
Specification and Verification of Side Channel

Declassification

Josef Svenningsson and David Sands

Department of Computer Science and Engineering,
Chalmers University of Technology

Göteborg, Sweden
{josefs,dave}@chalmers.se

Abstract. Side channel attacks have emerged as a serious threat to
the security of both networked and embedded systems – in particular
through the implementations of cryptographic operations. Side channels
can be difficult to model formally, but with careful coding and program
transformation techniques it may be possible to verify security in the
presence of specific side-channel attacks. But what if a program inten-
tionally makes a tradeoff between security and efficiency and leaks some
information through a side channel? In this paper we study such trade-
offs using ideas from recent research on declassification. We present a
semantic model of security for programs which allow for declassification
through side channels, and show how side-channel declassification can
be verified using off-the-shelf software model checking tools. Finally, to
make it simpler for verifiers to check that a program conforms to a partic-
ular side-channel declassification policy we introduce a further tradeoff
between efficiency and verifiability: by writing programs in a particular
“manifest form” security becomes considerably easier to verify.

1 Introduction

One of the pillars of computer security is confidentiality – keeping secrets secret.
Much recent research in language based security has focused on how to ensure
that information flows within programs do not violate the intended confiden-
tiality properties [SM03]. One of the difficulties of tracking information flows is
that information may flow in various indirect ways. Over 30 years ago, Lamp-
son [Lam73] coined the phrase covert channel to describe channels which were
not intended for information transmission at all. At that time the concern was
unintended transmission of information between users on timeshared mainframe
computers. In much security research that followed, it was not considered worth
the effort to consider covert channels. But with the increased exposure of sensi-
tive information to potential attackers, and the ubiquitous use of cryptographic
mechanisms, covert channels have emerged as a serious threat to the security
of modern systems – both networked and embedded. The following key papers
provide a view of the modern side-channel threat landscape:

Pre-proceedings version, plus appendices. Final version to appear in Proceedings of The Sixth Inter-
national Workshop on Formal Aspects in Security and Trust (FAST2009), November 2009. Springer-
Verlag (LNCS)

• Kocher [Koc96] showed that by taking timing measurements of RSA cryp-
tographic operations one could discover secret keys. Later [KJJ99] it was
shown that one could do the same by measuring power consumption.

• Based on Kocher’s ideas numerous smart card implementations of crypto-
graphic operations have shown to be breakable. See e.g. [MDS99].

• Brumley and Boneh [BB05] showed that timing attacks were not just relevant
to smart cards and other physical cryptographic tokens, but could be effective
across a network; they developed a remote timing attack on an SSL library
commonly used in web servers.

What is striking about these methods is that the attacks are on the imple-
mentations and not features of the basic intended functionality. Mathematically,
cryptographic methods are adequately secure, but useless if the functionally cor-
rect implementation has timing or other side channels.

1.1 Simple Timing Channels

Timing leaks often arise from the fact that computation involves branching on
the value of a secret. Different instructions are executed in each branch, and
these give rise to a timing leak or a power leak (whereby a simple power analysis
[MS00] can reveal information about e.g. control flow paths).

One approach is to ensure that both branches take the same time [Aga00],
or to eliminate branches altogether [MPSW05] – an approach that is also well
known from real-time systems where it is used to make worst case execution
time easy to determine [PB02].

1 r = 1;

2 i = m - 1;

3 wh i l e (i >= 0) {

4 r = r * r;

5 i f (d[i] == 1)

{

6 r = r * x;

7 }

8 i = i - 1;

9 }

10 return r;

Fig. 1. Modular expo-
nentiation

Consider the pseudocode in Figure 1 representing
a näıve implementation of modular exponentiation,
which we will use as our running example through-
out the paper.

The data that goes in to this function is typically
secret. A common scenario is that the variable x is
part of a secret which is to be encrypted or decrypted
and variable d is the key (viewed here as an array of
bits). It is important that these remain secret. (On
the other hand, m, the length of the key, is usually
considered public knowledge.)

However, as this function is currently written it
is possible to derive some or all of the information
about the key using either a timing or power attack.
The length of the loop will always reveal the size of
the key – and this is accepted. In the body of the loop

there is a conditional statement which is executed depending on whether the
current bit in the key is set or not. This means that each iteration of the loop
will take different amount of time depending on the value of the key. A timing
attack measuring the time it takes to compute the whole result can be used to
learn the hamming weight of the key, i.e. the number of 1’s. With control over

the key and repeated runs this is sufficient to leak the key [Koc96]. A power
analysis could in principle even leak the key in a single run.

1.2 Timing and Declassification

Often the run-time cost of securing an algorithm against timing attacks using a
general purpose method is higher than what we are prepared to pay.

1 z[0] = r*r mod N

2 z[1] = r*r*M mod N

3 r = z[d[i]]

For example, using a table-lookup instead of a
branch [Cor99] the conditional can be replaced
by the code to the left. This fixes the timing leak,
but the algorithm becomes considerably slower
– even after eliminating the common subexpres-

sion. Another even more costly approach is Agat’s cross copying idea, whereby
(roughly speaking) every branch on a secret value if h then A else B is trans-
formed into if h then A;[B] else [A];B where [A] is a ghost copy of A which
takes the same time to compute but otherwise has no effect. There are opti-
misations of this approach using unification [KM06], or by making the padding
probabilistic [DHW08], but efficiency wise the improvements offered by those
techniques are probably not sufficient in this context.

