
Science of Computer Programming 46 (2003) 99–135
www.elsevier.com/locate/scico

Erratic Fudgets: a semantic theory for an
embedded coordination language�

Andrew Morana ;∗, David Sandsb , Magnus Carlssonb
aDepartment of Computer Science and Engineering, Oregon Graduate Institute of Science and

Technology, Beaverton, OR 97006, USA
bDepartment of Computing Science, Chalmers University of Technology and the University of G%oteborg,

S-412 96 G%oteborg, Sweden

Abstract

The powerful abstraction mechanisms of functional programming languages provide the means
to develop domain-speci/c programming languages within the language itself. Typically, this is
realised by designing a set of combinators (higher-order reusable programs) for an application
area, and by constructing individual applications by combining and coordinating individual com-
binators. This paper is concerned with a successful example of such an embedded programming
language, namely Fudgets, a library of combinators for building graphical user interfaces in the
lazy functional language Haskell. The Fudget library has been used to build a number of sub-
stantial applications, including a web browser and a proof editor interface to a proof checker for
constructive type theory. This paper develops a semantic theory for the non-deterministic stream
processors that are at the heart of the Fudget concept. The interaction of two features of stream
processors makes the development of such a semantic theory problematic:

(i) the sharing of computation provided by the lazy evaluation mechanism of the underlying
host language, and

(ii) the addition of non-deterministic choice needed to handle the natural concurrency that
reactive applications entail.

We demonstrate that this combination of features in a higher-order functional language can be
tamed to provide a tractable semantic theory and induction principles suitable for reasoning about
contextual equivalence of Fudgets. c© 2002 Elsevier Science B.V. All rights reserved.

� This work was conducted while the /rst author was employed as a post-doctoral researcher at the
Department of Computer Science, Chalmers University of Technology and University of G:oteborg.

∗ Corresponding author.
E-mail addresses: moran@cse.ogi.edu, moran@galois.com (A. Moran), dave@cs.chamers.se (D. Sands),

magnus@cs.chalmers.se (M. Carlsson).

0167-6423/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0167 -6423(02)00088 -6

100 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

1. Introduction

Fudgets are a collection of combinators for developing graphical user interfaces
in the lazy functional programming language Haskell. Typical fudget programs exhibit
the clean separation between computation (the standard Haskell code) and coordination
(the management of the user interface) that is the hallmark of the so-called coordination
languages. A small fudget program can be found in Appendix A.
This paper is concerned with the semantics of fudgets, or rather, with the semantics

of the high-level language of stream processors that lie at the heart of fudgets. A stream
processor is a higher-order process that communicates with its surroundings through a
single input stream and a single output stream.
The implementation of stream processors used in the Fudget library could serve as a

semantic basis for formal reasoning about stream processor and fudget programs. But
as a semantics, the current implementation itself leaves a lot to be desired. For one
thing, it is implemented deterministically, and as a consequence many intuitively correct
transformation laws, such as symmetry of parallel composition, are in fact unsound. We
aim to develop a more abstract semantics of stream processors, which better captures
their conceptually concurrent, non-deterministic nature, and which relates to concrete
implementations by a notion of re/nement.
We build our semantic theory for fudgets on top of a lazy functional language with

erratic non-deterministic choice. Erratic choice is a simple internal choice operator.
In modelling non-determinism with erratic choice, we are choosing to ignore aspects
of fairness. This can be viewed as a shortcoming of our model since we can neither
express a bottom-avoiding merge operator for streams, nor prevent starvation when
merging streams.
Despite the simplicity of erratic choice, it exhibits a non-trivial interaction with

lazy evaluation. By lazy evaluation we mean the standard call-by-need implementa-
tion technique for non-strict languages whereby the argument in each instance of a
function application is evaluated at most once. In the standard semantic theories of
functional languages this evaluation mechanism (also known as graph reduction) is
modelled by the much simpler call-by-name evaluation, in which an argument is eval-
uated as many times as it is required. In the presence of non-determinism, there is
an observable di@erence between these evaluation mechanisms, and so a semantic the-
ory must take care to model these details accurately. Consider the following desirable
equivalence:

2 ∗ x ∼= x + x:

This does not hold in a call-by-name theory when non-determinism is present. To see
this, consider the situation when x is bound to 3⊕ 4, where ⊕ is erratic choice. The
right-hand side may evaluate to 6, 7, or 8, but the left-hand side may result in 6 or
8, but not 7. However, the equivalence does hold in a call-by-need theory for non-
determinism, since the result of 3⊕ 4 will be shared between both occurrences of x in
the right-hand side. So while the call-by-need theory may lack arbitrary �-reduction,
it does retain other useful equivalences.

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 101

1.1. Contributions

We develop an operational theory for �⊕
NEED, a call-by-need lambda calculus with

recursive lets, constructors, case expressions, and an erratic choice operator. The stream
processor calculus of [9] is presented and a translation into �⊕

NEED is given. We show
that congruences and reductions in the stream processor calculus are equivalences and
re/nements, respectively, in the theory. Some speci/c contributions are:

• A context lemma for call-by-need and non-determinism, meaning we can establish
equivalence and re/nement by considering just computation in a restricted class of
contexts, the evaluation contexts;

• a rich inequational theory for call-by-need and non-determinism;
• a unique 9xed-point induction proof rule, which allows us to prove properties of
recursive programs, and

• validation of congruences and reductions in the stream processor calculus proposed
by Carlsson and Hallgren [9].

1.2. Organisation

The remainder of the paper is organised as follows. We begin with a discussion of
related work in Section 2. Then Section 3 introduces stream processors and the stream
processor calculus. The language �⊕

NEED is presented, along with the translation from
stream processor calculus into �⊕

NEED. The operational semantics of �⊕
NEED is presented

in Section 4. This is used to de/ne notions of convergence and divergence, leading to
contextual de/nitions of re9nement and observational equivalence. The context lemma
is then stated, and a number of laws from the inequational theory are presented. An
equivalence sensitive to the cost of evaluation is de/ned, leading to the statement
of the unique /xed-point induction rule. Section 5 deals with the correctness of the
translation of stream processors into �⊕

NEED. It begins with an example of the use of
unique /xed-point induction; the rest of the proofs has a simple calculational Havour.
Section 6 summarises the technical development of the theory and presents proofs of
the main theorems. Section 7 concludes, and we discuss of future avenues of research.

