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Abstract. Phung et al (ASIACCS’09) describe a method for wrapping built-in
methods of JavaScript programs in order to enforce security policies. The me-
thod is appealing because it requires neither deep transformation of the code nor
browser modification. Unfortunately the implementation outlined suffers from a
range of vulnerabilities, and policy construction is restrictive and error prone.
In this paper we address these issues to provide a systematic way to avoid the
identified vulnerabilities, and make it easier for the policy writer to construct
declarative policies – i.e. policies upon which attacker code has no side effects.

1 Introduction
Even with the best of intentions, a web site might serve a page which contains mali-
cious JavaScript code. Preventing e.g. cross-site scripting (XSS) attacks in modern web
applications has proved to be a difficult task. One alternative to relying on careful use
of input validation is to focus on code behavior instead of code integrity. Even if we
cannot be sure of the origins (and hence functionality) of all the code in a given page,
it may be enough to guarantee that the page does not behave in an unintended manner,
such as abusing resources or redirecting sensitive data to untrusted origins.

One way to do this is to specify a policy which says under what conditions a page
may perform a certain action, and implement this by a reference monitor [2] which
grants, denies or modifies such action requests. In this paper we study this approach in
a JavaScript/browser context, where the policy is enforced by using software wrappers.
In the remainder of this introduction we review the background of policy enforcement
mechanism in protecting web pages from malicious JavaScript code. A number of re-
cent proposals implement policy enforcement by using wrappers to intercept security-
relevant events. Here we sample the various approaches to implementing wrappers –
each with their own advantages and disadvantages, before focusing in more detail on
the approach, self-protecting JavaScript, that forms the main focus of this article.

1.1 The Wrapper Landscape

One key dimension for comparing security wrapper and sandboxing approaches is
whether they require browser modification or not. Full browser integration offers some
clear advantages. For example, the wrapping mechanism has direct access to the scripts
as seen by the browser so there can be no inconsistency between the wrapper’s and the
browser’s view of the code. Such inconsistencies are the basis for attacks, as is well
known from the evasion attacks on script filters. The wrapping mechanism also has ac-
cess to lower-level implementation details that would not be accessible at the JavaScript
level, and permits modifications and extensions, for the greater good, to JavaScript’s



semantics. The state-of-the-art in this approach is CONSCRIPT [21], which modifies
Internet Explorer 8 to provide aspect-oriented programming constructs for JavaScript.

Avoiding browser modification, on the other hand, is an advantage in itself. For
example it could allow a server to protect its own code from XSS attacks using an
application-specific policy. The user would receive this protection without being proac-
tive. Within this area one can roughly divide the approaches into those which transform
the whole program (thus requiring the program to be parsed) and those which perform
wrapping without having to modify the code. Phung et al [25] refer to these styles as in-
vasive vs lightweight, respectively. The former approach is taken by the BrowserShield
tool [28] which performs a deep wrapping of code, requiring run-time parsing and trans-
formation of the code. In more recent work, Ofuonye and Miller [23] show that the high
runtime overheads witnessed in BrowserShield can be improved in practice by optimis-
ing the instrumentation technique. The lightweight approach refers to techniques which
do not require any aggressive code manipulation. There are many JavaScript program-
ming libraries which provide this kind of functionality; the lightweight self-protecting
JavaScript work of Phung et al [25] is the only one of these which is security specific.
More details of this approach are given below.

A number of approaches involve using well-behaved subsets of JavaScript. These
can be though of as a hybrid of an invasive pass (to check that the code is in the in-
tended sublanguage), followed by wrapping. By syntactically filtering the language, the
wrapping problem becomes much simpler, since problematic language features can be
disallowed (these invariably must include, among other things, all dynamic code cre-
ation features such as eval and document.write). This approach is exemplified in
FBJS [12], a JavaScript subset provided by Facebook to sandbox third-party applica-
tions. A principled perspective on this approach is provided in the work of Maffeis et
al, e.g. [19].

Each approach has potential advantages and disadvantages, and each must both
overcome numerous technical problems to be practically applicable.

1.2 Self Protecting JavaScript

In this paper we focus on problems and improvements in the self protecting JavaScript
approach [25]. Here we outline the key ingredients of that approach.

Policies are defined in terms of security relevant events, which are the API calls –
the so-called built-in methods of JavaScript. These are the methods which have an in-
trinsic meaning independent of the code itself. The attacker is assumed to have injected
arbitrary JavaScript into the body of a web page. A policy is a piece of JavaScript which,
in an aspect-oriented programming (AOP) style, specifies which method calls are to be
intercepted (the pointcut in AOP-speak), and what action (advice) is to be taken.