1 r = 1;

2 i = m - 1;

3 k = 0;

4 wh i l e (i >= 0) {

5 r = r * (k ? x : r);

6 k = k ^ d[i];

7 i = i - (k ? 0 : 1);

8 }

Fig. 2. Protected exponentiation

A potential solution to this tension be-
tween security and efficiency is to make a
tradeoff between the two. For this reason it
is not uncommon for algorithms to have some
side channel leakage. An example of this is
the following variation on modular exponen-
tiation, adapted from [CMCJ04], which is in-
tended to provide some (unspecified) degree
of protection against simple power analysis at-
tacks (but still leaks the hamming weight of
the key).

Research Goals and Approach Our research goal is to determine how to
express this tradeoff. There are three key issues to explore:

• Security Policies: how should we specify side-channel declassification?
• Security Mechanisms: how to derive programs which achieve the tradeoff?
• Security Assurance: how can we show that programs satisfy a given policy,

with a rigorous specification and formal verification?

This paper deals primarily with the first and the third point.
The first step – a prerequisite to a rigorous specification – is to specify our

attacker model. A model sets the boundaries of our investigation (and as always
with covert channels, there are certainly attacks which fall outside). We choose
(as discussed in Section 3) the program counter security model [MPSW05]. This
model captures attackers performing simple power and timing analysis.

To specify a security policy we turn to work on declassification. The concept
of declassification has been developed specifically to allow the programmer to
specify what, where, or when a piece of information is allowed to leak (and by
whom). A simple example is a program which requires a password based login.
For this program to work it must declassify (intentionally leak) the value of the
comparison between the actual and the user supplied password strings.

Declassification has been a recent hot topic in information flow security (see
[SS05] for an overview). The standard techniques for declassification seem largely
applicable to our problem, but there are some differences. The reason being that
(in the context of cryptographic algorithms in particular) we may be interested
in the distinction between declassifying some data directly (something which
has potentially zero cost to the attacker), and declassifying the data but only
through a side channel – the latter is what we call side channel declassification.

We will adapt existing declassification concepts to specify what information
we are willing to leak through timing channels (Section 4) . More specifically, we
use small programs as a specification of what information is leaked. This follows
the style of delimited release [SM04]. As an example, we might want to specify
that a program does not leak more that the hamming weight of the key. This
can be achieved by using the program fragment in Figure 3 as a specification: it
explicitly computes the hamming weight of the key.

1 h = 0;

2 i = m - 1;

3 wh i l e (i >= 0) {

4 i f (d[i] == 1) {

5 h = h + 1;

6 }

7 i = i - 1;

8 }

Fig. 3. Hamming weight com-
putation

The formal definition of side-channel de-
classification (Section 4) is that if the attacker
knows the information leaked by the declassi-
fier then nothing more is learned by running
the program.

We then turn to the question of verifica-
tion. We investigate the use of off-shelf auto-
matic program verification tools to verify side-
channel declassification policies. The first step
is to reify the side channel by transforming the
program to represent the side-channel as part
of the program state (Section 5). This reduces
the specification of side-channel declassifica-

tion to an extensional program property.

The next step is to observe that in many common cases we can simplify the
side-channel instrumentation. This simplification (described in Section 5.1) does
not need to be semantics preserving – it simply needs to preserve the side-channel
declassification condition.

As we aim to use automatic off-the-shelf model checkers we need one final
transformation to make our programs amenable to verification. We use self com-
position to reduce the verification problem to a safety property of a transformed
program. Section 6 describes the approach and experiments with software model
checkers.

For various reasons the side-channel declassification property of algorithms
can still be hard to verify. The last part of this work (Section 7) introduces a

tradeoff which makes verification much simpler. The idea is to write programs
in what we call manifest form. In manifest form the program is written in two
parts: a declassifier first computes what is to be released, and then using this
information a side-channel secure program computes the rest.

The verification problem amounts to showing that the second part of the
program is indeed side-channel secure (this can be rather straightforward due
to the strength of the side-channel security condition), and that the declassifier
satisfies the property that it does not leak more through its side channel than it
leaks directly. We call these manifest declassifiers. Since declassifiers are much
simpler (and quite likely useful in many different algorithmic contexts) verifica-
tion of manifest declassifiers is relatively simple. We show how this technique
can overcome the verification limitations of certain verification tools.

2 Preliminaries

In this section we present the language we are going to use and set up the basic
machinery in order to define our notion of security.

Since we target cryptographic algorithms we will be using a small while
language with arrays. It’s syntax is defined below:

C ∈ Command ::= x = e | x[y] = e | C1;C2 | if e then C1 else C2 | while e C | skip
e ∈ Expression ::= x | x[e] | n | e1 op e2 | x ? y : z

op ∈ Operators := + | ∗ | − | ˆ | mod | . . .