2. Related work

2.1. Fudget calculi

The Fudgets thesis [9] introduces a calculus of stream processors, which is presented
in the CHAM-style as a collection of structural congruences and a set of reduction rules.
This calculus has much in common with non-deterministic dataHow languages (see e.g.,
[22,26,39,40,41]), apart from the fact that it is higher-order (i.e., stream processors may
be sent as messages).
Independent of this work, Colin Taylor has developed theories of “core fudgets” us-

ing two approaches: an encoding into the pi calculus, and a direct operational semantics

102 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

of “core fudgets” [55,56]. Taylor is somewhat dismissive of his earlier pi-calculus
approach, since (like many pi calculus semantics) it su@ers from the rather low-level
nature of the encoding. In particular, he notes that “the pi calculus encodings are often
large and non-intuitive”. Taylor’s direct approach [56] is based on a labelled transition
system in which the core fudget combinators such as parallel composition are given a
direct operational interpretation. The theory which is built on top of this is based on
higher-order bisimulation. Taylor’s theory can be seen to verify many of the congru-
ence rules of Carlsson and Hallgren’s calculus. The di@erence with our theory stems
from the fact that Taylors calculus completely abstracts away the underlying functional
language. This abstraction presupposes that the semantics of the combinators is orthog-
onal to the underlying functional computations. As we have argued, in the presence of
call-by-need computation, there is an observable interaction between the sharing present
in the functional computation, and the non-determinism implied by the concurrency of
parallel composition.

2.1.1. Other functional GUIs
There are at least two other functional approaches to GUI in a functional language

for which an underlying theory exists (for a “core” language). The toolkit eXene, by
Reppy and Gansner [17] is written on top of Concurrent ML (CML) [45], a multi-
threaded extension to Standard ML. A number of authors have considered the semantics
for a fragment of CML, e.g. [14,15,37].
The GUI library Haggis [15] is built upon Concurrent Haskell [23]. Fudgets have

been implemented in Haggis, and a theory for concurrent Haskell has been outlined in
[23]. This suggests that a theory of fudgets could be developed using this route.

2.1.2. Non-determinism in functional languages
The standard denotational approach to modelling non-deterministic constructs is to

use a powerdomain construction (see e.g., [8,10,19,20,43,51,52,53]), domain-theoretic
analogues of the powerset operator. The Plotkin, or convex, powerdomain [43] mod-
els erratic choice very well, but like all powerdomain semantics ignores the issue of
sharing. An alternative to erratic choice is McCarthy’s amb, a bottom-avoiding non-
deterministic operator which embodies a certain kind of fairness, but the denotational
approach has well-documented problems modelling McCarthy’s amb (see e.g., [34]).
The only serious attempt at a denotational semantics for McCarthy’s amb, that due to
Broy [8], is developed for a /rst-order language only, and does not consider sharing.
Lassen and Moran [29] also consider McCarthy’s amb, in the context of a call-by-

name lambda calculus. Though able to construct a powerful equational theory for that
language (including proof rules for recursion) by taking an operational approach, the
language in question is not call-by-need. The choice operator considered in this article
is simpler (and arguably less useful) and thus we are able to build on the semantic
theory for deterministic call-by-need developed in [36].
Others have studied lambda calculi with various forms of non-determinism,

parallelism, and message-passing (see e.g. [7,11,12,13,20,21,33,49]), but without
also describing sharing, which is a crucial element of this work. Kutzner and

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 103

Schmidt-SchauQ [27] recently presented a reduction-calculus for call-by-need with er-
ratic non-determinism based on an extension of the call-by-need lambda calculus of
[4]. We believe that our theory of equivalence subsumes the calculus of Kutzner and
Schmidt-SchauQ’s in the same way that the deterministic part is subsumed by the im-
provement theory of [36]. Kutzner and Schmidt-SchauQ’s theory is inadequate for our
purposes. Firstly, it only considers a pure lambda calculus with no constructors. Sec-
ondly, it does not consider cyclic recursion (so it cannot, for example, express the
cyclic Y -combinator). Thirdly, and most importantly, it does not include any proof
principles for reasoning about recursive de/nitions. Our semantic theory has none of
these de/ciencies.

3. Essence of Fudgets

The Fudget library is implemented in the purely functional language Haskell [42],
in which all computations are deterministic. Conceptually, a fudget program should be
regarded as a set of concurrent processes exchanging messages with each other and the
outside world. In a style that is typical for a higher-order, functional programming lan-
guage, combinators in the Fudget library are used to express high-level communication
patterns between fudgets.
Taking an abstract view, the essence of the fudget concept is the stream processor,

which has truly parallel and non-deterministic properties.

3.1. The stream processor calculus

A stream processor can be seen as a process that consumes messages in an input
stream, producing messages in an output stream. However, the streams are not ma-
nipulated directly by the process, only the messages are (a more appropriate name
would actually be message processor). There are seven ways of constructing a stream
processor:

S; T; U ::= S !T (Put)
| x ? S (Get)
| S ¡·T (Feed)
| S¡¡T (Serial)
| S | T (Parallel)
| l S (Loop)
| x (Var)

The /rst three forms are stream processors that deal with input and output of single
messages. S !T outputs the message S and then becomes the stream processor T: x ? S
waits for a message, and binds the variable x to that message (in S) and then becomes
S. S ¡·T feeds the message T to S, that is, T is the /rst message that S will consume
on its input stream.
The following three constructions are used for coordinating the message How between

stream processors (see also Fig. 1). S¡¡T connects the output stream of T to the input

104 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

TS

S

T

S

Fig. 1. Composing stream processors: serial and parallel composition, and loop.

stream of S, and thus acts as a serial composition. S | T puts the stream processors S
and T in parallel: consumed messages are broadcast to both S and T , and messages
produced by S and T are merged into one stream. Feedback can be introduced in a
network of stream processors by l S, which feeds all messages output from S back to
its input.
Finally, variables (that is, messages) can be used as stream processors, which make

the calculus higher order: stream processors can be sent as messages from one stream
processor and “plugged in” in another stream processor.
The stream processor calculus de/nes a number of congruence rules to be used

freely in order to enable application of the reaction rules to follow. In addition to the
commutativity of | and the associativity of | and ¡¡, we have the following congruences
(where M and N range over stream processors used as messages):

(S¡¡T)¡·M ∼ S¡¡(T ¡·M) (Input-¡¡);

S¡¡(M !T) ∼ (S ¡·M)¡¡T (Internal-¡¡);

(M ! S)¡¡T ∼ M ! (S ¡¡T) (Output-¡¡);

(S | T)¡·M ∼ (S ¡·M) | (T ¡·M) (Input-|);
(M ! S)¡·N ∼ M ! (S ¡·N) (Output-¡·);
(x ? S)¡·M ∼ S[M=x] (Input-?):

When used in a left-to-right fashion, these rules mirror propagation of messages in a
network of stream processors.
Whereas the congruence rules in the last section can be freely used in any direction

without changing the behaviour of a stream processor, the reaction rules are irreversible,
and introduce non-determinism. The reason is that by applying a reaction rule, we make
a choice of how the message streams should be merged. There are two places where
merging occurs, in the output from a parallel composition, and in the input to a stream
processor in a loop.