The key to being “lightweight” is that the method does not need to parse or trans-
form the body of the page at all. This is achieved by assuming that the server, or some
trusted proxy, injects the policy code into the header of the web page. Integrity of this
policy code is assumed (so attacks to the page in transit are not considered). Injecting
the policy code into the header ensures that the policy code is executed first, so the pol-
icy code gets to wrap the security critical methods before the attacker code can get a
handle on them. This is a strikingly simple idea that does not have any particular dif-
ficulty with dynamic language features such as on-the-fly code generation. The price



paid for this is that it can only provide security policies for the built-in methods, and
cannot patch arbitrary “code patterns” as e.g. the BrowserShield approach.

Phung et al implemented this idea via an adaptation of a non security-oriented
aspect-oriented programming library. But in a security context the ability to ensure
that the code and policy are tamper-proof, and that the attacker cannot obtain pointers
to the unwrapped methods is crucial. In this paper we study and fix vulnerabilities of
both kinds in the implementation outlined by Phung et al, and propose a way to make it
easier to write sane policies which behave in a way which is not unduly influenced by
attacker code.

We divide the study into issues relating to the generic wrapper code (Section 2),
and issues relating to the construction of safe policies (Section 3). Before discussing
this work in more detail below, we summarize the attacks which motivate the present
work, most of which are either well-known or based on well-known mechanisms:

Prototype poisoning Prototype poisoning is a well-known attack vector: trusted code
can be compromised because it inherits from a global prototype which is accessible
to the attacker. We address several flavours of poisoning attack:

– Built-in subversion Built-in methods used in the implementation of the generic
wrapper code can be subverted by modifying the prototype object.

– Global setter subversion Setters defined on prototype objects are executed
upon instantiation of new objects. This opens up for external code to access
information in a supposedly private scope. In the case of the wrapper imple-
mentation, inconsiderate use of temporary objects leads to compromise. This
issue has been discussed previously in the context of JSON Hijacking [24,8].

– Policy object subversion Any object implicitly or explicitly manipulated by the
policy code is vulnerable to subversion via its global prototype. Meyerovich
et al [20] provide a good example of this attack in the subversion of a URL
whitelist stored in a policy.

Aliasing issues A specific built-in may have several aliases pointing to the same func-
tion in the browser. Knowing what to wrap given one of these aliases is imper-
ative for the monitor in order to control access to the built-in. Meyerovich et al
[20] call this incomplete mediation. Also, each window instance has its own set of
built-ins but can under some circumstances access and execute a built-in of another
instance. This sort of dynamic aliasing needs to be controlled so that one instance
with wrapped built-ins cannot not access the unprotected built-ins of another.

Abusing the caller-chain When a function is called, the caller property of that func-
tion is set to refer to the function calling it. The called function can thereby get a
handle on its caller and access to and modify part of the information which is sup-
posed to be local to it e.g. the arguments property. This implies that if user code in
one way or another is called from either a built-in, the wrapper, or from the policy,
it could potentially bypass the monitor. This general attack vector is described in
the Caja end-user’s guide [13] (“Reflective call stack traversal leaks references”).

Non declarative arguments If a policy inspects a user-supplied parameter the param-
eter can masquerade as a “good” value at inspection time, and change to a “bad”
value a the time of use. This is because JavaScript performs an implicit type con-
version. This attack was already addressed in [25] where it is credited to Maffeis



(see also [19]). It is also the basis of a recently described attack on ADsafe [18].
(This paper significantly extends the defence mechanism of [25] for this class of
attack).

2 Breaking and Fixing the Wrapping Code
Upon analyzing the wrapper implementation by Phung et al. [25] (see Listing 1.1),
we found that it was vulnerable to a number of attacks. In this section we discuss the
attacks, potential solutions and how the attacks apply to other wrapping libraries.

1 var wrap = function(pointcut, Policy) {
2 ...
3 var aspect = function() {
4 var invocation = { object: this, args: arguments };
5 return Policy.apply(invocation.object,
6 [{ arguments: invocation.args,
7 method: pointcut.method,
8 proceed: function() {
9 return original.apply(...);

10 }}]);
11 } ...
12 }

Listing 1.1. The main wrapper function in Phung et al [25].