The commands of the program should not require much explanation as they
are standard for a small while language.

One particular form of expression that we have chosen to include that may
not look very standard (for a toy language) is the ternary operator borrowed
from the language C. It’s a conditional expression that can choose between the
value of two different register based on the value of a third register. We have
restricted it to only operate on registers since allowing it to choose between
evaluating two general expressions may give rise to side channels. This kind of
operation can typically be implemented to take a constant amount of time so
that it doesn’t exhibit a side channel by using conditional assignment that is
available in e.g. x86 machine code.

The semantics of programs is completely standard. We defer the definition
until the next section where an operational semantics is given together with some
additional instrumentation.

3 Baseline Security Model

In this section we present the semantic security model which we use to model the
attacker and to define the baseline notion of declassification-free security. For a
good balance between simplicity and strength we adopt an existing approach:
the program counter security model [MPSW05]. This attacker model is strong

enough to analyze simple power analysis attacks [KJJ99] – where the attacker
is assumed to be able to make detailed correlations between the power profile of
a single run with the instructions executed during that run.

The idea of the program counter security model is to assume the attacker can
observe a transcript consisting of the sequence of program counter positions. This
is slightly stronger than an attacker who could perfectly deduce the sequence
of instructions executed from a (known) program given a power consumption
profile of an execution. It does, however, assume that the power consumption of
a particular operation does not depend on the data it manipulates. In particular
it does not model differential power analysis.

Suppose a program operates on a state which can be partitioned into a low
(public) part, and a high (secret) part. A program is said to be Transcript-secure
if given any two states whose low parts are equal, running the program on these
respective states yields equal transcripts and final states which also agree on
their low parts.1

To specialise this definition to our language we note that it is sufficient for the
attacker to observe the sequence of branch decisions in a given run in order to be
able to deduce the sequence of instructions that were executed. To this end, in
Figure 3 we give an instrumented semantics for our language which makes this
model of side channels concrete. Apart from the instrumentation (in the form
of labels on the transitions) this is a completely standard small-step operational
semantics. The transition labels, o, are either a silent step (τ), a 0 or a 1. A zero
or one is used to record which branch was taken in an if or while statement.

〈n, S〉 ⇓ n 〈x, S〉 ⇓ S(x)
〈e, S〉 ⇓ v

〈x[e], S〉 ⇓ S(x)(v)

〈e1, S〉 ⇓ v1 〈e2, S〉 ⇓ v2

〈e1 op e2, S〉 ⇓ v1 op v2

S(x) 6= 0

〈x?y : z, S〉 ⇓ S(y)

S(x) = 0

〈x?y : z, S〉 ⇓ S(z)

〈e, S〉 ⇓ v

〈x = e, S〉
τ

→ 〈skip, S[x 7→ v]〉

〈e, S〉 ⇓ v

〈x[y] = e, S〉
τ

→ 〈skip, S[x 7→ x[S(y) 7→ v]]〉

〈skip; C, S〉
τ

→ 〈C, S〉
〈C1, S〉

o

→ 〈C′

1, S
′〉

〈C1; C2, S〉
o

→ 〈C′

1; C2, S
′〉

〈e, S〉 ⇓ v v 6= 0

〈if e C1 C2, S〉
1

→ 〈C1, S〉

〈e, S〉 ⇓ 0

〈if e C1 C2, S〉
0

→ 〈C2, S〉

〈e, S〉 ⇓ v v 6= 0

〈while e C, S〉
1

→ 〈C; while e C, S〉

〈e, S〉 ⇓ 0

〈while e C, S〉
0

→ 〈skip, S〉

Fig. 4. Instrumented Semantics

1 It would be natural to assume that attackers have only polynomially bounded com-
puting power in the size of the high part of the state. For the purposes of this paper
our stronger definition will suffice.

Definition 1 (Transcript). Let d1, d2, . . . range over {0, 1}. We say that a con-
figuration 〈C,S〉 has a transcript d1, . . . , dn if there exist configurations 〈Ci, Si〉,
i ∈ [1, n] such that

〈C,S〉
τ
→∗ d1→ 〈C1, S1〉

τ
→∗ d2→ · · ·

τ
→∗ dn→ 〈Cn, Sn〉

τ
→∗ 〈skip, S′〉

for some S′.
In the above case we will write [[C]]S = S′ (when we only care about the final

state) and [[C]]
T
S = (S′, t) where t = d1, . . . , dn (when we are interested in the

state and the transcript).

For the purpose of this paper (and the kinds of algorithms in which we are inter-

ested in this context) we will implicitly treat [[C]] and [[C]]
T

as functions rather
than partial functions, thus ignoring programs which do not always terminate.

Now we can formally define the baseline security definition, which following
[MPSW05] we call Transcript-security:

Definition 2 (Transcript-Security). Assume a partition of program variables
into low and high. We write R =L S if program states R and S differ on at
most their high variables. We extend this to state-transcript pairs by (R, t1) =L

(S, t2) ⇐⇒ R =L S & t1 = t2 reflecting the fact that a transcript is considered
attacker observable (low).