(M ! S) | T → M ! (S | T) (Output-|);
l(M ! S) → M ! l (S ¡·M) (Output-l);

(l S)¡·M → l (S ¡·M) (Input-l):

Remember that we de/ned | to be commutative, which means that we only need one
output rule for |. Note also that there is one congruence rule that one might /nd

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 105

tempting to include, which we do not:

(S | T)¡¡U ∼ (S ¡¡U) | (T ¡¡U):

On the left-hand side, S and T will receive the same input stream. On the right-hand
side, U is duplicated, and there is no guarantee that the two occurrences produce the
same stream of messages, so S and T may be passed di@erent input streams. 1

The stream processor equivalences and reduction rules can be viewed as a chemical
abstract machine-style operational semantics [6] for the language of stream processors.
With this as a basis, one could develop a theory of equivalence, e.g., based on bisim-

ilarity, with which to further investigate the language. This is essentially the approach
taken by Taylor [56] (using a more conventional SOS-style de/nition). However, as
we have mentioned, this approach ignores interactions with the features of the language
in which the stream processors are embedded, namely a lazy functional language. In-
stead of considering the stream processor calculus in isolation, we show how it can
be realised by simple encodings into a call-by-need functional language with an addi-
tional erratic non-deterministic choice operator. By developing the theory of contextual
equivalence for this language, we will show that the laws of the calculus are sound
with respect to this implementation, and that the reduction rules are re/nements. First
we must introduce our language and its operational semantics.

3.2. Implementing the stream processors

We will embed the stream processors into an untyped lambda calculus with re-
cursive let bindings, structured data, case expressions, and a non-deterministic choice
operator. We work with a restricted syntax in which arguments to functions (including
constructors) are always variables:

L;M; N :: = x | �x:M |M x | cx̃
| let {x̃ = M̃} in N

| case M of {ci x̃i → Ni}
| M ⊕ N:

The syntactic restriction is now rather standard, following its use in core language
of the Glasgow Haskell compiler, e.g., [24,25], and in [30,50]. We call the language
�⊕

NEED.
All constructors have a /xed arity, and are assumed to be saturated. By c x̃ we

mean cx1 · · · xn. The only values are lambda expressions and fully applied constructors.
Throughout, x; y; z, and w will range over variables, c over constructor names, and
V and W over values. We will write let {x̃= M̃} in N as a shorthand for

let {x1 = M1; : : : ; xn = Mn} in N;

1 This rule is already a classic; it has been mistakenly included by both Moran [34] and Taylor [56].
Taylor retracts the rule in his Ph.D. thesis [55].

106 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

where the x̃ are distinct, the order of bindings is not syntactically signi/cant, and the
x̃ are considered bound in N and the M̃ (so our lets are recursive). Similarly we write
case M of {ci x̃i →Ni} for

case M of {c1x̃1 → N1| · · · |cm x̃m → Nm};
where each x̃i is a vector of distinct variables, and the ci are distinct constructors.
In addition, we will sometimes write alts as an abbreviation for case alternatives
{ci x̃i →Ni}.
For examples, working with a restricted syntax can be cumbersome, so it is some-

times useful to lift the restriction. Where we do this it should be taken that

M N ≡ let {x = N} in M x; x fresh;

whenever N is not a variable. Similarly for constructor expressions. We will encode
streams using the “cons” constructor, written in the Haskell-style in/x as M :N (read
as M “consed onto” N). The nil-stream (the empty stream) is written as nil.
We use two kinds of de/nition in this section. The notation

f x1 · · · xn
def= M

means that f x1 · · · xn should be considered as a synonym for M , and the xi are bound
in M . The notation

f x1 · · · xn = M

will be used when f occurs free in M to denote a recursive de/nition of f;f should
be considered to be de/ned by a recursive let thus:

let {f = �x1; : : : ; xn:M} in f:

3.2.1. Erratic merge
The parallel combination of stream processors will depend upon the ability to merge

incoming streams. We de/ne erratic merge thus:

merge xs ys=

case xs of
nil → ys
z:zs → z:merge zs ys

⊕

case ys of
nil → xs
z:zs → z:merge xs zs

Essentially, merge non-deterministically chooses which of its operands to evaluate /rst.
This is not fair: it may lead to starvation of a branch (since the same stream may be
chosen ad in9nitum). Neither is it bottom-avoiding: divergence in either input stream
can lead to divergence for the merge as a whole.

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 107

3.2.2. Translating stream processors
We implement stream processors by translating them into �⊕

NEED. Fundamental stream
processors have simple translations. All variables introduced on the right-hand sides are
assumed to be fresh:

<x== �i :xi;

<M ! S== �i:<M =:(<S=i);

<x ? S== �i:case i of

nil → nil

x:xs → <S= xs;

<S ¡·M == �i:<S= (<M =:i):

Note that in x ? S; x may be free in S. The three combinator forms are as follows:

<S ¡¡T = = �i:<S= (<T = i);
<S | T = = �i:merge(<S= i) (<T = i);
<l S= = �i:let {o = <S= (merge oi)} in o:

Serial composition is just function composition. We use erratic merge to merge the
output streams for parallel composition, and to merge the incoming stream with the
feedback stream for the loop construct.

4. The operational theory

The operational semantics is presented in the form of an abstract machine semantics
that correctly describes both sharing and erratic non-determinism. Using this semantics
to de/ne notions of convergence and divergence, we de/ne what it means for one term
to be re9ned by another, and what it means for two terms to be equivalent. These
de/nitions are contextual in nature, which makes proving re/nement or equivalence
diRcult (since one must prove the relationship holds for all program contexts). How-
ever, we are able to show that one need only prove that the relationship holds for
a much smaller set of contexts, the so-called evaluation contexts. This result is then
used to validate a set of algebraic laws. Lastly, we introduce the notion of cost equiv-
alence, which is a cost-sensitive version of contextual equivalence. A powerful unique
/xed-point proof rule is shown to be valid for cost equivalence. It is this proof rule
that will allow us to establish the properties of erratic merge required to prove the
correctness of the list-based implementation of stream processors.