2.1 Function and Object Subversion

Since the header is executed before the page is processed, any malicious code in the
page will only have access to wrapped methods. But since wrapped methods are exe-
cuted in the attacker’s environment, the attacker can subvert functions that are used in
the wrapping function to bypass the policies or extract the original unwrapped meth-
ods. As an example, the wrapper in Listing 1.1 uses the apply-function to execute the
policy and the original method. The apply-function is inherited from the Function

-prototype, which is part of the environment accessible to the attacker. By modifying
the apply-function of Function-prototype an attacker can bypass the execution of
the policy or even extract the original built-in. Suppose that the wrapped built-in is the
function window.alert. The following code (Listing 1.2) illustrates this attack by ex-
tracting the original window.alert and restoring it. If the monitor were to rely on

1 var recover_builtin;
2 Function.prototype.apply = function(thisObj, args){
3 if (args[0].proceed) args[0].proceed();
4 else recover_builtin = this; };
5 //call the wrapped built-in, so that the wrapper will execute
6 window.alert(’XSS’);
7 //then recover the built-in
8 if (recover_builtin) window.alert = recover_builtin;

Listing 1.2. Illustration of subverting built-in to recover the wrapped method.

inherited properties of objects it could be influenced in a similar way.



To prevent attacker code from subverting objects we can try to ensure that each ob-
ject reference used in the policy is a local property of the object and not something in-
herited from its low-integrity prototype. The built-in function hasOwnProperty can be
used for this purpose (of course the integrity of the function hasOwnProperty must be
maintained as well). But this approach requires all object accesses to be identified and
checked. This is potentially tricky for implicit accesses, e.g., the toString-function is
called implicitly when an object is converted to a string.

Since the monitor code is the first code to be executed it can store local references to
the original built-in methods used in the advice function. Our solution is to ensure that
the wrapper code only uses the locally stored copies of the original methods. As an ex-
ample, o.toString() would be rewritten as original_toString.apply(o,[]).
To prevent an attacker from subverting the apply function of the stored methods, it is
made local to each stored function by assignment, i.e. original_toString.apply=
original_apply. Now even if the prototype of the function is subverted, the apply

function local to the object remains untouched. Again, this is not entirely foolproof
since it could be hard to determine which functions are being called implicitly.

A simpler alternative approach (supported in e.g. Firefox, Chrome and Safari, but
not in e.g. IE8 or Opera) is to set an object’s __proto__ to null. This has the effect
of disconnecting the object from its prototype chain, thus preventing it from inheriting
properties defined outside of the policy code. Since they are no longer inherited, any
required properties of the prototype must be reattached to the object from the stored
originals. This technique is used in the implementation of the function safe in Section
3.1.

2.2 Global Setter Subversion

A special case of function subversion involves setters. A setter is a function for a prop-
erty of an object, that is executed whenever the property is assigned a new value. Defin-
ing a setter on a prototype object will affect all objects inheriting from that prototype,
which is our definition of a global setter. If a setter is defined for Object.prototype,
it will be inherited by all objects.

An issue that has been discussed recently [32,29] is that global setters will be ex-
ecuted upon object instantiation. This creates an unexpected behavior where external
code is able to extract values from a private scope. When considering the code in List-
ing 1.1, an attacker could define a global setter for the property proceed of all objects.
The below snippet illustrates this attack in the wrapper in Listing 1.1.

1 var recover_builtin;
2 Object.prototype.__defineSetter__(’proceed’,
3 function(o) { recover_builtin = o });

When the advice is executed, a temporary argument object for the policy is created.
Since this object contains a proceed-property, the setter will be executed and the func-
tion containing the original method will be passed as an argument. The attacker can now
bypass the policy by executing the function in the setter. Note also that the argument
object as a whole will be accessible to the setter through the this-keyword. The same
holds for any object created in the execution of the advice or in the policy itself. This
vulnerability also applies to arrays and functions.



While the correctness of this behaviour is debatable [32], it is implemented in most
browsers (at the time of writing). The exceptions are Internet Explorer (which only im-
plement setters for DOM-objects) and Firefox which have recently [29] changed this
behavior so that setters are not executed upon instantiation of objects and arrays (al-
though for functions the problem still remains). This issue has been discussed previ-
ously in the context of JSON Hijacking [24,8].

One possibility to protect against this problem would be to prevent the wrapping
code from creating any new objects, arrays or functions. This severely restricts how
the advice function could be implemented, in such a way that it might not be possible
to implement at all. Checking for the existence of setters for every property before
creating an object is another alternative, but it would be infeasible in general. The advice
code could define its own getters and setters on the object instead of just assigning the
property a value. The custom getters and setters would overshadow the inherited ones,
making the object safe to use. Again this might be a bit too cumbersome.

As mentioned in the previous section, the chain of inheritance can be broken by
setting the __proto__ property to null. This is our current solution. Developing a so-
lution which works for platforms not supporting this feature would require very careful
implementation and is left for future work.

