Possibilities and Limitations of Call-by-Need Space
Improvement °

Jorgen Gustavsson
www.cs.chalmers.se/"gustavss

ABSTRACT

Innocent-looking program transformations can easily change
the space complexity of lazy functional programs. The the-
ory of space improvement seeks to characterise those lo-
cal program transformations which are guaranteed never to
worsen asymptotic space complexity of any program. Previ-
ous work by the authors introduced the space improvement
relation and showed that a number of simple local trans-
formation laws are indeed space improvements. This paper
seeks an answer to the following questions: is the improve-
ment relation inhabited by interesting program transforma-
tions, and, if so, how might they be established? We show
that the asymptotic space improvement relation is semanti-
cally badly behaved, but that the theory of strong space im-
provement possesses a fixed-point induction theorem which
permits the derivation of improvement properties for recur-
sive definitions. With the help of this tool we explore the
landscape of space improvement by considering a range of
classical program transformations.

1. INTRODUCTION

Consider the following equivalence for a pure functional
language: ¢+y = y+x. How does this affect the space com-
plexity of a program? Of course, it depends on the program
— and the language. In a lazy functional language the trans-
formation is not space safe; there are programs for which
this innocent-looking transformation will change their space
complexity. Now consider the following family of Haskell
programs, indexed by some integer n:

let zs = [1..n]; z = head zs ; y = last zs
inc+y

If addition is evaluated from left-to-right then this program
runs in constant space. First z is evaluated to obtain 1, then

*An extended version of this article is available from
www.cs.chalmers.se/“gustavss. Authors address: Depart-
ment of Computing Science, Chalmers Univertity of Tech-
nology and Goteborg University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICFP’01, September 3-5, 2001, Florence, Italy.

Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

David Sands
www.cs.chalmers.se/"dave

y is evaluated, which involves constructing and traversing
the entire list [1..n]. Fortunately, the combination of lazy
evaluation, tail recursion and garbage collection guarantees
that as this list is constructed and traversed it can also be
garbage collected, and thus the computation requires only
constant space. But if z+y is replaced by y+z the space re-
quired is O(n). This is because when y builds and traverses
the list [1..n], the elements cannot be garbage-collected be-
cause the whole list is still live via the occurrence of zs in
the body of . So we can conclude that replacing z + y by
y—+x can give an asymptotic change in space behaviour —i.e.,
there is no constant which bounds the potential worsening in
space when this law is applied in an arbitrary context. The
example is taken from our previous work [10], and serves to

e illustrate the subtleties of space behaviours of lazy
functional programs®, and to

e motivate the study of the class of program transfor-
mations which are space-safe.

To this end, we introduced a space-improvement relation on
terms, which guarantees that whenever M is improved by
N, replacement of M by N in a program can never lead to
asymptotically worse space (heap or stack) behaviour, for a
particular model of computation and garbage collection.

Space improvement guarantees, by construction, that it
never worsens the space complexity of a program. But
given the previous example, it is not immediately clear that
there are any interesting transformations which are space
improvements. In the previous work we showed that there
are indeed transformation laws which are improvements. 2
For example, the beta-var transformation between (Az.M)y
and M|[Y/;] is shown to be a space improvement.

But the previous work did not provide any principles for
establishing properties of recursive functions (other than a
general context lemma), and did not yield any improve-
ment examples beyond those obtainable by composing sim-
ple laws. This paper seeks an answer to the following ques-
tions: is the improvement relation inhabited by interesting
program transformations, and, if so, how might they be es-
tablished? For example, is the associativity property of list

!Under call-by-value there is no problem: both programs
have O(n) space complexity — although one can construct
similar examples for call-by-value.

*We also showed how space improvement could be used indi-
rectly to verify the space-safety of inlining transformations
which make use of certain single-usage type systems, but
this application is somewhat orthogonal to the concerns of
the present paper, since it deals with a global program trans-
formation.

concatenation a space improvement in either direction? Are
typical tail recursion optimisations space safe? Although the
asymptotic space improvement relation, weak improvement,
is semantically badly behaved, the theory of strong space im-
provement possesses a fixed-point induction theorem which
permits the derivation of improvement properties for recur-
sive definitions. With the help of this tool we explore the
landscape of space improvement by considering a range of
classical program transformations, and uncovering a num-
ber of fundamental limitations to what can be achieved by
local improvement.

Overview The remainder of the article is organised as fol-
lows. Section 2 gives the syntax and operational semantics
of our language. Section 3 defines what we mean by the
space-use of programs, in terms of a definition of garbage
collection for abstract-machine configurations. Section 4
defines the main improvement relation, weak improvement,
and presents the basic laws and properties of this relation.
Section 5 describes a finer-grained improvement relation,
strong improvement, and establishes a fixed-point induction
principle. Section 6 applies the theory to investigate a
range of transformations. Section 7 describes related work
and concludes.

2. OPERATIONAL SEMANTICS

Our language is an untyped lambda calculus with recur-
sive lets, structured data, case expressions, bounded integers
(ranged over by n and m) with addition and a zero test. We
work with a restricted syntax in which arguments to func-
tions (including constructors) are always variables:

L M,N:u:=z|Xe.M|Mz|ci|seqMN
| n|M+ N |add,M | iszero M
| let {# = M} in N |case M of {¢; Zi~N;}

The syntactic restriction is now rather standard, following
its use in core language of the Glasgow Haskell compiler,
e.g., [22, 23], and in [14, 28]. In examples we will some-
times use unrestricted application M N as syntactic sugar
for let {x = N} in M & where z is a fresh variable. Simi-
larly for constructor expressions.

All constructors have a fixed arity, and are assumed to be
saturated. By ¢# we mean czy - -+ ,. Throughout, z,y, 2z
etc., will range over variables, ¢ over constructor names, and
V and W over values (Az.M | cZ | n). We will write

let {§ =M} inN

as a shorthand for let {x; = Mi,...,z, = M,} in N where
the & are distinct, the order of bindings is not syntactically
significant, and the & are considered bound in NV and the M
(so our lets are recursive). Similarly, case M of {c; £;—>N;}
is a shorthand for

case M of {c1 T1>Ni|---|cm Em—Nm}.

where each Z; is a vector of distinct variables, and the ¢; are
distinct constructors. In addition, we will sometimes write
alts as an abbreviation for case alternatives {c; Z;—N;}.
Our integers are bounded (i.e., for an integer n, MININT <
n < MAXINT) so that they can be represented in constant
space. For simplicity, no exception occurs at overflow. In-
stead the result wraps as in e.g., C. The functions add,, are
included for convenience in the definition of the abstract

machine, and represent an intermediate step in the addition
of n to a term.

The only kind of substitution that we consider is variable
for variable, with o ranging over such substitutions. The
simultaneous substitution of one vector of variables for an-
other will be written M[¥/z], where the & are assumed to be
distinct (but the ¥ need not be).

2.1 The Abstract Machine

The semantics presented in this section is essentially Ses-
toft’s “mark 1”7 abstract machine for laziness [28]. Transi-
tions are over configurations consisting of a heap, contain-
ing bindings, the expression currently being evaluated, and
a stack. We write (I', M, S') for the abstract machine con-
figuration with heap I', expression M, and stack S. A heap
is a set of bindings; we denote the empty heap by 0, and
the addition of a group of fresh bindings £ = M to a heap
I by juxtaposition: I'{Z = M}. The stack written b : .S will
denote the stack S with b pushed on the top. The empty
stack is denoted by e.