A program C is Transcript-secure if for all R, S, if R =L S then [[C]]
T
R =L

[[C]]
T
S.

Note that Transcript-security, as we have defined it, is a very strong condi-
tion and also very simple to check. A sufficient condition for Transcript-security
is that the program in question (i) does not assign values computed using high
variables to low variables, and (ii) does not contain any loops or branches on
expressions containing high variables. The main contribution of [MPSW05] is a
suite of methods for transforming programs into this form. Unfortunately the
transformation can be too costly in general, but that method is nicely comple-
mented by use of declassification.

4 Side Channel Declassification

To weaken the baseline definition of security we adopt one of the simplest mecha-
nisms to specify what information may be leaked about a secret: delimited release
[SM04]. The original definition of delimited release specified declassification by
placing declassify labels on various expressions occurring in a program. The idea
is that the attacker is permitted to learn about (at most) the values of those
expressions in the initial state, but nothing more about the high part of the
state.

We will reinterpret delimited release using a simple program rather than a
set of expressions. The idea will be to specify a (hopefully small and simple)
program D which leaks information from high variables to low ones. A program
is Transcript-secure modulo declassifier D if it leaks no more than D, and this
leak occurs through the side channel.

Definition 3 (Side Channel Declassification). Let D be a program which
writes to variables distinct from all variables occurring in C. We define C to be
Transcript-secure modulo D if for all R and S such that R =L S we have

[[C]]R =L [[C]]S & ([[D]]R = [[D]]S ⇒ [[C]]
T
R =L [[C]]

T
S).

The condition on the variables written by D is purely for convenience, but is
without loss of generality. The first clause of the definition says that the only
information leak can be through the side channel. The second clause says that
the leak is no more than what is directly leaked by D. It is perhaps helpful to
consider this clause in contrapositive form: [[C]]

T
R 6=L [[C]]

T
S ⇒ [[D]]R 6= [[D]]S.

This means that if there is an observable difference in the transcripts of two runs
then that difference is manifest in the corresponding runs of the declassifier. Note
that if we had omitted the condition [[C]]R =L [[C]]S then we would have the
weaker property that C would be allowed to leak either through the store or
through the side channel – but we wouldn’t know which. From an attackers
point of view it might take quite a bit more effort to attack a program if it only
leaks though the side channel so it seems useful to make this distinction. Clearly
there are other variations possible involving multiple declassifiers each leaking
through a particular subset of observation channels.

5 Reifying the side channel

In the previous sections we have a definition of security that enables us to for-
mally establish the security of programs with respect to side channel declassifi-
cation. We now turn to the problem of verifying that particular programs fulfil
the security condition. In order to avoid having to develop our own verification
method we have chosen to use off-the-shelf software verification tools.

Software verification tools work with the standard semantics of programs.
But recall that our security condition uses an instrumented semantics which
involves a simple abstraction of side channels. In order to make it possible to use
off-the-shelf tools for our security condition we must reify the transcript so that
it becomes an explicit value in the program which the tools can reason about. It
is easy to see how to do this: we add a list-valued variable t to the program, and
transform, inductively, each conditional if e then C else C’ into if e then

t = t++"1"; C else t = t++"0"; C’ and each while loop while e do C into

(while e do t = t++"1"; C); t= t++"0"

and inductively transform the subexpressions C and C’.

5.1 Simplifying the instrumentation

Reifying the transcript from the instrumented semantics in this way will create
a dynamic data structure (a list) which is not bounded in size in general. Such
data structures make programs more difficult to reason about, especially if we

want some form of automation in the verification process. Luckily, there are
several circumstances which help us side step this problem. Concretely we use
two facts to simplify the reification of the side channel.

The first simplification we use depends on the fact that we do not have
to preserve the transcript itself – it is sufficient that it yields the same low-
equivalence on programs. Suppose that PT is the reified variant of the program
P and that the reification is through the addition of some low variables. In order
to use PT for verification of side-channel security properties it is sufficient for it
to satisfy the following property:

∀R,S.[[P]]
T
R =L [[P]]

T
S ⇐⇒ [[PT]]R =L [[PT]]S

We call such a PT an adequate reification of P .

1r = 1;

2i = m - 1;

3k = 0; t = 0;

4wh i l e (i >= 0) {

5t = t + 1;

6r = r * (k ? x : r);

7k = k xor d[i];

8i = i - (k ? 0 : 1);

9}

Fig. 5. Instrumented modular ex-
ponentiation

The second simplification that we can per-
form in the construction of a reified pro-
gram is that we are specifically targeting cryp-
tographic algorithms. A common structure
among the ones we have tried to verify is that
the while loops contain straight line code (but
potentially conditional expressions). If it is the
case that while loops don’t contain any nested
branching or looping constructs then we can
avoid introducing a dynamic data structure to
model the transcript. Let us refer to such pro-
grams as unnested. For unnested programs it
is simply enough to use one fresh low variable
for each occurrence of a branch or loop. Thus the reification transformation for
unnested programs is defined by applying the two transformation rules below to
each of the loops and branches respectively:

while e C ; v = 0; while e (v = v + 1; C) (v fresh)

if e then C else C’ ; if e then v = 1; C else v = 0; C’ (v fresh)

The program in Figure 5 is an instrumented version of the program in Fig-
ure 2. The only change is the new (low) variable t which keeps track of the
number of iterations in the while loop.