2.3 Issues Concerning Aliases of Built-ins

Although policies are specified in terms of built-in function names, semantically speak-
ing they refer to the native code to which the function points. This gives rise to an
aliasing problem as there may be several aliases to the same built-in. This is a problem
since a crucial assumption of the approach is that wrappers hold the only references to
the security relevant original functions. This problem is highlighted in [21] (where it is
solved by pointer comparison – something that is not possible at the JavaScript level).

Static Aliases Most functions have more than one alias within the window, and if one
is wrapped, then the others need to be wrapped as well. Otherwise, the original function
can be restored by using an alias. As an example, in Firefox the function alert can be
reached through at least the following aliases: window.alert, window.__proto__.
alert, window.constructor.prototype.alert, Window.prototype.alert.

Enumerating these different aliases for each method is browser specific and somewhat
tedious, but we conjecture that in most cases there is a “root” object at the top of the
prototype inheritance chain for which wrapping of the given method takes care of all
the aliases. For a given object and method this root object can be computed by:

1 while(!object.hasOwnProperty(method) && object.__proto__)
2 object = object.__proto__;

Any aliases not captured by this scheme must be handled on an ad hoc basis. But the
main point here is that this should be the job of the wrapping library and not the policy
writer. Thus we propose to extend the wrapping library with a means to compute aliases,
and ensure that a policy applied to one function is applied to all its static aliases.

Dynamic Aliases Another class of aliases are those which can be obtained from other
window object (window, frame, iframe). In [25], several attempted solutions were in-
troduced to deal with the problem, including disabling the creation of new window,



frame/iframe or disable the access to contentWindow property of frame/iframe ob-
jects from where references to unwrapped methods can be retrieved. Unfortunately the
proposed approach seems both incomplete (does not provide full mediation) and overly
restrictive. In this work, we allow window objects to be created, but user code should
not be able to obtain a reference to one. If user code gets a reference to a foreign win-
dow object, even if it is enforced with the same policies, that window object could be
navigated to a new location which would reset all the built-ins. To implement this we
provide pre-defined policies which enforce methods that potentially return a window
object. This boils down to two cases: static frames that are defined as part of the html
code, and dynamic frames that are generated on the fly.

For static frames the problem is that they do not exist at the time the policy code in
the header is executed, and there is no way to intervene just after they have been created.
This means we have to proactively prevent access to an unspecified number of frames
that might be created. If we disable contentWindow for all frames, the only other
way for user code to obtain a reference to the window is through the window.frames
or window array. By defining getters for “enough” indices in this array we can fully
prevent inappropriate access. The remaining problem is determining how many indices
will be enough – here we must rely on some external approximation.

For dynamic iframes a similar approach is used. By wrapping all actions that may
result in the creation of an iframe, we can intervene and replace the contentWindow
property and the right number of indices in the window array.

2.4 Abusing the Caller-chain

Built-in subversion The following core assumption is formalised in [25]: we are ef-
fectively assuming that the built-in methods do not call any other methods, built-in or
otherwise. This assumption does not hold for all built-ins, and its failure has conse-
quences. Specifically, (i) some built-ins run arbitrary user functions by design, such
as filter, forEach, every, map, some, reduce, and reduceRight, and (ii) some
built-ins implicitly access object properties e.g. pop which sets the length property or
alert that implicitly calls toString on its argument. These property accesses can, in
turn, trigger arbitrary code execution via user-defined getters and setters.

Both of these cases are problematic because of a nonstandard but widely imple-
mented1 caller property of function objects. For a function f, f.caller returns a
pointer to the function which called f (assuming f is currently on the call stack). Thus
any user code which is called from within a built-in can obtain a pointer to that built-in
using caller.

As an example, suppose that the alert function has been wrapped. In Listing 1.3
the user defines an object with a toString which sets alert to the function calling
it. Now the user code calls alert(x), thus invoking the wrapped alert function.
Now suppose that the wrapper eventually calls the original alert built-in. The built-in
will internally make a call to x.toString. The modified toString can now obtain a
reference to the built-in from the caller chain and restore the original built-in.

Wrapper subversion The caller attack does not only apply to built-ins. In several
places the wrapper code must traverse user-supplied objects in order to inspect or assign

1 Not part of any ECMA standard but implemented in all major browsers.



1 var x = {toString: function(){ alert=arguments.callee.caller; }
};

2 alert(x);

Listing 1.3. An example of the caller attack

to properties. This might trigger the execution of getters or setters or other user supplied
code which can abuse the caller chain to influence the wrapper, extract information, or
dynamically change its behavior upon inspection.