Stack elements are either:

e a reduction context, or

e an update marker #x, indicating that the result of the
current computation should be bound to the variable
z in the heap.

The reduction contexts on the stack are shallow contexts
containing a single hole in a “reduction” position - i.e. in a
position where the current computation is being performed.
They are defined as:

R:=[]|z | case [] of {c; Z;»N;} |seq[| M
[]+ M | add,[] | iszero []

We will refer to the set of variables bound by I" as domT',
and to the set of variables marked for update in a stack S
as dom S. Update markers should be thought of as binding
occurrences of variables. A configuration is well-formed if
domT and dom S are disjoint. We write dom(T", S) for their
union. For a configuration (I', M, S) to be closed, any free
variables in I, M, and S must be contained in dom(T, S).
The free variables of a term M will be denoted FV(M); for
a vector of terms M, we will write FV(J).

The abstract machine semantics is presented in Figure 1;
we implicitly restrict the definition to well-formed closed
configurations.

The first group of rules are the standard call-by-need rules.
Rules (Lookup) and (Update) concern evaluation of vari-
ables. To begin evaluation of x, we remove the binding
x = M from the heap and start evaluating M, with z,
marked for update, pushed onto the stack. Rule (Update)
applies when this evaluation is finished, and we may update
the heap with the new binding for . Rule (Letrec) adds a
set of bindings to the heap.

The basic computation rules are captured by the (Push)
and (Reduce) rules schemas. The rule (Push) allows us to
get to the heart of the evaluation by “unwinding” a shallow
reduction context. When the term to be evaluated is a value
and there is a reduction context on the stack, the (Reduce)
rule is applied.

3. SPACE USE AND GARBAGE COLLEC-
TION

(T{e =M}, 2, S) > (D, M, #z:S) (Lookup)
(T, V, #z:S) > (T{z =V}, V, S) (Update)
(T,letT"in N, S) = (IT', N, S) (Letrec)
(T, RIM], Sy > (', M,R:S) (Push)
(D, V,R:S)—= (', M, S) ifR[V]~M
(Reduce)
(Az. M)y ~ MY/
case ¢j § of {c; Ei->M;} ~> M; [?7/5]]
seqV M~ M
m+ N ~~ add,, N
add,,n ~» "m 4 n?
itm=0

. true
iszerom ~» .
false otherwise

Figure 1: Abstract machine semantics

A desired property of our model of space-use is that it
is asymptoticly correct with respect to actual implementa-
tions. Unfortunately, different abstract machines and garbage

collection strategies differ in their asymptotic space behaviour.

Given the different space behaviours of different implemen-
tations there is no hope that we can construct a theory which
applies to all implementations. Although we will choose a
particular model of space use we believe that most of the re-
sults and techniques developed in this paper can be adapted
to any reasonable model. In [9] we discuss some of the subtle
ways in which different abstract machines and implementa-
tions described in the literature differ from our model and
each other. Bakewell and Runciman [2] focus on techniques
for comparing different evaluators.

Another point of dispute is whether to distinguish between
heap and stack space. Many implementations allocate sep-
arate memory for the heap and the stack, but in principle
the stack and the heap can share the same memory. So,
should a transformation which trades heap for stack, or vice
versa, be rejected? And do such transformation show up “in
practice”? We focus mainly on a theory which keeps stack
and heap usage separate. However, we will see examples of
transformations which usefully trade stack for heap.

3.1 Measuring space

We measure the heap space occupied by a configuration
by counting the number of bindings in the heap and the
number of update markers on the stack. We count update
markers on the stack as also occupying heap space, since in
a typical implementation an update marker refers to a so-
called “blackhole closure” in the heap — a placeholder where
the update eventually will take place. We will count every
binding as occupying one unit of space.

In practice the size of a binding varies since a binding is
typically represented by a tag or a code pointer plus an en-
vironment with one entry for every free variable. However,
the right hand side of every binding is a (possibly renamed)
subexpression of the original program, (a property of the se-

mantics sometimes called semi-compositionality) so count-
ing it as occupying one unit of space gives a measure which
is within a constant factor (depending only on the program
size) of the actual space used. Integers are an exception to
this claim, but recall that our integers are bounded so they
can also be represented in a constant amount of space.

‘We measure stack space by simply counting the number of
elements on the stack, so an update marker will be viewed
as occupying both heap and stack space. In practice ev-
ery element on the stack does not occupy the same amount
of space, but again, semicompositionality of the abstract
machine assures that our measure is within a program-size-
dependent constant factor. The size of a configuration, writ-
ten [(I', M, S)| is a pair (h,s) where h and s is the amount
of heap and stack respectively occupied by the the configu-
ration.

3.2 Garbage collection

We cannot reason about space usage without modelling
garbage collection. During a computation, garbage collec-
tion allows us to decrease the amount of space used by a
configuration. It is modelled simply by the removal of any
number of bindings and update markers from the heap and
the stack respectively, providing that the configuration re-
mains closed.

DErFINITION 3.1 (GC). Garbage collection can be ap-

plied to a closed configuration (T, M, S) to obtain (I, M, S"),

written (T, M, SYy>(T', M, S") if and only if (T, M, S)
18 closed, and can be obtained from (L', M, S} by removing
zero or more bindings and update markers from the heap and
the stack respectively.

This is an accessibility-based definition as found in e.g., the
ge-reduction rule of [20]. The removal of update-markers
from the stack is not surprising given that they are viewed
as the binding occurrences of the variables in question.

We are now ready to define what it means for a compu-
tation to be possible in certain fixed amount of space.

DEFINITION 3.2 (CONVERGENCE IN FIXED SPACE).

1. 5 sy sy defn s nd 12| < (h,s).

2. () & ype reflerive and transitive closure of the
relational composition of ™% and >.
3. (T, M, S)n,e) = 3A, V.
(T, M, S) =) (A, V, e) and (A, V, €)| < (h,5).
4 Mns) = (0, M, €)hins).
We read M, sy as M can converge within (h,) space, i.e.,
the maximum heap, and stack is less than or equal to h and
s respectively.

4. WEAK IMPROVEMENT

In the previous section we defined a notion of space which
we believe is realistic in the sense that an actual implemen-
tation (using our reasonably aggressive garbage collection)
will require space within a constant factor of our abstract
measure, where the constant depends on the size of the pro-
gram to be executed.

In this section we define space improvement within a con-
stant factor — what we will simply refer to as Weak Improve-
ment — which says that if M is improved by N, replacing M
by N in any program context will never lead to more than
a constant factor worsening in space behaviour, where the
constant factor is independent of the context.

The starting point for an operational theory is usually an
approximation and an equivalence defined in terms of pro-
gram conterts. Program contexts are usually introduced as
“programs with holes”, the intention being that an expres-
sion is to be “plugged into” all of the holes in the context.
The central idea is that to compare the behaviour of two
terms one should compare their behaviour in all program
contexts.