6 Self Composition

Standard automatic software model checking tools cannot reason about multiple
runs of a program. They deal exclusively with safety properties which involves
reasoning about a single run. As is well-known, noninterference properties (like
side-channel declassification) are not safety properties – they are defined as prop-
erties of pairs of computations rather than individual ones. However, a recent
technique has emerged to reduce noninterference properties to safety properties
for the purpose of verification. The idea appeared in [DHS03], and was explored

extensively in [BDR04] where the idea was dubbed self composition. Suppose C

is the program for which we want to verify noninterference. Let θ be a bijective
renaming function to a disjoint set of variables from those used in C. Let Cθ de-
note a variable renamed copy of C. Then the standard noninterference property
of C can be expressed as a safety property of C;Cθ viz. the Hoare triple

{∀v ∈ Low .v = θ(v)}C;Cθ{∀v ∈ Low .v = θv}

To extend this to deal with side-channel declassification, let us suppose that CT

is an adequate reification of C. Then we can verify Transcript-security modulo
D by the Hoare triple above (non side-channel security) in conjunction with:

{∀v ∈ Low .v = θ(v)}D;Dθ;C
T ;CT

θ {(∀x ∈ W.x = θ(x)) ⇒ ∀y ∈ Low .y = θ(y)}

where W denotes the variables written by D. Here we take advantage of the
assumption that the variables written by D are disjoint from those used in CT .
This enables us to get away with a single renaming. Note that since D is a
program and not an expression we cannot simply use it in the precondition of
the Hoare triple (c.f. [BDR04,TA05]).

6.1 Experiments using Self Composition

As Terauchi and Aiken discovered when they used self composition, it often
resulted in verification problems that were too hard for the model checkers to
handle [TA05]. As a result of this they developed a series of techniques for
making the result of self composition easier to verify. The main technique is the
observation that the low part of the two initial states must be equal and hence
any computation that depends only on the low part can safely be shared between
the two copies of the program. This was reported to help verifying a number of
programs. We employ the same technique in our experiments.

We have used the model checkers Blast[HJMS03] and Dagger[GR06] and ap-
plied them to self composed version of the cryptographic algorithms. In particu-
lar we have tried to verify the instrumented modular exponentiation algorithm in
Figure 5 secure modulo the hamming weight of the key (Figure 3). Appendix A
presents the code given to the model checkers. We have also tried all the algo-
rithms proposed in [CMCJ04] since they all exhibit some form of side-channel
leak and therefore have to be shown to be secure relative that leak. None of
the model checkers were powerful enough to automatically verify the programs
secure.

The main reason these tools fail seems to be that they do not reason about the
contents of arrays. Being able to reason about arrays is crucial for our running
example, as it involves computing the hamming weight of an array.

Another problem comes from the fact that the programs we wish to prove
secure may be very different from its declassifier. Relating two different programs
with each other is a very difficult task and not something that current software
model checkers are designed to do.

By helping the model checkers with some manual intervention it is possible
to verify the programs secure. Blast has a feature which allows the user to supply
their own invariants. Given the correct invariants it will succeed with the verifi-
cation. However, these predicates are not checked for correctness and coming up
with them can be a highly non-trivial task. We have therefore developed another
method for verification which we will explore in the next section.

7 Manifest form

In this section we introduce a new way to structure programs to make verifica-
tion considerably easier: Manifest Form. In manifest form the program is written
in two parts: a declassifier first computes what is to be released, and then using
this information a Transcript-secure program computes the rest. Manifest form
represents a tradeoff: writing a program in manifest form may make it less ef-
ficient. The idea is that the program makes the declassification explicit in its
structure (this is similar to the specification of relaxed noninterference [LZ05]).
But for this to be truly explicit declassification the declassifier itself should not
leak through its side channel – or more precisely, the declassifier should not leak
more through its side channel than it does directly through the store.

Definition 4 (Manifest Declassifier). A program D is said to be a Manifest
Declassifier if for all R and S

[[D]]S =L [[D]]R ⇒ [[D]]
T
S =L [[D]]

T
R

As an example of a non manifest declassifier, consider the program to the left
below which declassifies whether an array of length m contains all zeros. Here the
array length m, and i and the declassified value allz, are low. This is not manifest
because the transcript leaks more than the store: it reveals the position of the
first nonzero element. A manifest version of this declassifier is shown on the right:

1 i = m - 1; allz = 1;

2 wh i l e (allz and i >= 0) {

3 allz = (d[i]? 0 : 1);

4 i = i - 1;

5 }

6 i = 0

1i = m - 1; allz = 1;

2wh i l e (i >= 0) {

3allz *= (d[i]? 0 : 1);

4i = i - 1;

5}

Definition 5 (Manifest Form). A program P is in Manifest Form if P =
D;Q where D is a manifest declassifier and Q is transcript secure.