Mitigating the caller attack For type-(i) functions this is not a real problem – we
simply ban them from wrapping. From a policy perspective the built-ins are really just
a way to get a handle on behaviours. Functions like those listed are simply programming
utilities and have nothing to do with the extensional behaviour of the system at all, and
policies have no business trying to control them.

Type-(ii) functions, on the other hand, do indeed involve built-ins that may need
to be wrapped, e.g. document.appendChild. For each built-in, the wrapper needs to
know (an upper bound on) the properties that it might access directly. Before calling the
original built-in the wrapper must unset any user-defined getters or setters for the ac-
cessed properties before calling the built-in; to preserve functionality these are restored
after the built-in returns.

As for subversion of the wrapper, there is no upper bound on which properties might
be accessed. Therefore the wrapper must ensure that user code is not implicitly executed
when traversing the object. This could be achieved as for type-(ii) functions above, but
a simpler approach works in this case. If there is a recursive function on the stack then
the caller operation can never get past it. So by wrapping operations on untrusted data
in a dummy recursive function, the caller operation can be prevented from reaching the
sensitive context.

2.5 Browser Specific Issues

It seems unlikely that one can come up with a solution which works for all browsers.
One thorny problem that is specific to Firefox is the behavior of the delete operator
which when applied to the name of a built-in simply deletes any wrappers and restores
the original method. This problem is discussed in [25], and also plagues the Torbutton
anonymous browsing plug-in, which is unable to properly disable access to the Date

object for precisely this reason [30]. We are not optimistic that there is a workaround
for this in the current versions of Firefox, although future versions supporting object
attributes from the recent ECMAScript 262 standard [11] will certainly see an end to
this problem.

2.6 Other Lightweight AOP Libraries

As an experiment we tried to adjust the attacks to other AOP-wrapping libraries to see
if any of them were more suitable candidates for implementing a reference monitor.
The libraries used were jQuery AOP [15], dojo AOP [10], Ajaxpect [1], AspectJS [3],
Cerny.js [7], AspectES [4], PrototypeJS [27]. One thing to note is that none of these
libraries were designed for security purposes, but rather as general implementations of
AOP-functionality. The results were discouraging: all of the libraries were vulnerable
to all the attacks described above. In addition the way they are designed opens up for



new attacks which had been considered in the design of [25]. For example, since the
the wrapping code (the AOP library) is not in the same local scope as the policy code,
the library must export its wrapping functions, thus making them vulnerable to simple
redefinition from attacker code.

3 Declarative Policies
Let us suppose that the mechanism for enforcing policies provides full mediation of
security relevant events. Then all one needs to do is to write policies which enforce the
desired security properties. Unfortunately, due to the complexities of JavaScript, this is
not a simple task. It is all too easy to write policies which look reasonable, but whose
behavior can be controlled by the attacker (who controls the code outside of the policy).

In this section we describe this problem and propose a method to structure pol-
icy code which makes them declarative, in the sense that code outside the policy and
wrapper library cannot have side-effects on the policy.

As a running example consider a policy implementing a URL white-list which is
used to filter calls to e.g. window.open(url,..): calls to whitelisted URL’s are al-
lowed, other calls are dropped.

3.1 Object and Function Subversion in Policies

In [20] an additional problem with policy subversion is noted. Let us consider the ex-
ample given there: suppose that the policy writer models a URL whitelist by an object:
var whitelist ={"good.com":true, "good2.org":true}. Then for a policy,
which also allows subdomains of the domains in the whitelist, the code would involve
a check similar to the one in Listing 1.4.

1 var l = url.lastIndexOf(’.’,url.length-5) + 1;
2 if (whitelist[url.substring(l)] === true) { ... }

Listing 1.4. Policy sample code

This looks like the desired policy, but unfortunately the attacker can easily bypass
it by assigning to Object.prototype["evil.com"]=true; this will add an "evil

.com" field to all objects including the whitelist. Alternatively the attacker could re-
define substring to always return a string that is in the whitelist. The url would then
pass the check regardless of its actual value.

The solution we adopt here is the same as for the wrapper code. For functions the
policy writer must use local copies of the originals, and for objects we can ensure that
they cannot access a poisoned prototype by simply removing it from its prototype chain.