We will use contexts such that holes may not occur in
argument positions of an application or a constructor, for if
this were the case, then filling a hole (with a non variable)
would violate the syntax. Contexts may contain zero or
more occurrences of the hole, and as usual the operation of
filling a hole with a term can cause variables in the term to
become captured. We will write C[M] for filling the holes in
C with M and we will write CV(C) for the variables which
may be captured by filling the holes in C.

DEFINITION 4.1 (WEAK IMPROVEMENT). We say that
M is weakly improved by N, written M % N, if there exists
a linear function f € N — N such that for oll C, o such that
C[Mo] and C[Na] are closed,

ClMalbn,s)y = C[Nollsn),fes)-

So M g N means that N never takes up more than a con-
stant factor more space than M (but it might still use non-
constant factor less space). We write M £ N to mean that

M R N and N B M. In [10] we established a number of
properties and laws for weak improvements. We recite two
of them here.

PROPOSITION 4.1 (PRECONGRUENCE[10]).
% 18 a precongruence — i.e., it is a transitive and reflezive
relation which is preserved by contexts and substitutions.

The following property is fundamental, and highlights the
significance of free variables in this theory:

THEOREM 4.2 (FREE VARIABLE PROPERTY[10]).
MR N = FV(M) D FV(N).

Free variables are significant because they can have an ef-
fect on the space usage of a program even when they are
semantically “dead code”.

4.1 Limitations of Weak Improvement

A standard result for any operational theory is a context
lemma [16]. A context lemma in this case would establish
that to prove that M is weakly improved by N, one only
needs to compare their behaviour with respect to a much
smaller set of contexts, namely the context which immedi-
ately need to evaluate their holes.

Despite our efforts, in [10] we were not able to prove the
context lemma. The reason is that the context lemma, as
we envisage it, does not hold for weak improvement:

THEOREM 4.3 (FAILURE OF THE CONTEXT LEMMA).
There exist terms M and N with FV(M) D FV(N) and a

linear function f such that for every I', S and o,
(L, Mo, SNn,s)y = (T, Noy, SNrn),£s))>

but where M z N.

The proof can be found in [9].

4.2 Fixed Point Approximation

It is typical in semantics to characterise recursion in terms
of the “finite approximations” of recursive definitions. This
approach is built in to the Scott-style denotational semantics
approach where recursion is modelled by a least fixed point
construction. The essence of this approach can be expressed
in a purely operational setting. See e.g. [29, 15].

The natural formulation of the least fixed-point property
also fails to hold for weak improvement (a precise formu-
lation can be found in [9]). Intuitively the reason for this
failure is that once we fix an unwinding we may be able to
find a constant factor that bounds the space difference, but
we can’t find a single constant factor that works for all un-
windings. Fortunately it does hold for a stronger notion of
improvement introduced in the next section.

S. STRONG IMPROVEMENT

The failure of the context lemma and the fixed-point ap-
proximation property give a very concrete motivation for
studying a stronger relation, strong improvement:

DEFINITION 5.1 (STRONG IMPROVEMENT).
M is strongly improved by N, written M B> N, if for all C,
o such that C[Mo] and C[No] are closed,

ClMolln,s)y = CINolln,s)-

We write M <> N to mean that M > N and N > M.
Although the definition of strong improvement is some-
what arbitrary — since it deals with constant factors for a
high-level abstract machine — it provides a practical means
to establish weak improvement laws, since whenever M > N

then clearly M g N. In this section we present some of the
basic properties of strong improvement, and our key tech-
nical result: a fixed-point approximation theorem for estab-
lishing improvement properties of recursive definitions.

We begin with some technical developments which are
necessary to support reasoning about strong improvement.
For strong improvement we have also established a context
lemma [16]: to prove that M is strongly improved by N,
one only needs to compare their behaviour with respect to
a much smaller set of contexts, namely the context which
immediately need to evaluate their holes.

LEMMA 5.1 (CONTEXT LEMMA [10]). For all M and N
such that FV(M) D FV(N), if for alliT, S and o,
(T, Ma, SHn,s)y = (T, No, S n,s) then M > N.

With help of the context lemma we have established a set of
basic laws of strong improvement. The laws were presented
in [10] and we will not reproduce them here.

5.1 The Space Gadgets

The space gadgets are syntactic means to represent and
control the space properties of terms. They play a crucial
role in strong improvement calculations. We describe each
gadget in turn.

Dummy References The use of dummy references allows
one to make assertions about, and to modify the liveness
properties of variables. To this end we introduce the follow-
ing notational extension, terms of the form * M where X
is a multiset of variables. The construct is representable in
the language and is defined thus

def

@ et {f=2} inM where ¢ are fresh.
Hence X M behaves as M but in addition holds on to the
variables in X until the evaluation of M starts. If X would
range over a set, rather than a multiset, then the notation
would not be well defined with respect to substitution.

Dummy references can express certain liveness properties.
For example, if C[M] > C[{*} M] then we know that y is
still live at the occurrence of M. Among other things we
will use dummy references to control the life time of dummy
bindings, i.e., bindings which play no role in the term but to
take up space. To add dummy bindings is harmless in the
weak theory as long as their life time is coupled to another
binding.

LEMMA 5.2 (DuMMY BINDING INTRODUCTION).
let {x =M} in N Tlet {z=0Q,z= ZIMY in N,z fresh

Spikes Spikes are amortisation device which allow us to
represent a very short-lived space usage — a spike in the
space-usage profile. Spikes come in two varieties, heap spikes
and stack spikes.

The stack spike is defined thus

"M < case true of {true—M}

It has the short-lived effect of increasing the stack usage by
one unit, at the moment that M is about to be evaluated. To
see how stack spikes are used, consider how one might prove
the (restricted) beta-reduction cost equivalence (Az.M)y &
M{¥/z]. To do this we use strong improvement. The context
lemma makes it easy to establish that (Az.M)y > M[¥Y/;].
The converse direction also holds within a constant factor
(under the assumption that y occurs free in M[Y/,]). The
only difference when going from the right-hand side to the
left is that the left hand side will momentarily use up one
stack unit more than the right-hand side. To prove that
M[Y/z] B (Az.M)y we use the context lemma to show that

TMYfgl B e M)y if y € FV(M[Yfz]).

All that is left is to establish that spike introduction is
harmless in the weak theory:

LEmMMA 5.3 (SPIKE INTRODUCTION [10]). M & "M.

The heap spike is the heap analogue of the stack spike; it
momentarily increases the size of the heap at the point in
time when the term is ready to be evaluated.

AM etz =Qin Bty where z is fresh

Heap spikes are also harmless in the weak theory, i.e., M &
A
M.

Weights The most complex gadgets are the weights®. Weights

are more involved because they cannot be defined in terms

3 A generalisation of the ballasts from [10].

of existing language constructs, but must be added as a col-
lection of term-annotations with a specially defined space-
semantics.