The program in Figure 6 is written in manifest form but otherwise it rep-
resents the same algorithm as the program in Figure 2. The first part of the
program (lines 1–6) computes the hamming weight of the key, d, and this (us-
ing low variable hamming) is then used in the second part of the program to
determine the number of loop iterations.

Another example of a program in manifest form can be found in Appendix B.

1 hamming = 0;

2 i = m - 1;

3 wh i l e (i >= 0) {

4 hamming += (d[i] ? 1 : 0);

5 i = i + 1;

6 }

7 r = 1; k = 0;

8 i = m - 1;

9 j = m - 1 + hamming;

10 wh i l e (j >= 0) {

11 r = r * (k ? x : r);

12 k = k xor d[i];

13 i = i - (k ? 0 : 1);

14 j = j - 1;

15 }

Fig. 6. Modular Exponentiation in Manifest Form

7.1 Manifest Security Theorem

Armed with the definitions of sound manifest declassifiers we can now state the
theorem which is the key to the way we verify side-channel declassification.

Theorem 1. Given a program P = D;Q with D being a sound manifest declas-
sifier and Q is transcript secure then P is transcript secure modulo D

This theorem helps us decompose and simplify the work of verifying that a
program in manifest form is secure. First, showing that Q is transcript secure is
straightforward as explained in section 3. Verifying that D is a sound manifest
declassifier, which might seem like a daunting task given the definition, is actually
something that is within the reach of current automatic tools for model checking.
We present the code we used to verify the hamming weight computation in
Appendix A.

We apply the same techniques of reifying the side channel and self compo-
sition to the problem of verifying sound manifest declassifiers. When doing so
we have been able to verify that our implementation of the hamming weight
computation in Figure 3 is indeed a sound manifest declassifier and thereby es-
tablishing the security of the modular exponentiation algorithm in Figure 6. We
have had the same success2 with all the algorithms presented in [CMCJ04].

8 Related Work

The literature on programming language techniques for information flow secu-
rity is extensive. Sabelfeld and Myers survey [SM03] although some seven years
old remains the standard reference in the field. It is notable that almost all of
the work in the area has ignored timing channels. However any automated se-
curity checking that does not model timing will accept a program which leaks
information through timing, no matter how blatant the leak is.

Agat [Aga00] showed how a type system for secure information flow could
be extended to also transform out certain timing leaks by padding the branches
of appropriate conditionals. Köpf and Mantel give some improvements to Agat’s
approach based on code unification [KM06]. In a related line, Sabelfeld and Sands

2 Using Blast version 2.5

considered timing channels arising from concurrency, and made use of Agat’s
approach [SS00]. Approximate and probabilistic variants of these ideas have also
emerged [PHSW07,DHW08]. The problem with padding techniques in general is
that they do not change the fundamental structure of a leaky algorithm, but use
the “worst-case principle” [AS01] to make all computation paths equally slow.
For cryptographic algorithms this approach is probably not acceptable from a
performance perspective.

Hedin and Sands [HS05,Hed08] consider applying Agat’s approach in the
context of Java bytecode. One notable contribution is the use of a family of time
models which can abstract timing behaviour at various levels of accuracy, for
example to model simple cache behaviour or instructions whose time depends
on runtime values (e.g. array allocation). The definitions and analysis are param-
eterised over the time models. The control flow side channel model [MPSW05]
can be seen as an instance of this parameterised model.

More specific to the question of declassification and side channels, as we
mentioned above, [DHW08] estimates the capacity of a side channel – some-
thing which can be used to determine whether the leak is acceptable – and
propose an approximate version of Agat’s padding technique. Giacobazzi and
Mastroeni [GM05] recently extended the abstract noninterference approach to
characterising what information is leaked to include simple timing channels.
Their theoretical framework could be used to extend the present work. In par-
ticular they conclude with a theoretical condition which, in principle, could be
used to verify manifest declassifiers. Köpf and Basin’s study of timing channels
in synchronous systems[KB06] is the most closely related to the current paper.
They study a Per model for expressing declassification properties in a timed
setting – an abstract counterpart to the more programmer-oriented delimited
release approach used here. They also study verification for deterministic sys-
tems by the use of reachability in a product automaton – somewhat analogous
to our use of self composition. Finally their examples include leaks of hamming
weight in a finite-field exponentiation circuit.

9 Conclusions and Further Work

Reusing theoretical concepts and practical verification tools we have introduced
a notion of side channel declassification and shown how such properties can be
verified by a combination of simple transformations and application of off-the-
shelf software model checking tools. We have also introduced a new method to
specify side-channel declassification, manifest form, a form which makes the secu-
rity property explicit in the program structure, and makes verification simpler.
We have applied these techniques to verify the relative security of a number
of cryptographic algorithms. It remains to investigate how to convert a given
program into manifest form. Ideas from [MPSW05,LZ05] may be adaptable to
obtain the best of both worlds: a program without the overhead of manifest
form, but satisfying the same side-channel declassification property.

References

[Aga00] J. Agat. Transforming out timing leaks. In Proc. ACM Symp. on Principles
of Programming Languages, pages 40–53, January 2000.