4.1. The abstract machine

The semantics presented in this section is essentially Sestoft’s “mark 1” abstract
machine for laziness [50], augmented with rules for erratic choice.

108 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

Fig. 2. The abstract machine semantics for non-deterministic call-by-need.

Transitions are over con/gurations consisting of a heap, containing bindings, the
expression currently being evaluated, and a stack. The heap is a partial function from
variables to terms, and denoted in an identical manner to a collection of let-bindings.
The stack may contain variables (the arguments to applications), case alternatives, or
update markers denoted by #x for some variable x. Update markers ensure that a
binding to x will be recreated in the heap with the result of the current evaluation; this
is how sharing is maintained in the semantics.
We write 〈(; M; S〉 for the abstract machine con/guration with heap (, expression

M , and stack S. We denote the empty heap by ∅, and the addition of a group of
bindings x̃= M̃ to a heap (by juxtaposition: ({x̃= M̃}. The stack written b : S will
denote a stack S with b pushed on the top. The empty stack is denoted by *, and the
concatenation of two stacks S and T by ST (where S is on top of T).
We will refer to the set of variables bound by (as dom(, and to the set of

variables marked for update in a stack S as dom S. Update markers should be thought
of as binding occurrences of variables. A con/guration is well-formed if dom(and
dom S are disjoint. We write dom((; S) for their union. For a con/guration 〈(; M; S〉
to be closed, any free variable in (; M , and S must be contained in dom((; S).
The abstract machine semantics is presented in Fig. 2; we implicitly restrict the

de/nition to well-formed con/gurations. There are seven rules, which can be grouped
as follows. Rules (Lookup) and (Update) concern evaluation of variables. To begin
evaluation of x, we remove the binding x=M from the heap and start evaluating M ,
with x, marked for update, pushed onto the stack. Rule (Update) applies when this
evaluation is /nished; we update the heap with x bound to the resulting value. It is
this rule that lies at the heart of laziness: all subsequent uses of x will now share this
value.
Rules (Unwind) and (Subst) concern function application: rule (Unwind) pushes an

argument onto the stack while the function is being evaluated; once a lambda expression
has been obtained, rule (Subst) retrieves the argument from the stack and substitutes
it into the body of that lambda expression.
Rules (Case) and (Branch) govern the evaluation of case expressions. Rule (Case)

initiates evaluation of the case expression, with the case alternatives pushed onto the

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 109

stack. Rule (Branch) uses the result of this evaluation to choose one of the branches
of the case, performing substitution of the constructor’s arguments for the branch’s
pattern variables.
Rule (Letrec) adds a set of bindings to the heap. The side condition ensures that no

inadvertent name capture occurs, and can always be satis/ed by a local +-conversion.
The evaluation of choice expressions is described by rules (Left) and (Right). This

is erratic choice, so we just pick one of the branches.
The last rule, (Black Hole), concerns self-dependent expressions (such as let x= x in

x). If we come to evaluate x when it is bound in S (i.e., there is an update marker for x
on the stack S), then x is self-dependent. 2 By rewriting a self-dependent con/guration
to itself, we identify black holes with non-termination, which simpli/es the development
to follow.

De$nition 1 (Convergence). For closed con/gurations 〈(; M; S〉,

〈(; M; S〉 ⇓n def= ∃,; V:〈(; M; S〉 →n 〈,; V; *〉;

〈(; M; S〉 ⇓ def= ∃n:〈(; M; S〉 ⇓n :

We will also write M⇓ and M⇓n identifying closed M with the initial con/guration
〈∅; M; *〉.
Closed con/gurations which do not converge simply reduce inde/nitely. For this

language, this is the same as having arbitrarily long reduction sequences. 3

De$nition 2 (Divergence). For closed con/gurations 〈(; M; S〉,

〈(; M; S〉 ⇑ def= ∀k:〈(; M; S〉 →k :

Since the language is non-deterministic, a given expression may have many di@erent
convergent and divergent behaviours.

4.2. Program contexts

The starting point for an operational theory is usually an approximation and an equiv-
alence de/ned in terms of program contexts. Program contexts are usually introduced
as “programs with holes”, the intention being that an expression is to be “plugged into”
all of the holes in the context. The central idea is that to compare the behaviour of
two terms one should compare their behaviour in all program contexts. We will use

2 An alternative de/nition would be to check whether or not x is bound in (. However, the underlying
technical development in Section 6 relies upon the extension of the operational semantics to open terms. If
the side-condition was instead x =∈ dom (then open terms would also diverge.

3 This is due to the fact that → is /nitely branching. If we were working with a fair choice like McCarthy’s
amb, this de/nition would not be suRcient.

110 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

contexts of the following form:

C;D ::= [·] | x | �x:C |C x | c x̃

| let {x̃ = C̃} in D
| case C of {ci x̃i → Di}
| C⊕D:

Our contexts may contain zero or more occurrences of the hole, and as usual the
operation of /lling a hole with a term can cause variables in the term to become
captured.
An evaluation context is a context in which the hole is the target of evaluation;

in other words, evaluation cannot proceed until the hole is /lled. Evaluation contexts
have the following form:

E ::= A | let {x̃ = M̃} in A
| let {ỹ = M̃ ;

x0 = A0[x1];

x1 = A1[x2];

: : : ;

xn = A}
in A[x0]

A0 ::= [·] |Ax | case A of {ci x̃i → Mi}:
E ranges over evaluation contexts, and A over what we call applicative contexts. Our
evaluation contexts are strictly contained in those mentioned in the letrec extension of
Ariola and Felleisen [3]: there they allow E to appear anywhere we have an A. Our
“Hattened” de/nition corresponds exactly to con/guration contexts (with a single hole)
of the form 〈(; [·]; S〉.

4.3. Re9nement and observational equivalence

We de/ne re/nement and observational equivalence via contexts in the following
way.