In our definition of space use we count every entity on the
stack or on the heap as occupying exactly one unit of space,
a choice justified by our desire to ultimately reason about
asymptotic behaviour. But it turns out to be crucial to be
able to selectively choose exactly how much space each entity
shall account for — i.e., what the weight of the entity should
be. Consider, for example, the following weak equivalence
law for reduction contexts:

Rlcase M of {pat;~>N;}] & case M of {pat,~R[N;l]}

It is not a strong space equivalence since the left hand side
takes up more space: while M is being evaluated, both R
and the case-alternatives take up stack space (2 units of
space). In the right hand side, while M is being evaluated
there is just a single set of case alternatives (1 unit of stack
space). We can compensate for this, and simplify our calcu-
lations, if we count the case in the right hand side as occu-
pying two units of stack, which we denote by the following
weight annotation:

R[case M of {pat,~N;}] < *case M of {pat,~R[N;]}

This is not the only form of weight, but before we consider
further examples we will sketch the semantics of weights.

We will annotate every entity on the heap and the stack
with a weight w > 0. Binding occurrences of variables, in-
cluding update markers (which are considered to take up
both heap and stack space, see Section 3.1) are annotated
with two weights, one for the heap and one for the stack.
The space consumption of each entity is given by the follow-
ing:

vz =M|=@0) [“Rl=0w) |#2=(,w)

So the upper weight of the binder is the stack weight, in-
curred when the update marker is on the stack; the lower
weight is the heap weight — the size of the binding on the
heap.

Note that weights may be zero so we can specify that an
entity shouldn’t be counted for at all. An entity without
a weight annotation will now be taken as shorthand for a
weight of 1. The weight on bindings and stack elements
originate from annotation in the program. Our annotated
term language is

L M,N:u=zx|Xe.M|¥“(Mz)|cZ|“(seq M N)
| n|¥(M+"'N)|*(addnM) | ¥(iszero M)
| let {nm'l.’liz = Mi}iel in N
| “(case M of {c; Zi—~N;}).
Weights on binding occurrences of variables are perma-
nent. The only rule which eliminates weights (garbage col-
lection excepted) is

(T, “R[M], S) = (T, M, “R: S)
(T,V,“R:S8)— (T, M, S) if R[V]~ M

(Push)
(Reduce)

Of course, weights have no intrinsic interest for program-
mers — they are a bookkeeping mechanism which we use to
syntactically account for certain forms of space usage. As
with spikes, a crucial property of weights is that they in-
crease space use in the strong theory but do not change
space behaviour by more than a constant factor:

LEMMA 5.4. For v,w > 0,

1. R[M] & “R[M].

2. (M +N) &L ™(M+"N).

3. let {z =M} in N &let I'{Jz= M} inN.

Zero weights or “balloons” play a special role, and must be
handled with care. A zero weight permits costs to be hidden.
This is very useful in strong improvement calculations since
it cuts down significantly on the “noise” of weight bookkeep-
ing. However, adding zero-weights is potentially unsound,
since we might end up hiding an asymptotic amount of space
usage. In other words, we cannot arbitrarily introduce zero
weights in the weak improvement theory (c.f. Lemma 5.4).
There are two ways in which we can justify zero-weight in-
troduction. The first is if an entity is short-lived so that it
can’t affect the asymptotic space behaviour. We will heavily
use two instances of this: that the update marker weight of
a value binding can be safely ignored and that the weight
of a stack frame associated with an application of a known
function can be ignored. This is because its lifetime on the
stack is only one computation step.

LEMMA 5.5 (BALLOON INTRODUCTION).

Llet{fz=V}inNZlet {®z=V}in N
2. AzM)y & O((\z.M)y)

We will use zero-weights on applications often so we intro-
duce an abbreviation and write M-z for (M z). The second
way that we introduce zero weights is via a “top-level” as-
sumption. It is safe to introduce zero weights to bindings
which will not be allocated multiply. Unfortunately this is
not a property that holds in all contexts, but is still rea-
sonable. For example, functions from a standard library are
typically allocated just once — i.e. they are top level def-
initions. If a function is defined at top-level then setting
heap-weight to zero can have at most a constant factor ef-
fect:

LEMMA 5.6. For every I' there exist k such that for every
M, if let {A} in M6y then let {T'} in MU (ptr,s), where
A is the result of setting all heap weights on bound variables
in I' to zero.

Finally, we note that with the help of weights we can
increase the size of the stack and heap spikes:

"M % "case true of {true~M}

def

"AME et o= Qin M where z is fresh

Now that we have our space gadgets we will use them both
in the next section to develop our main technical result,
a fixed-point induction principle, and also to apply it to
concrete examples in the following section.

5.2 Fixed-Point Induction

In this section we introduce the least fixed-point property
for strong improvement, which will provide the principal tool
for reasoning about the relative space behaviour of recursive
functions, a simple form of fixed-point induction.

We start at the bottom. A consequence of Theorem 4.2 is
that there is no bottom element in the space-ordering rela-
tion, since divergent terms containing different numbers of

free variables are not cost equivalent — simply because when
placed in a program context, their free variables can affect
the amount of live data, and hence the space. The more
free variables a divergent term contains the more space it
can retain, and hence the lower in the improvement order-
ing it sits. This is significant when we define the notion of a
chain of finite unwindings of a recursive definition. Usually
the first approximation in such a chain is the bottom ele-
ment but here we need to start from a divergent term with
the right amount of free variables.

We are now ready to define precisely the finite unwindings
of a recursive definition.

DEFINITION 5.2 (FINITE UNWINDINGS). LetV be a value
context with at least one occurrence of the hole. We define
let {3/ f = V[f]} in C[f"] inductively by the following clauses:

let {%'f = V[f]} in C[£°] = let {I/f = V[f]} in C[/}Q)]
let {¥f = V[f]} in C[f"™] = let {¥f = V[f]} in C[*"V[f"]]

Using the results from [10] it is easy to show that the ap-
proximations form an improvement chain: For all 0 < i < j

let {3/ f = V[f]} in C[f'] & let {3/ f = V[f]} in C[f']
and that let {{ f = V[f]} in C[f] is an upper bound of the
chain - i.e., for all 4,

let {3 f = V[f]} in C[f'] & let {'f = V[f]} in C[f].

The crucial property of strong improvement is that the re-
lation is continuous with respect to unwinding of recursion.
The definition of f is the least upper bound of this chain.

THEOREM 5.7 (SYNTACTIC CONTINUITY).
let {'f = VI[fl} in Clf]R M
Vn.let {¥f = V[f]} in C[f"] & M

The theorem forms the basis of the fixed-point induction
technique which we spell out at the end of the section. A
proof can be found in [9].

5.3 Derivations in Context

We will often express properties which are relative to a
fixed set of function definitions. It is cumbersome to carry
such definitions in explicit let-terms, so we adopt a useful
notation for derivations in context:

DEFINITION 5.3. We write ' = M > N as an abbrevia-
tion for the following property: For allT', C and o, if

e domT"NdomT = 0,
¢ CV(C)N (domT UFV(T)) = 0 and
e doma N (domT U FV(T)) =0,
then let {TT'} in C[Mo] & let {TT'} in C[Na].
We will write a derivation
T Mo My B> My B> ...

to mean I' - Mo > M; and I' = M; B> M> and so on. These
contextual judgements satisfy a number of simple properties
which facilitate their use.