[AS01] J. Agat and D. Sands. On confidentiality and algorithms. In Proc. IEEE
Symp. on Security and Privacy, pages 64–77, May 2001.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Jour-
nal of Computer and Telecommunications Networking, 48:701–716, 2005.

[BDR04] G. Barthe, P. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In Proceedings of CSFW’04, LNCS, pages 100–114. IEEE
Press, June 2004.

[CMCJ04] Benot Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low-cost solutions
for preventing simple sidechannel analysis: Side-channel atomicity. IEEE
Transactions on Computers, 53(6):760–768, 2004.

[Cor99] Jean-Sebastien Coron. Resistance against differential power analysis for
elliptic curve cryptosystems. In C .K. Koc and C. Paar, editors, Crypto-
graphic Hardware and Embedded Systems, pages 292–302, 1999.

[DHS03] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to
analysis of secure information flow. In Proc. Workshop on Issues in the
Theory of Security, April 2003.

[DHW08] A. Di Pierro, C. Hankin, and H. Wiklicky. Quantifying timing leaks and
cost optimisation. In 10th International Conference on Information and
Communications Security, ICICS 2008, volume 5308 of LNCS, pages 81–
96. Springer-Verlag, 2008.

[GM05] Roberto Giacobazzi and Isabella Mastroeni. Timed abstract non-
interference. In Formal Modeling and Analysis of Timed Systems, Third
International Conference, FORMATS 2005, Uppsala, Sweden, September
26-28, 2005, Proceedings, volume 3829 of LNCS, pages 289–303. Springer-
Verlag, 2005.

[GR06] B. S. Gulavani and S. K. Rajamani. Counterexample driven refinement
for abstract interpretation. In Proceedings of 12th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), March 2006.

[Hed08] Daniel Hedin. Program analysis issues in language based security. PhD the-
sis, Department of Computer Science and Engineering, Chalmers University
of Technology, 2008.

[HJMS03] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verifi-
cation with blast. In Proceedings of the Tenth International Workshop on
Model Checking of Software (SPIN), volume 2648 of LNCS, pages 235–239.
Springer-Verlag, 2003.

[HS05] D. Hedin and D. Sands. Timing aware information flow security for a
JavaCard-like bytecode. In First Workshop on Bytecode Semantics, Verifi-
cation, Analysis and Transformation (BYTECODE ’05), Electronic Notes
in Theoretical Computer Science (to appear), 2005.

[KB06] Boris Köpf and David A. Basin. Timing-sensitive information flow analysis
for synchronous systems. In Computer Security - ESORICS 2006, 11th Eu-
ropean Symposium on Research in Computer Security, Hamburg, Germany,
September 18-20, 2006, Proceedings, volume 4189 of LNCS, pages 243–262.
Springer-Verlag, 2006.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
Lecture Notes in Computer Science, 1666:388–397, 1999.

[KM06] Boris Köpf and Heiko Mantel. Eliminating implicit information leaks by
transformational typing and unification. In Formal Aspects in Security and
Trust, volume 3866 of Lecture Notes in Computer Science. Springer Verlag,
2006.

[Koc96] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Proc. CRYPTO’96, volume 1109 of LNCS,
pages 104–113. Springer-Verlag, 1996.

[Lam73] B. W. Lampson. A note on the confinement problem. Comm. of the ACM,
16(10):613–615, October 1973.

[LZ05] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference.
In Proc. ACM Symp. on Principles of Programming Languages, pages 158–
170, January 2005.

[MDS99] T.S. Messergers, E.A. Dabbish, and R.H. Sloan. Power analysis attacks on
modular exponentiation in smartcards, in cryptographic hardware and em-
bedded systems. In CHES 1999, volume 1717 of Lecture Notes in Computer
Science, pages 144–157. Springer Verlag, 1999.

[MPSW05] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The
program counter security model: Automatic detection and removal of
control-flow side channel attacks. In Information Security and Cryptology -
ICISC 2005, volume 3935 of Lecture Notes in Computer Science. Springer
Verlag, 2005.

[MS00] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of
simple power analysis on smartcards. In CHES, pages 78–92, 2000.

[PB02] Peter Puschner and Alan Burns. Writing temporally predictable code. In
7th IEEE International Workshop on Object-Oriented Real-Time Depend-
able Systems, 2002.

[PHSW07] Alessandra Di Pierro, Chris Hankin, Igor Siveroni, and Herbert Wiklicky.
Tempus fugit: How to plug it. J. Log. Algebr. Program., 72(2):173–190,
2007.

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE J. Selected Areas in Communications, 21(1):5–19, January 2003.

[SM04] A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Proc. International Symp. on Software Security (ISSS’03), LNCS. Springer-
Verlag, 2004.

[SS00] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded
programs. In Proc. IEEE Computer Security Foundations Workshop, pages
200–214, July 2000.

[SS05] Andrei Sabelfeld and David Sands. Dimensions and principles of declassi-
fication. In Proceedings of the 18th IEEE Computer Security Foundations
Workshop, pages 255–269, Cambridge, England, 2005. IEEE Computer So-
ciety Press.

[TA05] T. Terauchi and A. Aiken. Secure information flow as a safety problem.
In Proceedings of the 12th International Static Analysis Symposium, pages
352–367, 2005.