Let us refer to such an object as a safe object. How can we make it easy for the policy
author to work only with safe objects? Our current approach is to provide a function
safe, which recursively traverses an object, detaching it and all sub-objects from the
prototype chain that can be modified by the user. As explained in Section 2.1 detaching
the object is done by setting its __proto__ property to null. Since detaching implies
that the object will no longer inherit any of the methods expected to be associated with
the type of the object, this functionality needs to be restored. Since determining the type
of an object is difficult the safe function takes an optional argument to specify the type.
Safe versions of the functions associated with this type are added to the object. The
safe versions of the functions are stored locally and are detached from the prototype



chain to prevent attacker influence. The format of the object type is similar to the types
described in Section 3.2. Programming with a whitelist would then be written as:

1 var whitelist = safe({"good.com":true,"good2.org":true});

The policy writer must, in general, ensure that any object which is accessed is made
safe. But objects are also constructed implicitly – for example a string might get im-
plicitly converted to a string object. When this happens the string object in question will
be unsafe. Because of this the policy author should apply the safe function to all types,
preemptively (and recursively) converting all values to (safe) objects.

The question of how to obtain complete and optimal insertion of the “safe” opera-
tion in order to avoid all unsafe objects is left for further work. Note that it is not enough
to wrap safe around object literals (as we initially believed). Suppose e is some expres-
sion which returns a value of primitive type. Now consider the expression e.toString
(). This is unsafe because in order to apply the toString method the primitive type

constructed by e is implicitly converted to an object (e.g. a Boolean object). This object
is unsafe and thus an attacker-defined toString method could return any value. To fix
this we could apply safe to e, but this would be redundant if e is already safe (by virtue
of having being built from safe objects).

3.2 Non Declarative Arguments

Phung et al [25] (following Maffeis et al [17]) note a problem with inspecting call
parameters. In the case of the whitelist example, note that the argument to such a call
might not actually be a string, but any object with a toString method. Since this
object comes from outside, it can be malicious. In the case of the whitelist example
it could be a stateful object which returns "goodurl.org" when inspected by the
policy, but in doing so it redefines its toString method to return "evil.com" when
subsequently passed to the original e.g. window.open(url,..) method. Phung et al
[25] suggested a solution to solve this problem by implementing call-by-primitive-value
for all policy parameters using appropriate helper functions to force each argument into
an expected primitive type. The idea is that the policy writer decides which arguments of
the wrapped call will be inspected, and at what type. These arguments are then forcibly
coerced to that type before being passed to the policy code, thus ensuring that what you
see (in the policy logic) is what you get (in any subsequent call to the wrapped built-in).

Types for Declarative Arguments The approach of Phung et al has some shortcom-
ings: (i) it does not provide a clear declarative way for the policy writer to specify the
parameters and their intended types; (ii) it only only applies to primitive types and not
objects; (iii) it does not deal with the return value of the wrapped function (iv) it relies
on the policy writer not accessing unsanitized parameters; (v) it uses functions such as
toString for implementing coercion, but leaves this function open to subversion.

We provide a policy calling mechanism which addresses these shortcomings. Here
we provide a brief outline of the design. The idea is that the policy writer writes a policy
and an inspection type for the argument and the result. The policy code can assume
that the parameters are declarative and the wrapper library will ensure this using an
inspection type. An inspection type is a specification of the types of the call parameters
that will be inspected by the policy code.



As an example (listing 1.5) suppose we have a policy for the appendChild method
of the document.body object. The argument of the appendChild method should be
an HTML node object which has several properties and methods. The policy (function
ipolicy) intends to check whether the argument is an iframe by looking at the property
tagName of the argument; if so then it should only proceed if the src property of the
argument is an allowed URL. If the argument is not an iframe it should just proceed.
(It should be noted that tagName is not reliable enough for this policy, but it suffices
as an example.) Code to install this policy using our wrapper constructor is given in
listing 1.5 below.

1 var ipolicy = function(args, proceed) {
2 var o = args[0];
3 if (o.tagName == ’iframe’) {
4 if (allowedUrls(o.src))
5 return proceed();
6 } else
7 return proceed();
8 }
9 wrap(document.body, ’appendChild’, // object and method

10 ipolicy, // policy function
11 [{src:’string’, tagName:’string’}]); // arg inspection type

Listing 1.5. Example of using the wrapper.

The first two arguments of wrap specify the object and method to be wrapped (the
“pointcut”). The third parameter is the policy function (the “advice”) and the fourth
parameter is the argument inspection type – a specification of how the parameters will
be inspected by the policy. In the example call above we are specifying that only the
first argument to appendChild will be inspected by the policy code, and it will do so
assuming type {src:’string’, tagName:’string’}. Not shown in the example
is an optional return inspection type. This is needed if the policy will also inspect and
modify the return type of the wrapped builtin.