PROPOSITION 5.8. The following proof rules are sound:

M>N TFMB>N THNDL
‘TrMeN * TFMBL
rFMB>N domI" NdomT =@
* IT'FMB N
'r-M>N CV(€)N(domTUFV(T)) =0
¢ T+ C[M] > C[N]
'FMB>N domo N (domTUFV(T)) =0

Tk Mo > No

We also extend our notation for finite unwindings in the
obvious way and write I' + C[f"] for the n’th unwinding of
f (where f is bound in T).

With the above notation and properties we have the fol-
lowing simple corollary of syntactic continuity, expressed in
an informal natural-deduction style.

COROLLARY 5.9
ing proof rule is sound:
ECif" 1B M
THCfI>M Vn :
L+Clf" > M
TFClflg M

That is to say, if we can establish T' + C[f°] > M and
that under the assumption that I' b C[f"] &> M for some
arbitrary n we can show I' + C[f"*'] > M, then it holds
that T' + C[f] & M.

6. POSSIBILITIES AND LIMITATIONS

Armed with a means to establish improvement properties
for recursive functions, in the rest of this paper we will inves-
tigate the possibilities and limitations of space improvement.

The requirement is that transformed programs should im-
prove on the space behaviour in all contexts. Are there any
interesting transformations which are space improvements?
In this section we present examples of some standard pro-
gram transformations, and show how space improvement
can be established using the tools from the previous sec-
tions. The results are not all positive; we will also show
that there are many transformations that are not space im-
provements.

Case Study 1: Cyclic Structures

We will start with a very simple and intuitive space improve-
ment which serves, above all else, to illustrate the use of the
fixed-point induction method. We will show that the cyclic
data structure zs = x : £s improves on the non-cyclic struc-
ture that is generated by repeat x where repeat is defined
as

repeat = Ax.let {ys = repeat x} in x : ys.

Using fixed-point induction we will prove a strong improve-
ment property from which the desired weak improvement
follows directly.

PROPOSITION 6.1.
T+ let {zs = repeat z} in M D> let {zs =z : xs} in M
where ' contains the definition of repeat.

(FIXED POINT INDUCTION). The follow-

PRrROOF. We proceed by fixed-point induction over the defini-
tion of repeat. The base case is trivial and has been omitted.
The following derivation shows the inductive step, where we
have elided steps which only manipulate spikes.
T Flet {zs = repeat™ ' 2} in M
=let {zs

D> let {zs

Y(Az.let {ys = repeat” x} inx : ys)x} in M

let {ys = repeat™ x} inz : ys} in M

Dlet {zs =let {ys=x:ys} inz:ys}inM
>let {zs =z :as} in M

Case Study 2: Intermediate Data Structures

Our next example concerns intermediate data structures
produced by a definition of the Haskell prelude function
any.* The function takes two arguments: a predicate p
and a list zs and tests whether any of the elements of the
list fulfils the predicate. The function can be defined in a
direct recursive style:

any pzs = case xs of
nil - false

y:ys—pyllanypys

where || is the infix logical or operator. However in the
Haskell report [13] any is defined in an elegant combinator
style:

any' p = or o mapp
where or is defined as
or = foldr (||) false

Apart from the stylistic differences, there is a key opera-
tional difference between the two definitions. The latter,
when applied to p and zs, builds a list map p zs. Interest-
ingly, several discussions on the Haskell mailing list where
concerned about the efficiency of the latter definition. In
particular, that the construction of the list would lead to a
space leak proportional to the length of the list. The replies
on the mailing list were of two kinds. The first kind empha-
sised that the definition in the Haskell report should be seen
as a specification (a reference implementation) of only the
extensional behaviour of any. A particular code distribution
would be free to provide the presumably more efficient def-
inition of any. A clever compiler might even automatically
derive it using deforestation [32]. The second kind of reply
appealed to the folklore of call-by-need: the list is only an
intermediate data structures and the two definitions have
the same asymptotic space behaviour. The following result
confirms the folklore.

PROPOSITION 6.2. T'F anypas T any’ pas

where T' contains the definitions of any and any’ (and the
definitions of the other functions they rely on).

The relevance of the result is twofold. Firstly, the definition
in the Haskell report is at most a constant factor worse than
the direct recursive definition so it serves perfectly well as
a reference implementation with respect to space use. Sec-
ondly, a compiler which replaces the latter definition with

4The example and its space properties were discussed on the
Haskell mailing list in January 2001 (www.haskell.org).

the former doesn’t risk to introduce a space leak in some
weird case. This might seem obvious at first thought but
having worked with space improvement for a while we have
learnt to not jump to such conclusions.

Let us sketch the proof of Proposition 6.2. As you would
expect the proof is via a strong improvement. However the
proof is considerably more involved than our previous ex-
ample because we cannot show the strong improvement

T+ anypzs < any' pxs

because any and any’ use different amounts of space — al-
though the difference is within a constant factor. The solu-
tion is to introduce alternative definitions of any and any’
which we will call any, and any/, respectively such that

'k anypuws T any,prs T any;pws < any’ pxs.

To come up with the definitions of any, and any, is non
trivial and requires some creativity and/or hard work. Our
experience has led us to the following methodology: We
modify the original definitions in a way such that

e the modified definitions are weakly equivalent to the
original definitions, and

e we can show it just using the laws of weak improvement
without the need of fixed-point induction.

The modifications are of two kinds:

e First, wherever it can be justified, we put in zero weights
on short-lived structures such as arguments to known
functions. This reduces the “noise” from the compu-
tations and is sometimes necessary to make the defini-
tions strongly equivalent. It also vastly simplifies the
proof of the strong improvement since it eliminates lots
of spikes that would otherwise clutter the derivations.

e Second, more difficult step: whenever the two origi-
nal definitions have a different space behaviour mod-
ulo “noise”, we level them up by adding spikes, dummy
bindings and extra weights. However when we do this
we have to be careful to not increase space use by more
than a constant factor.

Let us return to our example. In the first step we add zero
weight on all applications of known functions. We make
these modifications also to foldr, map and or which are
called by any’. The second step is to add dummy space
use to any to make it take up as much space as any’. Re-
call the definition of any, here spelled out without syntactic
sugar:

any = Ap.\zs.case zs of

nil — false
yrys—leta=py
b=anypys
in ()b
We modify the definition as follows.
anys = Ap.Azs.**case zs of
nil - Yfalse
y:rys— Ylet 2 =0Q
a=p-y
b= (anya - p - ys)
in(|])-a-b

There are two interesting modifications. The first one is
the extra weight on the case expression, which compensates
for the extra stack space used by any’; for any’ to scruti-
nise the head of its input zs it calls or with the argument
map p zs and or passes the argument to foldr. Then, foldr
pushes a stack-frame and forces the computation of its input
map p zs. In turn, map pushes a stack-frame and forces the
computation of zs. Thus two stack-frames have been pushed
onto the stack. The extra weight on the case in any, mim-
ics this behaviour. From Lemma 5.4 we know that the extra
weight can make any, use up at most a constant factor more
stack than any.