De$nition 3 (Re9nement). We say that M is re9ned by N , written M.N , if for all
C such that C[M] and C[N] are closed,

C[N] ⇓ =⇒ C[M] ⇓ ∧ C[N] ⇑ =⇒ C[M] ⇑ :

Whenever M.N , then N ’s convergent behaviours can be matched by M and N
does not exhibit divergent behaviours not already present in M . We say that M and
N are observationally equivalent, written M ∼=N , when M.N and N.M .
This de/nition su@ers from the same problem as any contextual de/nition: to prove

that two terms are related requires one to examine their behaviour in all contexts. For

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 111

Fig. 3. Selected laws of the equational theory.

this reason, it is common to seek to prove a context lemma [32] for an operational
semantics: one tries to show that to prove M observationally approximates N , one only
need compare their behaviour with respect to a much smaller set of contexts.
We have established the following context lemma for call-by-need and erratic

choice:

Lemma 1 (Context lemma). For all terms M and N , if for all evaluation contexts E
such that E[M] and E[N] are closed,

E[N] ⇓ =⇒ E[M] ⇓ ∧ E[N] ⇑ =⇒ E[M] ⇑
then M.N .

We defer the proof to Section 6.
The context lemma says that we need only consider the behaviour of M and N with

respect to evaluation contexts. Despite the presence of non-determinism, the language
has a rich equational theory. A selection of laws is presented in Fig. 3. Throughout,
we follow the standard convention that all bound variables in the statement of a law
are distinct, and that they are disjoint from the free variables.

4.4. Unique 9xed-point induction

The context lemma allows a number of basic equivalences to be established. But
the basic equivalences thus provable are typically insuRcient to prove anything inter-
esting about recursively de/ned entities. One can directly apply the context lemma,

112 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

although reasoning this way is somewhat tedious. An alternative is to develop an op-
erational counterpart to the denotational /xed-point induction rule, which characterises
a recursive function (say) in terms of its “/nite approximations”. In [36], Moran and
Sands show that call-by-need supports a /xed-point induction rule, based on a cost-
sensitive preorder. This work could be adapted to the present setting by studying a
convex-approximation relation. 4

We will focus instead on a rather di@erent proof rule for recursion based on unique
/xed-points. A well-known proof technique in, e.g., process algebra involves syntac-
tically characterising a class of recursion equations which have a unique solution.
Knowing that a recursive equation has a unique /xed point means that one can prove
equivalence of two terms by showing that they both satisfy the recursion equation.
The usual syntactic characterisation is that of guarded recursion: if recursive calls are
syntactically “guarded” by an observable action then the /xed-point of the de/nition
is unique. 5

In a functional language the use of unique /xed-points is rather uncommon. The
natural notion of “guard” is a constructor; however, many recursive de/nitions are
“unguarded”—for example, the standard 9lter function, which selects all elements from
a list which satisfy a predicate. Additionally, the presence of destructors make the usual
notions of guardedness rather ine@ective. Consider, for example, the equation

x ∼= 1:(tail (tail x)):

Despite the fact that on the right-hand side, x is guarded by the cons-constructor, there
are many deterministic solutions for this equation. For example, both 1:⊥ and the
in/nite list of ones are solutions.
To recover a usable unique /xed-point theorem, we work with a /ner, more in-

tentional theory of equivalence. The motivation is that using a /ner equivalence will
give us fewer solutions to recursive equations, which in turn will give us a unique
/xed-point proof rule.
The /ner equivalence we use is called cost equivalence [46].

De$nition 4 (Cost Equivalence). We say that M is cost equivalent to N , written M
:=N , if for all C such that C[M] and C[N] are closed,

C[M] ⇓n ⇐⇒ C[N] ⇓n ∧ C[M] ⇑ ⇐⇒ C[N] ⇑ :

Clearly := is contained in ∼=. The point is that cost equivalence equations have
unique solutions—provided that the recursion is guarded by at least one computation
step. To make this precise, we need to introduce a very useful syntactic representation=

4 The present re/nement relation does not support a /xed-point induction principle since divergence is not
a bottom element in this ordering.

5 The technique of guarding recursion to force uniqueness of /xed-points may also be seen in metric
semantics, see e.g., [5].

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 113

characterisation of a computation step, the tick:

M def= let {} in M:

Clearly, adds one unit to the cost of evaluating M without otherwise changing its
behaviour, so that M ∼= M . Note that

M ⇓ ⇐⇒ M ⇓ M ⇓n ⇐⇒ M ⇓n+1 :

We will write k M to mean that M has been slowed down by k ticks. As an example
of a cost equivalence involving the tick, we have the following:

(�x:M)y := 2 M [y=x]: (�)

Now we are in a position to state the unique /xed-point induction principle, which
is a variation on the proof rule of “improvement up to context” [47], and Lassen and
Moran’s cost equivalence induction [29,34].

Theorem 2 (Unique /xed-point induction). For any M; N; C, and substitution ., the
following proof rule is sound:

M := C[M.] N := C[N.]
M := N

:

The proof is given in Section 6. It may seem at /rst sight that cost equivalence is too
/ne to be applicable. The reason that this appears not to be the case in practice is that
/rstly, proof techniques such as the context lemma extend in a very straightforward
manner to cost equivalence, and secondly, for every equivalence in Fig. 3, there is a
corresponding cost equivalence which can be obtained by adding an appropriate number
of ticks (in appropriate places) to the left- and right-hand sides. We saw one example
of this above (�). Rather than list all of these we take just a couple of examples:

case cj ỹ of {ci x̃i → Mi} := 2 Mj[ỹ=x̃j] (case-�);

E[case M of {pati → Ni}] := case M of {pati → E[Ni]} (case-E):

Collectively, We refer to these rules as the tick algebra. An example use of the tick
algebra, in conjunction with unique /xed-point induction is the proof of the commuta-
tivity of merge, is given in the next section.

5. Correctness of the translation

The calculus of stream processors presented in Section 3 (and introduced in [9])
represents the designers’ intuition regarding the “essence of fudgets”. The purpose of
this section is to demonstrate that the semantics we have given to this calculus in terms

114 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

of the non-deterministic lazy language is consistent with the laws and reductions of the
calculus: every congruence is an equivalence, and each reduction rule is a re/nement.
More precisely,

Theorem 3. For any stream processors S and T ,

(i) S ∼T =⇒ <S=∼= <T =,
(ii) S →T =⇒ <S=.<T =.

5.1. Properties of merge

In order to establish the theorem we begin by considering properties of the merge
operation.
First a notational abbreviation: given a set of recursive de/nitions f̃= M̃ we will

write a derivation of the form

f̃ � M1
:=M2

...
:=Mn

to mean

let {f̃ = M̃} in M1
:= let {f̃ = M̃} in M2

...
:= let {f̃ = M̃} in Mn:

This applies to ≡; ∼=, and . also.
The two key properties of merge that we will establish are that it is commutative

and associative.