The parameter inspection type is an array of types. The following simple grammar
of JavaScript literals represents the types used in our current implementation:

type ::= ’string’ | ’number’ | ’boolean’ | ’*’ | undefined
| {field1 : type1, . . . , fieldn : typen}

The ’*’ type provides a reference to a value without providing access to the value itself.
We expect that experience will reveal the need for a more expressive type language, such
as sum-types and more flexible matching for parameter arrays – but these should not be
problematic to add.

Policies are enforced as follows: the inspection type is used as a pattern to create a
clone of the argument array. We will call this the inspection argument array. This is the
generalization of the idea of call-by-primitive-value, except that the cloned parameters
also remove any parts of the arguments which are not part of the type. The policy logic
can only access the inspection argument array. However, when passing the parameters
on to any built-in function, we permit the function access to the whole of the argument



array. To do this we combine the original argument array with the inspection argument
array. Figure 1 illustrates this process and Listing 1.6 outlines the code.

combine with 

original return value

argument array cloning by type:
policy.toString(b) === ’xyz’

a b        c

? ‘string’

? ‘xyz’
original argument array

inspection type

inspection 
argument array

Computation by policy code 

leading to call to 
invocation.proceed()

? ‘xy’      42

policy’s  modified
argument array

combine with 

original argument

a ‘xy’      42

Example policy computation for some built-in called with (a,b,c). In this example the policy inspects b at type string and 

removes the last character, and sets the third parameter to 42 before calling proceed() in order to access the original built-in 

function.  The foo field of the return value is incremented before it is returned to the caller. In the diagram ? is an abbreviation 

for undefined, and array objects are depicted as boxes.

pre-call policy code proceed function

original 
builtin

return inspection type

{ foo: ‘num’ }

{ foo: 0, bar: 2 }{ foo: 0 }{ foo: 1 }

return {foo:1}

{ foo: 1, bar: 2 }

final value returned by 
wrapper

inspection 
result

post-call policy code

Result cloning by 

type

Fig. 1. Illustration of policy parameter manipulation

1 var wrap = function(object, method, policy, inType, retType) {
2 // Find function corresponding to alias
3 while(!object.hasOwnProperty(method) && object.__proto__)
4 object = object.__proto__;
5 var original = object[method];
6

7 object[method] = function wrapper() {
8 var object = this;
9 var orgArgs = arguments, orgRet;

10 var polArgs = cloneByType(inType, arguments);
11 var proceed = function() {
12 orgRet = original.apply(object,
13 combine(polArgs, orgArgs));
14 return cloneByType(retType, orgRet);
15 }
16 var polRet = policy(polArgs, proceed);
17 return combine(polRet, orgRet);
18 };
19 }

Listing 1.6. Outline of the revised wrapper function supporting inspection types

When cloning, the reference type ’*’ is replaced by a fresh dummy object. When
combining, each such object is replaced with original value that it represented. Note
that the type language does not include functions. This means that policy code cannot



inspect any function parameters. However, this does not mean that we cannot have
policies on built-in functions which e.g. have callbacks as arguments – it just means that
we cannot make policy decisions based on the behavior of the callbacks. This restriction
to “shallow” types does not seem to be a serious limitation, but more experience is
needed to determine if this is indeed the case.

The treatment of the return value of the method is analogous to the treatment of the
arguments: a return type specifies what the policy may inspect from the return value. If
this is not specified then a return type of * is assumed. The return value of the policy
function is combined with the return value produced by the actual built-in.

4 Related Work
This work is based on the lightweight self-protecting JavaScript method [25], which
embeds the protection mechanism in terms of security policy into a web page to make
the web page self-protecting. Two recent papers [21,20] (concurrent with this present
work) also discuss a large subset of the attacks investigated here, but with the purpose
motivating a quite different part of the solution space.

Other recent work on JavaScript security includes static and runtime analysis e.g.
[5,6,22], code transformation e.g. [28,23,16], wrapping e.g. [21,20], and safe subsets
e.g. [19,14]. In this section, we compare our work to more recent related work on en-
forcing fine-grained security policies for JavaScript execution by wrapping.

Ofuonye and Miller [23] introduced an optimized transformation method to imple-
ment wrappers by rewriting objects identified as being vulnerable. Their approach can
be viewed as an optimization of the BrowserShield approach [28]. However, it appears
that the authors have not considered the vulnerabilities that we discussed in Section 2,
and it seems that these attacks can defeat their security mechanism. For example, their
transformation method does not protect against Function and Object subversion (cf.
Section 2.1). It seems that the solutions described in this paper can be applied directly
to their implementation – including not only solutions to function and object subver-
sion, but also e.g. the use of alias-sets to apply a policy consistently across all aliases of
a given built-in method.

