the same as in C.
The addition of n-ary constructors means that C ′ must be a vector of contexts.

With this interpretation of context transductions, the uniform composition rule
now has the form:

C1

O1
-

O2

C′

1
C2

O2
-

O3

C′

2

C1 ◦ C2

O1
-

O3

C′
1
◦ O2 ◦ C′

2
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Higher-Order Functions

If we focus on contexts which cannot capture variables, then higher-order functions
can be thought of as introducing an extra hole. We anticipate that to deal with
polyadic contexts in their full generality we will need a notation along the lines of
Martin-Lö f’s theory of arities, so (X)C will denote a context with a single hole
named X . Then a lambda-context could have a transition

(~Y )λy.C
λ
- (X)(~Y )C X 6∈ ~Y .

Abstract Contexts and Relativised Equivalence

Two natural directions are to consider static analysis problems, and notions of
relativised equivalence. We should consider:

• Bisimulation-like characterisations of context-equivalence along the lines of
[Abr90][How89].

• Relativised equivalences 'C:

e 'C e′ ⇐⇒ C[e] ' C[e′]

• Semantics for abstract observable contexts (whose meaning is a set of con-
texts);

• A notion of environment as a dual to (abstract) observable contexts, thus
generalising the demand semantics of [San93].

These points should enable an operational formalisation of context analysis of the
form of [Hug87][WH87].

Guarded Contexts

In a somewhat orthogonal study we have considered context semantics for a re-
stricted class of contexts (a form of guarded contexts) for a higher-order language
with binding operators and arbitrary lazy constructors. The principle technical
problem in this context semantics is to handle holes which occur under bound vari-
ables. This operational semantics of contexts finds immediate application to the
problem of correct folding in program transformation. It also provides a simple
form of “applicative bisimulation up to context” proof technique, a la Sangiorgi
[San94].

Acknowlegement An earlier investigation of the subject of this note was under-
taken together with Sebastian Hunt a few years ago. Our attempt failed, because
we were over-ambitious in trying to give only compositional rules. But a number of
ideas crystalised from our attempt, and have influenced the current development.
One idea in particular —that the “actions” should themselves be contexts—is due
to Sebastian.

References

[Abr90] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research

Topics in Functional Programming, pages 65–116. Addison Wesley, 1990.

[Ber78] G. Berry. Stable models of typed lambda calculi. In 5th Coll. on Automata

Languages and Programming, LNCS 62. Springer-Verlag, 1978.

6



[BH89] B. Bjerner and S. Holmström. A compositional approach to time analysis
of first order lazy functional programs. In Functional Programming Lan-

guages and Computer Architecture, conference proceedings, pages 157–165.
ACM press, 1989.

[How89] D. J. Howe. Equality in lazy computation systems. In Fourth annual

symposium on Logic In Computer Science, pages 198–203. IEEE, 1989.

[Hug87] R. J. M. Hughes. Backwards analysis of functional programs. Research
Report CSC/87/R3, University of Glasgow, March 1987.

[Lar86] K. G. Larsen. Context-Dependent Bisimulation Between Processes. PhD
thesis, Department of Computing, University of Edinburgh, 1986.

[Lar89] K. G. Larsen. Compositinal theories based on an operational semantics
of contexts. In Stepwise Refinement of Distributed Systems: Models, For-

malisms, Correctness, number 430 in LNCS. Springer-Verlag, 1989.

[LX91] K. G. Larsen and L. Xinxin. Compositinality through an operational se-
mantics of contexts. J. Logic and Computation, 1(6):761–795, 1991.
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