Proposition 4.

merge xs ys∼=merge ys xs (merge-comm);

merge xs (merge ys zs)∼=merge (merge xs ys) zs (merge-assoc):

Proof. We prove only (merge-comm); (merge-assoc) is similar. We use unique /xed-
point induction. Let C be the context:

5

case ys of

nil → xs

z:ys → z:[·]

⊕

case xs of

nil → ys

z:xs → z:[·]

 :

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 115

Then since

merge � merge xs ys
:= (2 �xs; ys : : : :⊕ : : :)xs ys (value-�)

:= 6

case xs of

nil → ys

z:xs → z:merge xs ys

⊕

case ys of

nil → xs

z:ys → z:merge xs ys

 (�)× 2

:= 6

case ys of

nil → xs

z:ys → z:merge xs ys

⊕

case xs of

nil → ys

z:xs → z:merge xs ys

 (⊕-comm)

≡ C[merge xs ys]

and

merge � merge ys xs

:= (2 �xs; ys : : : :⊕ : : :)xsys (value-�)

:= 6

case ys of

nil → xs

z:zs → z:merge zs xs

⊕

case xs of

nil → ys

z:zs → z:merge ys zs

 (�)× 2

≡ C[merge ys xs]; (rename);

the desired result follows by unique /xed-point induction and the soundness of :=.

Lemma 5.

merge(x:xs)ys. x:merge xs ys (merge-eval):

116 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

Proof. By calculation:

merge � merge (x:xs)ys

∼= (�xs; ys; : : : :⊕ : : :) (x:xs)ys (value-�)

∼=

case x:xs of

nil → ys

z:zs → z:merge zs ys

⊕

case ys of

nil → xs

z:zs → z:merge xs zs

 (�)× 2

. case x:xs of (⊕-left)

nil → ys

z:zs → z:merge zs ys

∼= x:merge xs ys (case-�)

5.2. The congruences

The commutativity and associativity of | follow in a straightforward way from the
corresponding properties of merge. The associativity of ¡¡ simply follows from the
associativity of function composition. In the sequel, we make the following overloaded
use of the combinators of the stream processor calculus:

x ! s def= �i:x:(s i)

x ?M def= �i:case i of {nil → nil | x:xs → M xs}; i; xs =∈ FV(M)

s¡· x def= �i:s (x:i)

s¡¡ t def= �i:s (t i)

s | t def= �i:merge(s i) (t i)

l s def= �i:let {o = s(merge oi)} in o:

Lemma 6. For any terms S and T and variables x and y,

(i) (S ¡¡T)¡· x∼= S ¡¡ (T ¡· x).
(ii) S ¡¡ (x !T)∼=(S ¡· x)¡¡T .
(iii) (x ! S)¡¡T ∼= x ! (S ¡¡T).
(iv) (S | T)¡· x∼=(S ¡· x) | (T ¡· x).

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 117

Fig. 4. Proof of Lemma 6(iv).

Fig. 5. Proof of Lemma 6 (vi).

(v) (x ! S)¡·y∼= x ! (S ¡·y).
(vi) (x ? S)¡·y∼= �i:S[y=x]i.

Proof. The proof of (iv) is to be found in Fig. 4 and the proof of (vi) in Fig. 5. The
others have similar proofs.

5.3. The reduction rules

Throughout, we will use the syntactic equivalences for application and constructors
mentioned in Section 3.2 without reference, but only where such usage does not obscure
the calculation in question.

118 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

Fig. 6. First half of proof of Lemma 7 (ii).

Lemma 7. For any terms S and T and variables x,

(i) (x ! S) | T . x ! (S | T).
(ii) l (x ! S). x ! (l (S ¡· x)).
(iii) (l S)¡· x. l(S ¡· x).

Proof. We show (ii) only. The result follows since we have that (modulo renaming)

l (x ! S). �i:let y = x:w (Fig: 6)

w = merge zi

z = Sy

in x:z
∼= x ! (l (S ¡· x)) (Fig: 7)

The proof of Theorem 3 now follows from the above lemmata by an easy induction
on the structure of the stream processors. The only other properties needed in the proof
are that (i) the image of the translation < · = is always a lambda abstraction, and that
(ii) the re/nement and congruence relation are closed under substitution of values (in
particular, lambda abstractions) for variables.

6. Proofs of main theorems

This section gives an outline of the technical development and proofs of the main
results. Most proofs follow a direct style reasoning which is reminiscent of proofs
about functional languages with e@ects by Mason and Talcott et al. [1,31,54]. In order
to make this style of proof rigourous we generalise the abstract machine semantics
so that it works on con9guration contexts—con/gurations with holes. To ensure that
transitions on con/guration contexts are consistent with hole /lling one must work with

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 119

Fig. 7. Second half of proof of Lemma 7 (ii).

a more general representation of contexts. One such approach is described in [54]. We
use an alternative approach to generalising contexts which is due to Pitts [44].

6.1. Concerning divergence

The usual de/nition of an in/nite reduction sequence is the following:

〈(; M; S〉→! def= ∃ {3i}i∈N such that

30 ≡〈(; M; S〉 ∧ ∀i∈N:3i → 3i+1

To see that ⇑ is indeed equivalent to this de/nition, /rst note that the existence of
such a set allows us to construct arbitrarily long reduction sequences easily. The other
direction is a little more involved. Suppose that, for all n; 〈(; M; S〉→n, but that
〈(; M; S〉9 !. The tree rooted at 〈(; M; S〉 has in/nitely many nodes, but since
〈(; M; S〉9 ! there is no in/nite path through that tree. Since → is /nitely branching
and has no in/nite path, the tree must have /nitely many nodes, by K:onig’s Lemma.
But the assumption that for all n; 〈(; M; S〉→n implies that the tree has in/nitely
many nodes; a contradiction.