A similar approach concurrent to our work is object views proposed by Meyerovich
et al [20] that provides wrappers as a library in JavaScript. Object views, however, focus
on the safe sharing of objects between two principals in the browser, e.g. between two
frames of different origins or privileged code and untrusted code, whereas we focus
on controlling the use of built-in methods to mitigate the extensional effects of cross-
site scripts. Because policies do not control built-in functions, they need to deal with the
flexibility of user defined objects and functions. In order to do so, they provide recursive
“deep” wrapping and use reference equality checking of user defined objects to ensure
the full mediation of each operation. Meyerovich et al also provide a policy system
where policy writers can specify policies in declarative rules which is later compiled
into wrapper functions.

CONSCRIPT [21] is more closely related to our work in the sense that it provides a
JavaScript aspect-oriented programming system for enforcing security policies includ-
ing those studied here. However, as mentioned in the introduction, the realisation of
CONSCRIPT is different from our work in the sense that it extends JavaScript language
with new primitive functions to support aspect-oriented programming and provides safe



methods replacing vulnerable native JavaScript prototype functions. In order to deploy
such extensions, the authors have to modify the JavaScript engine (i.e. the browser it-
self). CONSCRIPT also provides a type system that can be used to validate the defined
policies to ensure that the policies do not contain vulnerabilities. This feature is more
advanced than our declarative policies since we provide tools for the policy writer to
construct sensible policies, but our method does not guarantee the correctness of the
policies. A possible extension of our work to include a similar type system is left to
further work.

Typed interfaces in JavaScript The use of a typed interface to enable the safe in-
spection and manipulation of user values is a direct generalisation of the earlier call-by-
primitive value idea. The use of JavaScript-encoded typed interfaces is not uncommon
in Java libraries. For example the Cerny.js library [7] provides a similar type language
to the one used here in order to improve code quality and documentation. As mentioned
above, the policy language of the ConScript system has a type system that plays an
essential role in eliminating a number of security issues such as malicious user objects
masquerading as primitive types. But types are only used for type checking. Thus type
coercions to primitive types must be added manually to the code where needed in order
for type checking to succeed. Our approach is different in that the types themselves are
interpreted as coercion operations.

Aspect-oriented programming In the context of aspect-oriented programming for
JavaScript, besides the AOP libraries we analysed in Section 2.6 (i.e. jQuery AOP [15],
dojo AOP [10], Ajaxpect [1], AspectJS [3], Cerny.js [7], AspectES [4] and Proto-
typeJS [27]), there have been several AOP frameworks for JavaScript in literature.
AOJS [33] is a framework supporting the separation between aspects and JavaScript
code where aspects are defined in a XML-based language and then woven to JavaScript
by a tool (similar to the proxy-based approach like [28,23,16] reviewed in the intro-
duction). Current implementation of AOJS only support before and after advice, as the
aspect system cannot control the behavior of operations.

Similar to our work (and the self-protecting JavaScript approach), AspectScript [31]
is another AOP library for JavaScript that supports richer set and pointcuts in JavaScript.
AspectScript also supports stateful pointcuts that is similar to security states in Phung
et al [25]. More interestingly, AspectScript provides a library as a weaver tool to trans-
form JavaScript code into aspect-based code and the weaving process is performed at
runtime. However, the mentioned libraries or frameworks have not paid attention to se-
curing their aspect systems (see e.g. [9]), thus they are subject to the vulnerabilities that
we have presented here.

5 Future Work
Most of the solutions and policy mechanisms presented here have been implemented
in JavaScript and a prototype library suitable for the Safari and/or Chrome browsers is
available on [26]. A number of more substantial extensions remain to be investigated.

Idiot-proof Policies The current policy language is intended to make it easy for the
policy writer to construct sensible policies, but it does not enforce this. A natural exten-
sion of this work would be to find ways to guarantee that the policy code does not, e.g.
create unsafe objects or use subverted built-in functions. We see two possible directions



to achieve this. One approach would be to provide a proper separation between policy
code and attacker code rather than trying to handle this on a per-method and per-object
basis as we do here. Another approach is to constrain the way that policies are written,
for example using JavaScript sub-languages which can be more easily constrained (see
e.g. the ConScript approach and [19]) or by designing a policy language which can be
compiled to JavaScript, but for which we can construct a suitable static type system.
Recent work by Guha et al seems well suited for this purpose [14].

Session Policies Policies should not be associated with pages but with a session and
an origin. One issue that we have not addressed in this paper is writing policies which
span multiple frames/iframes. This, in general, requires sharing and synchronization of
policy state information between frames in a tamper-proof manner.
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