The other interesting modification is the dummy binding
of z in the cons-branch of any,. The dummy binding lives
until b is evaluated or until b becomes garbage. We get this
effect because of the dummy reference to z in the right hand
side of the definition of b. The dummy binding is there to
mimic the space used up by the list map pzs which any’
constructs. It is worth noting that although the list is an
intermediate data structure it is not necessarily short-lived.
It will stay in memory during the evaluation of p y which can
be arbitrarily long and which may even call any’ itself. But
the extra structure can not change the asymptotic space be-
haviour because there are other structures in the heap which
are at least as long lived. This is not easy to see from the
definition of any’ but in the definition of any, we can see
that the dummy binding that mimics the structure cannot
live longer than the binding b (Lemma 5.2). With the ap-
propriate definitions of any, and any/, it is straightforward
to show that

I'tanypas L any,pas & any, pzs T any' pzs.

<

The complete derivation of I' + any, pzs < any, p s can
be found in [9]. The plethora of spikes, dummy references,
dummy bindings and weights that are necessary in this kind
of derivation make the process of constructing derivations
extremely error prone. We found it necessary to develop a
simple tool to formally check derivations, and the steps of
the derivation in this case study have been verified in this
way.

Case Study 3: Trading Stack for Heap

This case study is about the associativity of append, ().
It is interesting because it is an example of a transformation
that can increase heap usage with more than a constant
factor so it falls outside of . However the transformation
can only lead to a constant factor difference in the total
amount of space used. The reason is that in all cases where
the amount of heap increases, a corresponding amount of
stack space is used already.

To make this claim precise we define a relaxed version of
z, which allows stack space to be traded for heap space:

DEFINITION 6.1 (STACK WEAK IMPROVEMENT).
We say that M is stack weakly improved by N, written
M 5 N, if there exists a linear function f € N — N such
that for all C, o such that C[Mo] and C[Na] are closed,

ClMolhn,sy = C[Nollw sy
for some b’ and s’ such that s' < f(s) and b’ +s' < f(h+3s).
We can now state an improvement property of append:

PROPOSITION 6.3. (28 +H-ys) H 25 T s H-(ys H-23).

Note that the relaxed relation is only required in one direc-
tion. But it is the direction that one most often would like
to use when applying this equivalence — it can lead to an
asymptotic speedup in some contexts. We will see such an
example later.

Now let us outline the proof of Proposition 6.3. We will
follow the methodology from the previous example and come
up with modified versions of append for which we can es-
tablish a strong improvement. We will need four different
versions, one for each occurrence of append, which we call
+H4,- -+, Hq- The strong improvement part of the proposi-
tion turns out to be valuable in its own right (see case study
4) so we spell it out here.

LEMMA 6.4.

Lk let {ps = (H,)-zs-ys} in (Hp)-ps- 2zs
% let {5 = () - ys - 25} in (Hhe) - o5 - as

We have stated the lemma without syntactic sugar. We have
found that this is often the first step towards an intuition
about space use. Indeed, it is now explicit that the terms
allocate space in the heap before they call the append func-
tion. How long lived are these bindings? Clearly, the binding
for ps in the left hand side of the improvement is very short
lived: H+, immediately evaluates its first argument and then
there is no remaining references to ps. However in the right
hand side the binding for gs may live for a long time. To
compensate for this and make the strong improvement hold
we have added a dummy allocation in the definition of H-,:

(Hq) = Aas.Abs.let z = Q
in case as of
nil » {z} 4 pg
c:es— Pet ds = (H,) - cs - bs
inc:ds

The dummy binding is allocated just before the case ex-
pression is executed, and lives until just after a branch has
been selected. Thus the lifetime of the binding matches the
lifetime of the stackframe pushed for the case expression.
The binding exactly compensates for the different heap be-
haviours of the original functions. There is also a difference
in stack usage between (zs -H- ys) H zs and zs H-(ys H zs).
This difference is of a similar nature to the difference be-
tween any and any’ from our previous case study. We need
to put an extra weight on the case in -H-.:

(H.) = Xas.\bs.’case as of
nil — bs
cics—let ds = (H.) cs-bs
inc:ds

For H, and H, the modifications are minor and only in-
volve zero weights on short lived stack elements. With these
definitions at hand it is not difficult to show Lemma 6.4 al-
though the derivations are lengthy.

It is easy to see that the modifications in H-, and -H-; are
within a constant factor of the original definition of append
(Lemma 5.4 etc.), so we have

Tk let {gs = (H4q) ys-2zs}in (+H.)-zs-gs
L a5 H-(ys H 29).

To show Proposition 6.3 it remains to show that

Dk (zs H ys) H 2s
2 let {ps = (H,) - zs-ys} in (+H) - as - zs.

The difficulty lies in the dummy binding in the definition of
+H-.. Recall that the lifetime of the dummy binding precisely
matches the lifetime of the stack frame pushed by the case.
Such a binding can at most double the total amount of space
use — hence it is within a constant factor as stated by this
lemma.

LEMMA 6.5.
case M of {pat,»N;}
2 let {z = Q} in case M of {pat,~IN;}, 2 fresh,

This completes the proof sketch of Proposition 6.3.

In the beginning of this section we made another claim
which partly motivated the introduction of a new relation,
namely that the transformation can lead to an asymptotic
increase in heap usage. The following family of contexts, in-

dexed by k shows that I' F (zs H ys) H zs Z zs H-(ys H- 2s)

by exhibiting a difference in heap behaviour which grows
with k.

let gkyszs=if k=0

then nil

else let {xs =g (k —1)yszs} in []
in gk nilnil

Case Study 4: Tail Recursion

This case study is about tail recursion — a transformation
very much aimed at improvement in space behaviour. But
tail recursive transformations may also improve time com-
plexity and this case study is about such an example. Con-
sider the naive definition of a function that reverses a list:

reverse s = case zs of
nil - nil
y & ys - reverse ys+-+[y]

The function uses up stack proportional to the length of
the list and it also suffers from a quadratic time complex-
ity due to the repeated applications of append. The cure is
well-known: transform the function to a tail recursive accu-
mulating parameter definition:

reverse’ zs = rev [| zs

rev as s = case xs of
nil - nil
y:ys—orev(y:as)ys

The tail recursive reverse’ has a linear time complexity and
the following result confirms our hopes about its space use.

PROPOSITION 6.6. I' - reverse xs & reverse’ xs

We will not go into any details about the proof of this
proposition but comment on one aspect of the proof. In
a proof of contextual equivalence of the two definitions it
is helpful to fall back on a result about the associativity
of append. Proposition 6.3 provides such a result of weak
improvement but it is useless for our proof of Proposition 6.6
because our proof relies on strong improvement. Instead we
use the strong improvement in Lemma 6.4. It complicates

matters because Lemma 6.4 refers to four different “gadget-
versions” H-, ...+, of append. This illustrates a general
problem: when working with strong improvement we cannot
rely on weak improvement results.

Case Study 5: Strict Accumulating Parameters

This case study is about an example where a tail recursion
transformation alone does not solve the problem but where
we also need a transformation step guided by strictness in-
formation.