A Example Code Used in Experiments

In this appendix we present examples of the C code we have given to the software
model checkers in our verification experiments. The reason we have used inequalities
in the assertions is that the version of Dagger we used did not support equalities.

Listing 1 show the code corresponding to the modular exponentiation algorithm
shown in Figure 2, where we have verified transcript-security modulo the hamming
weight.

Listing 2 presents the code used to show that the hamming weight computation is
a sound manifest declassifier.

1 #inc l ude <assert.h>

2

3 i n t modularExponentiation () {

4

5 i n t m; // Length of the key

6 i n t x1; // The secret 1

7 i n t x2; // The secret 2

8

9 i n t d1[m]; //Key 1

10 i n t d2[m]; //Key 2

11

12 // Hamming computation 1

13 i n t hamming1 = 0;

14 i n t i = m - 1;

15 wh i l e (i >= 0) {

16 hamming1 += (d1[i] ? 1 : 0);

17 i--;

18 }

19

20 // Hamming computation 2

21 i n t hamming2 = 0;

22 i n t i = m - 1;

23 wh i l e (i >= 0) {

24 hamming2 += (d2[i] ? 1 : 0);

25 i--;

26 }

27

28 // PROGRAM COPY 1

29 i n t t1 = 0;

30 i n t r1 = 1;

31 i n t i = m - 1;

32 i n t k = 0;

33 wh i l e (i >= 0) {

34 t1++;

35 r1 = r1 * (k ? x1 : r1);

36 k = k ^ d1[i];

37 i = i - (k ? 0 : 1);

38 }

39

40 // PROGRAM COPY 2

41 i n t t2 = 0;

42 i n t r2 = 1;

43 i n t i = m - 1;

44 i n t k = 0;

45 wh i l e (i >= 0) {

46 t2++;

47 r2 = r2 * (k ? x2 : r2);

48 k = k ^ d2[i];

49 i = i - (k ? 0 : 1);

50 }

51

52 i f (hamming1 <= hamming2 && hamming1 >= hamming2) {

53 assert(t1 <= t2);

54 assert(t1 >= t2);

55 }

56

57 r e tu rn r1;

58 }

Listing 1. Verification code for modular exponentiation

1 #inc l ude <assert.h>

2

3 i n t hammingManifest () {

4

5 i n t m; // Length of the key

6

7 i n t d1[m]; //Key 1

8 i n t d2[m]; //Key 2

9

10 // HAMMING COPY 1

11 i n t i = m - 1;

12 i n t hamming1 = 0;

13 wh i l e (i >= 0) {

14 hamming1 += (d1[i] ? 1 : 0);

15 i--;

16 }

17

18 // HAMMING COPY 2

19 i n t i = m - 1;

20 i n t hamming2 = 0;

21 wh i l e (i >= 0) {

22 hamming2 += (d2[i] ? 1 : 0);

23 i--;

24 }

25

26 // HAMMING^T COPY 1

27 i n t i = m - 1;

28 i n t hamming3 = 0;

29 i n t t1 = 0;

30 wh i l e (i >= 0) {

31 hamming3 += (d1[i] ? 1 : 0);

32 i--;

33 t1++;

34 }

35

36 // HAMMING^T COPY 2

37 i n t i = m - 1;

38 i n t hamming4 = 0;

39 i n t t2 = 0;

40 wh i l e (i >= 0) {

41 hamming4 += (d2[i] ? 1 : 0);

42 i--;

43 t2++;

44 }

45

46 i f (hamming1 <= hamming2 && hamming1 >= hamming2) {

47 assert(t1 <= t2);

48 assert(t1 >= t2);

49 }

50

51 r e tu rn 1;

52

53 }

Listing 2. Verification code for the hamming weight declassifier

B Another Example of Manifest Form

Here we present another example of an algorithm in manifest form written in C. It is
taken from [CMCJ04](figure 4a) and is a two bit sliding window algorithm for modular
exponentiation.

1 // m : Length of the key

2 // x : The secret

3 // d : The key , padded to length m+1

4

5 // DECLASSIFIER

6 i n t k = 1;

7 i n t i = m;

8 i n t s = 1;

9 i n t l = 0;

10 wh i l e (i >= 0) {

11 k = (s ? 0 : 1) * (k+1);

12 s = s ^ d[i+1] ^ (d[i] & (k % 2));

13 i = i - k*s - (d[i] ? 0 : 1);

14 l = l + 1;

15 }

16

17

18 //MAIN PROGRAM

19 i n t R[3];

20

21 R[0] = 1; R[1] = x; R[2] = x * x * x;

22 d[0] = 0;

23 i n t k = 1;

24 i n t i = m;

25 i n t s = 1;

26 i n t j = l;

27

28 wh i l e (j >= 0) {

29 k = (!s) * (k+1);

30 s = s ^ d[i+1] ^ (d[i] & (k % 2));

31 R[0] = R[0] * R[k*s];

32

33 i = i - k*s - (!d[i]);

34 j = j - 1;

35 }

36

37 r e tu rn R[0];