6.2. Substituting contexts

Following Pitts [44], we use second-order syntax to represent (and generalise) the
traditional de/nition of contexts given in Section 4.2. We give a fuller description in
[48]; other examples of their use are to be found in [28,34]. The idea is that instead

120 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

of holes [·] we use second-order variables, ranged over by 4, applied to some vector
of variables. The syntax of generalised contexts is

C;D ::= 4 · [̃x]
| x | �x:C | C x | c̃x

| let {̃x= D̃} in C

| case C of {cix̃i → Di}
| C⊕D:

V and W will range over value contexts, and � over heap contexts, and S and
T over stack contexts. Each “hole variable” 4 has a /xed arity, and ranges over
meta-abstractions of the form (̃x)M where the length of x̃ is the arity of 4. In the
meta-abstraction (̃x)M , the variables x̃ are bound in M . Hole-/lling is now a general
non-capturing substitution: [(̃x)M=4]. The e@ect of a substitution is as expected (remem-
bering that the x̃ are considered bound in (̃x)M). Coupled with the meta-abstraction is
of course meta-application, written 4 · [̃x]. We restrict application of 4 to variables so
that hole-/lling cannot violate the restriction on syntax. In the de/nition of substitution
we make the following identi/cation:

(̃x)M · [ỹ] ≡ M [ỹ=̃x]:

This de/nition of context generalises the usual de/nition since we can represent a
traditional context C by C[4 · [̃x]] where x̃ is a vector of the capture-variables of C;
/lling C with a term M is then represented by (C[4 · [̃x]])[(̃x)M=4].

Example. The traditional context let x= [·] in �y:[·] can be represented by
let x= 4 · [(x; y)] in �y · 4 · [(x; y)]. Filling the hole with the term xy is represented by

(let x = 4 · [(x; y)] in �y:4 · [(x; y)])[(x; y)xy=4]
≡ let z=(x; y) xy · [(z; y)] in �w:(x; y) xy · [(x; w)]
≡ let z = zy in �w :xw

which is +-equivalent to what we would have obtained by the usual hole-/lling with
capture. Note that the generalised representation permits contexts to be identi/ed up to
+-conversion.
Henceforth, we work only with generalised contexts. We will write C[(̃x)M] to mean

C[(̃x)M=4] when C contains just a single hole variable 4. We assume that the arities
of hole variables are always respected.
We implicitly generalise our de/nitions of improvement to work with generalised

contexts. This is not quite identical to the earlier de/nition since with generalised
contexts, when placing a term in a hole we obtain a substitution instance of the term.
This means in particular that improvement is now closed under substitution (variable-
for-variable) by de/nition—a useful property. This di@erence is a relatively minor
technicality which we will gloss over in this section.

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 121

6.3. Open uniform computation

The basis of our proofs will be to compute with con/gurations containing holes
and free variables. Thanks to the capture-free representation of contexts, this means
that normal reduction can be extended to contexts with ease. See [48] for a thorough
treatment of generalised contexts and how they support generalisation of inductive
de/nitions over terms.
Firstly, in order to /ll the holes in a con/guration we need to identify con/gurations

up to renaming of the heap variables (recalling that update-markers on the stack are also
binding occurrences of heap variables). In what follows, will range over con/guration
contexts 〈 ; C; S〉.
We tacitly extend the operational semantics to open con/gurations with holes. Note

that holes can only occur in the stack within the branches of case alternatives. In what
follows 5 will range over substitutions composed of variable-for-variable substitutions
and substitutions of the form [(̃xi)Mi=4i]. We will write 〈 ; C; S〉→n 9 to mean
that con/guration context 〈 ; C; S〉 reduces in n steps to con/guration context ,
which does not reduce any further. 〈 ; C; S〉 ⇑ has the obvious meaning.
We have the following key property.

Lemma 8 (Extension). If 〈 ; C; S〉→k〈�; D; T〉 then

(i) for all ′ and S′ such that 〈 ′ ; C; SS′〉 is well-formed, 〈 ′ ; C; SS′〉→k

〈 ′�; D; TS′〉, and
(ii) for all 5; 〈 ; C; S〉5→k 〈�; D; T〉5.

Proof. (i) follows by inspection of possible open reductions over con/guration con-
texts.
(ii) amounts to the standard substitution lemma; see [48] for a general argument.

The following open uniform computation property is central. It allows us to evaluate
open con/guration contexts until either the computation is /nished, or we /nd ourselves
in an “interesting” case.

Lemma 9 (Open uniform computation). If well-formed and well-typed con9guration
context 〈 ; C; S〉 n→ 9 then has one of the following forms:

(i) 〈�; V; *〉;
(ii) 〈�; 4i · [ỹ]; T〉, for some hole 4i, or
(iii) (�; x; T); x∈ FV(;C;S).

Proof. Assume 〈 ; C; S〉→n 9 . We consider the reduction of 〈 ; C; S〉 and
proceed by induction on n with cases on the structure of C. We show four illustrative
cases only. The others are similar.
C≡ 4i · [ỹ]. This is a type (ii) context, so we are done.

122 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

C≡ x. There are three possibilities here: either x is bound by , by S, or nei-
ther. In the /rst case, ≡�{x=D}. By (Lookup), 〈�{x=D}; x; S〉 reduces to
〈�; D; #x : S〉. By the inductive hypothesis, we know that 〈�; D; #x : S〉 reduces
to a con/guration context of type (i), (ii), or (iii), and therefore 〈�{x=D}; x; S〉
does also, as required. The second case cannot occur since it would imply, by (Black
Hole), that 〈 ; C; S〉⇑ exclusively (i.e., without any other behaviours), contradicting
the initial assumption. In the last case, 〈 ; x; S〉 is a type (iii) context, and we are
done.
C≡V. There are four sub-cases, depending upon the structure of S; we consider

only the case when S≡ x : T. Since 〈 ; C; S〉 is well-typed, V≡ �y:D, and by
(Subst), 〈 ; �y:D; x : T〉 reduces to 〈 ; D[x=y]; T〉. The inductive hypothesis ap-
plies, and the result follows as above.
C≡D⊕ E. There are two possibilities here: either 〈 ; D⊕ E; S〉→ 〈 ; D; S〉 or

〈 ; D⊕ E; S〉→ 〈 ; E; S〉. In either case, the inductive hypothesis applies, and the
desired result follows.

6.4. Translation

The relationship between terms and con/gurations is characterised by a translation
function from con/gurations to terms, de/ned inductively on the stack:

trans〈∅; M; *〉=M;

trans〈{̃x = M̃}; N; *〉= let {̃x = M̃} in N;

trans〈(; M; x : S〉= trans〈(; M x; S〉;
trans〈(; M; #x : S〉= trans〈({x = M}; x; S〉;

trans〈(; M; alts : S〉= trans〈(; case M of alts; S〉:

We can extend the de/nition of trans to cover open con/gurations and con/guration
contexts. The following lemma clari/es the relationship.

Lemma 10 (Translation). For all D; ; C; S such that D= trans〈 ; C; S〉, there
exists k¿0 such that 〈∅; D; *〉→k 〈 ; C; S〉.