Consider the naive definition of sum.

sum s = case zs of
nil- 0
Y:yYs -y + sumys

The definition suffers from the same problem as the naive
definition of reverse — it requires stack proportional to the
length of the input list. At first it may appear that a plain
tail recursion transformation would do the job:

!
sum zs = asum 0 zs

asum a s = case zs of
nil - a
yiys—~leta =a+y
in asum a’ ys

But sum’ still uses stack proportional to the length of its
argument: Because of lazy evaluation, the evaluation of a +
Yy, in the recursive call of asum, is delayed until required. As
a result a chain of closures representing the sum builds up
in the heap and when the computation is forced it takes up
stack proportional to the length of the input list. The next
transformation step hinges on the fact that asum is strict
in the accumulating parameter and forces the accumulator
to be computed in each step of the recursion:

n !
sum’ zs = asum 0zs

asum’ a 15 = case zs of
nil - a
yrys—leta =a+y
in seqa’ (asum’ a’ ys)

This is the kind of transformation that a complier with a
strictness analyser typically performs. But strictness trans-
formations in general are dangerous from the point of view of
space use because they may change evaluation order. Con-
sider, for example the strict function Ay.Az.x +y. A com-
piler with strictness analysis might well change the order of
the evaluation of the arguments, and from the example in
the introduction it should be clear why this is not a space
improvement.

Indeed, it happens in this case also: asum will traverse the
entire spine of its input before evaluating any of its elements,
but asum’ will evaluate the elements as it traverses the list.
The following family of contexts (indexed by k) explores the

difference in evaluation order to show that I' F sum' zs Z
sum’ zs:
let f a = nil
ys = fromto 1k
zs = (traverse ys) : (f ys)
in [1]
where traverse is a function that traverses a list and returns
0.

It seems that any transformation which changes the evalu-
ation order of arguments or free variables (or their substruc-
tures) can never be a space improvement. At this point it
seems that all is lost. However, it is still possible to use
strictness transformations as a part of a transformation if
it is combined with another transformation step which in-
verts the change made by the strictness phase. This is ex-
actly what happens in this case study! The transformation
from sum to sum’ that introduced the accumulating pa-
rameter also changes the evaluation order: sum evaluates
the elements of its input as it traverses the list but sum’
traverses the entire spine of the list first. As a result this
individual transformation step is not space safe either, i.e.,

' - sumzs ?j sum’ zs, which can be shown by a family
of contexts similar in spirit to the one above. But taken
together the transformations as a whole do not change eval-
uation order and moreover can be shown to be space safe:

PROPOSITION 6.7. T F sum zs X, sum” zs

The proof is along the lines of the previous proofs where
we add gadgets to sum to obtain:

sumg, zs =let z =Q
in case zs of
nil » {730
yrys—oletw=Q
in 3838y 1 AW gyum, - ys)

The calculation steps in the proof, (omitted in order to make
the paper space-safe), have also been formally verified. It is
worth noting that we found it very useful in the course of
the proof to employ explicit constructs for boxing and un-
boxing of integers in the language. This allows the proof and
the required basic laws to be more fine-grained. The useful-
ness of these language constructs when performing program
transformation is also noted by Peyton Jones [12].

Case Study 6: Tupling

Tupling is the name of a set of program transformations that
bring together computations over the same input [21, 6]. Tu-
pling transformations can dramatically reduce the amount
of space and time required. Consider for example the naive
function to compute the average value of the elements of a
list:

average xs = sum xs/length s.

The function requires linear space even if sum and length
are space-efficient tail recursive functions. The reason is
that (assuming / evaluates from left to right) while sum
traverses (the lazily produced) input list, the call to length
holds on to a reference to the start of the list so the entire list
will be live. Another example which suffers from the same
problem is the naive definition of the function split which
splits a list of characters into two lists, one containing the
first line, and one containing what remains after the first (if
any) newline character:

split zs = (beforeNewline zs , afterNewline zs)

where beforeNewline and afterNewline are defined in the
obvious way. A solution to the space problems could be to
tuple the computations, i.e., to simultaneously compute the
first line and the remainder by a single traversal of the input

list. Such a function can be defined as follows.

split’ ©s = case zs of
nil - (nil, nil)
y : ys — if y = newline
then (nil, ys)
else let p = split’ ys
in (y = (fst p), snd p)

Note that split’, in contrast to split, is strict. However, this
definition doesn’t solve the problem. The reason is the use
of the projections fst p and snd p. Due to lazy evaluation,
the projections are not evaluated until needed and therefore
hold on to the reference to p, which in turn holds on to
both the results of the recursive call. As a result, we have
combined not only the computations but also the lifetimes
of the two results.

Intriguingly, this problem appears to be linked to the in-
tensional expressiveness of the language. Hughes has argued
that it is impossible to define split in a space efficient way
using a particular lazy evaluator [11]. He proposed a solu-
tion involving combinators for explicit parallelism and syn-
chronisation. With these language primitives the original
definition of split can be made efficient by having just the
right degree of parallelism. Another proposal, due to Wadler
[31], is to solve the problem by extending the garbage col-
lector. Whenever the garbage collector encounters a term
of the form fst p where p is bound to an evaluated pair, it
may perform the reduction of the projection. A more recent
proposal is due to Sparud [30]. He proposes to treat pattern
bindings in let expressions specially. A pattern binding in a
let expression takes the form

let {cZ =M} in N.

Prior to Sparud’s proposal, these kind of bindings were thought

of as mere syntactic sugar and a compiler (e.g. [1]) would
typically translate it into the following

let {p=M,z1 =1 p,...,zn, =1, p} in N

which reintroduces the “dangerous” projections.

Sparud’s proposal was to have pattern bindings as a first
class construct which the evaluator treats in a space effi-
cient manner. We have adopted Sparud’s proposal because
we think it is the most natural and because it leads to a rea-
sonably well behaved space theory. Implementing Wadler’s
proposal in our model of garbage collection would destroy
many of the nice properties of our theory. For example,
beta-expansion would no longer be space safe, because it
may result in the elimination of a “garbage collector redex”.

We have formalised Sparuds proposal as an extension to
our language. The details can be found in [9]. With pattern
bindings at hand we can rewrite split’ as follows.

split” zs = case zs of
nil = (nil, nil)
y : ys — if y = newline
then (nil, ys)
else let (ps, gs) = split” ys
in (y : ps,qs)

So, what is the relation between the different versions of
split? Let us start with the relation between split’ and split”
where we have that I' - split' zs = split’ zs. It follows
directly from the following lemma.

LEMMA 6.8.

let {op = M} in C[fst p][snd p]
R let {(z,y) = M} in Clz][y] ifp &FV(M,C)

The lemma says that it is always space safe to use pattern
bindings instead of projections. So what about split and
split”? Convinced that

Ik let {(z,y) = splitzs} in M
R let {(x,y) = split” zs} in M

we spent considerable effort trying to prove it only to realise
that it is not the case. The family of contexts that distin-
guishes the two terms is somewhat involved so we found it
better to present the intuition about why split’ zs in some
contexts may use more space than split zs.

Consider a context where the second component of the
pair is used before the first, i.e., a program which processes
the second line of its input before the first. In that case the
tupling has the effect that the spine of the list represent-
ing the first line of input is constructed before it is needed
(in our definition of split” this allocation is hidden in the
syntactic sugar). This in itself does not lead to a non con-
stant factor worsening if the spine of the input list may be
garbage collected. But what if it can’t? Consider a program
which processes its second line of input repeatedly and se-
lects the line from the input by repeatedly applying split”
to the input. Suppose also that it keeps references to the
different copies of the first line that is constructed. Such
a context, however unlikely in practice, would show that

I+ split zs z split” zs.

This has lead us to the general observation that tupling
of computations which need to allocate space in order to
produce their output are unlikely to be space improvements,
although we have not been able to make this statement more
precise.

Another observation, at this point maybe not surprising,
is that tupling transformations which change the order in
which inputs (or the substructures thereof) are traversed
are unlikely to be space improvements. The tupling of the
sum and the length of a list is an example of this. In a
context where the length of the list is needed before the
sum, the untupled definition would traverse the spine of
the list before any of the elements, but the tupled defini-
tion would force the computation of the elements as it tra-
verses the list. These two observations have made us rather
pessimistic about showing that tupled functions improve on
their untupled counterparts. However, in contexts which
are guaranteed to require the result of the tupled computa-
tion in a specific order the situation may be different. For
example, we believe that for average’ defined using a tu-
pled computation of the sum and the length we would have
T+ average zs g average' zs because the functions (due to
the evaluation order of /) require the sum before the length.

7. RELATED WORK AND CONCLUSIONS

Improvement theory was first developed in the call-by-
name setting [26, 25, 27] for the purpose of reasoning about
running-times of programs. Moran and Sands [19] developed
a call-by-need time-improvement theory, together with a va-
riety of induction principles. This present work, and its pre-
decessor [10] are the only attempts (of which we are aware)

which formalise space safety properties of local (non-whole-
program) transformations. More details of this work can be
found in the first author’s PhD thesis [9].

Other related work includes the development of “space-
aware” operational models for call-by-need languages [28,
24, 4, 3], studies of space-safety properties of global trans-
formations [17, 18] and of the relative efficiency of different
abstract machines [5, 7, 2, 18]. Minamide [18] suggests an
alternative to our definition of improvement based on addi-
tive constant factors. Its properties are not studied for any
particular language, although we suspect that it would fail
to satisfy the syntactic continuity property, so would not
serve as an alternative to strong improvement.

Areas for further work include the introduction of context
information to the theory in order to represent constraints
on the whole-program context which can be used to help
establish space improvements.

8. REFERENCES

[1] L. Augustsson. Compiling Lazy Functional Languages,
Part I1. PhD thesis, Department of Computer Science,
Chalmers University of Technology, November 1987.

[2] A. Bakewell and C. Runciman. A model for comparing
the space usage of lazy evaluators. In Proceedings of
PPDP’00, September 2000.

[3] A. Bakewell and C. Runciman. A space semantics for
core haskell. In Proceedings of the Haskell Workshop,
September 2000.

[4] Z.-E.-A. Benaissa, P. Lescanne, and K. H. Rose.
Modeling sharing and recursion for weak reduction
strategies using explicit substitution. In Proc.
PLILP’96, volume 1140 of LNCS, pages 393-407.
Springer-Verlag, 1996.

[5] G. E. Blelloch and J. Greiner. A provably time and
space efficient implementation of nesl. In Proc.
ICFP’96, pages 213-225, 1996.

[6] W.-N. Chin. Towards an automated tupling strategy.
In Proceedings of PEPM’93, pages 119-132,
Copenhagen, Denmark, 1993.

[7] W. D. Clinger. Proper tail recursion and space
efficiency. In Proc. PLDI’98, 1998.

[8] A. D. Gordon and A. M. Pitts, editors. Higher Order
Operational Techniques in Semantics. Cambridge
University Press, 1998.

[9] J. Gustavsson. Space-Safe Transformations and Usage
Analysis for Call-by-Need Languages. PhD thesis,
Department of Computer Science, Chalmers
University of Technology and Goéteborg University,
May 2001.

[10] J. Gustavsson and D. Sands. A foundation for
space-safe transformations of call-by-need programs.
In Proceedings of HOOTS III, volume 26 of ENTCS.
Elsevier, 1999.

[11] R. J. M. Hughes. The Design and Implementation of
Programming Languages. PhD thesis, Programming
Research Group, Oxford University, July 1983.

[12] S. P. Jones. Compiling haskell by program
transformation: a report from the trenches. In
Proceedings of ESOP’96, April 1996.

[13] S. P. Jones and J. Hughes. Haskell 98: A non-strict,
purely functional language. Available at
www.haskell.org.

[14] J. Launchbury. A natural semantics for lazy
evaluation. In Proc. POPL’93, pages 144-154. ACM
Press, Jan. 1993.

[15] I. A. Mason, S. F. Smith, and C. L. Talcott. From
operational semantics to domain theory. Information
and Computation, 128(1):26-47, 10 July 1996.

[16] R. Milner. Fully abstract models of the typed
A-calculus. Theoretical Computer Science, 4:1-22,
1977.

[17] Y. Minamide. Space-profiling semantics of the
call-by-value lambda calculus and the cps
transformation. In Proceedings of HOOTS III,
volume 26 of ENTCS. Elsevier, 1999.

[18] Y. Minamide. A new criterion for safe program
transformations. In Proceedings of HOOTS IV,
volume 41 of ENTCS. Elsevier, 2000.

[19] A. Moran and D. Sands. Improvement in a lazy
context: An operational theory for call-by-need. In
Proc. POPL’99, pages 43-56. ACM Press, Jan. 1999.

[20] G. Morrisett and R. Harper. Semantics of memory
management for polymorphic languages. In Gordon
and Pitts [8], pages 175-226.

[21] A. Pettorossi. Transformation of programs and use of
tupling strategy. In Proceedings Informatica 77, Bled,
Yugoslavia., pages 1-6, 1977.

[22] S. Peyton Jones, W. Partain, and A. Santos.
Let-floating: moving bindings to give faster programs.
In Proc. ICFP’96, pages 1-12. ACM Press, May 1996.

[23] S. Peyton Jones and A. Santos. A
transformation-based optimiser for Haskell. Science of
Computer Programming, 32(1-3):3-47, 1998.

[24] K. H. Rose. Operational Reduction Models for
Functional Programming Languages. PhD thesis,
DIKU, University of Copenhagen, Denmark, Feb.
1996. available as DIKU report 96/1.

[25] D. Sands. Operational theories of improvement in
functional languages (extended abstract). In Proc.
1991 Glasgow Functional Programming Workshop,
Workshops in Computing Series, pages 298-311.
Springer-Verlag, Aug. 1991.

[26] D. Sands. A naive time analysis and its theory of cost
equivalence. Journal of Logic and Computation,
5(4):495-541, 1995.

[27] D. Sands. Total correctness by local improvement in
the transformation of functional program. ACM
TOPLAS, 18(2):175-234, Mar. 1996.

[28] P. Sestoft. Deriving a lazy abstract machine. Journal
of Functional Programming, 7(3):231-264, May 1997.

[29] S. F. Smith. From operational to denotational
semantics. In Proceedings of MFPS’92, LNCS, pages
54-76. Springer Verlag, 1992.

[30] J. Sparud. Fixing Some Space Leaks without a
Garbage Collector. In Proceedings of FPCA’93, pages
117-122. ACM Press, June 1993.

[31] P. Wadler. Fixing Some Space Leaks with a Garbage
Collector. Software Practice and Ezperience,
September 1987.

[32] P. Wadler. Deforestation: Transforming programs to
eliminate trees. Theoretical Computer Science,
73:231-248, 1990.