Proof. Simple induction on S.

6.5. Proof. the context lemma

The proof of the context lemma relies upon three lemmas, the /rst of which is the
simplest.

Lemma 11. M.N if and only if for all ,

[(̃x)N] ⇓ =⇒ [(̃x)M] ⇓

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 123

and

[(̃x)N] ⇑ =⇒ [(̃x)M] ⇑ :

Proof (Sketch). (⇐). Trivial; let = 〈∅; C; *〉.
(⇒). We show only the divergence half; the convergence follows similarly. Assume

that the divergence half of M.N , i.e., that for all D,

〈∅; D[(̃x)N]; *〉 ⇑ =⇒ 〈∅; D[(̃x)M]; *〉 ⇑

and suppose [(̃x)N] ⇑, i.e.

∀n:〈 [(̃x)N]; C[(̃x)N]; S[(̃x)N]〉 →n : (6.1)

Let D≡ trans(; C; S). By translation, there exists k¿0 such that 〈∅; D; *〉→k 〈 ; C;
S〉. Therefore, by (6.1), we have ∀n:〈∅; D[(̃x)N]; *〉→n+k . By assumption, we have
that ∀n:〈∅; D[(̃x)M]; *〉→n+k , and the result follows by translation.

Lemma 12. If for all (, and S,

〈(; (̃x)N · [ỹ]; S〉 ⇓ =⇒ 〈(; (̃x)M · [ỹ]; S〉 ⇓

then for all ,

[(̃x)N] ⇓ =⇒ [(̃x)M] ⇓;

where x̃⊇ FV(M;N).

Proof. Assume the premise and suppose [(̃x)N]⇓n. We proceed via induction on n.
By open uniform computation, reduces in k¿0 steps to at least one 6 of

(1) 〈�; V; *〉; (2) 〈�; 4 · [ỹ]; S〉:

(A type (iii) context is not possible since is closed.) In case (1), we are done. In
case (2), we have

〈�[(̃x)N]; N [ỹ=̃x]; S[(̃x)N]〉 ⇓n−k (6.2)

and

[(̃x)M]→k〈�[(̃x)M]; M [ỹ=̃x]; S[(̃x)M]〉: (6.3)

6 There are many possibilities here. There can be many di@erent instances of cases (1) and (2) to which
reduces, and indeed it may also diverge. However, since [(̃x)M]⇓ we know that there must be an

instance of at least one of cases (1) and (2). The possibility of divergence is irrelevant here.

124 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

By open uniform computation, 〈�; M [ỹ=̃x]; S〉 reduces in k ′¿0 steps to at least
one of:

(2:1) 〈�′; W; *〉; (2:2) 〈�′; 4 · [̃z]; T〉:

(Again, a type (iii) context cannot arise because (�; M [ỹ=̃x]; S) is closed, and the
possibility of divergence is irrelevant.) In case (2.1), we have that

〈�[(̃x)M]; M [ỹ=̃x]; S[(̃x)M]〉→k′〈�′[(̃x)M]; W[(̃x)M]; *〉; (6.4)

so

〈�′[(̃x)M]; W[(̃x)M]; *〉 ⇓

=⇒ 〈�[(̃x)M]; M [ỹ=̃x];S[(̃x)M]〉 ⇓ (6.4)

=⇒ [(̃x)M] ⇓ (6.3)

as required. In case (2.2), we know that k ′¿0, since M [ỹ=̃x] �≡ 4 · [̃z]. We have

〈�[(̃x)N]; N [ỹ=̃x]; S[(̃x)N]〉→k′〈�′[(̃x)N]; N [̃z=̃x]; T[(̃x)N]〉 (6.5)

and

〈�[(̃x)M]; M [ỹ=̃x]; S[(̃x)M]〉→k′〈�′[(̃x)M]; M [̃z=̃x]; T[(̃x)M]〉: (6.6)

Therefore,

〈�[(̃x)N]; N [̃z=̃x]; T[(̃x)N]〉 ⇓n−k−k′ ((6.5), (6.2))

=⇒ 〈�′[(̃x)M]; N [̃z=̃x]; T[(̃x)M]〉 ⇓ (I:H:)

=⇒ 〈�′[(̃x)M]; M [̃z=̃x]; T[(̃x)M]〉 ⇓ (ass.)

=⇒ 〈�[(̃x)M]; M [ỹ=̃x]; S[(̃x)M]〉 ⇓ (6.6)

=⇒ [(̃x)M] (6.3)

as required.

Lemma 13. If for all (and S,

〈(; (̃x)N · [ỹ]; S〉 ⇑ =⇒ 〈(; (̃x)M · [ỹ]; S〉 ⇑

then for all ,

[(̃x)N] ⇑ =⇒ [(̃x)M] ⇑;

where x̃⊇ FV(M;N).

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 125

Proof. Assume the premise. We show that

∀k; ;C;S:〈 [(̃x)N]; C[(̃x)N]; S[(̃x)N]〉 ⇑
=⇒ 〈([(̃x)M]; C[(̃x)M]; S[(̃x)M]〉→k :

by complete induction on k. The base case is immediate, since [(̃x)M]→0 holds for
any and M .
Let ≡〈 ; C; S〉 and suppose [(̃x)N] ⇑. Clearly, at least one of the following

must be the case:

(1) 〈 ; C; S〉⇑,
(2) 〈 ; C; S〉→n ′9 and ′[(̃x)N] ⇑.

(There are of course other possibilities since 〈 [(̃x)N]; C[(̃x)N]; S[(̃x)N]〉 may con-
verge, but these are not relevant here.) In case (1),

〈 [(̃x)M]; C[(̃x)M]; S[(̃x)M]〉 ⇑;
which implies 〈 [(̃x)M]; C[(̃x)M]; S[(̃x)M]〉→k , and we are done.
For case (2), by open uniform computation, ′ ≡〈�; 4 · [ỹ]; T〉 (since a type

(i) context would contradict ′[(̃x)N] ⇑, and a type (iii) context cannot occur since
〈 ; C; S〉 is closed). Therefore,

〈 [(̃x)M]; C[(̃x)M]; S[(̃x)M]〉→n〈�[(̃x)M]; M [ỹ=̃x]; T[(̃x)M]〉: (6.7)

By the assumption, 〈�[(̃x)N]; N [ỹ=̃x];T[(̃x)N]〉 ⇑ implies that

〈�[(̃x)N]; M [ỹ=̃x]; T[(̃x)N]〉 ⇑ (6.8)

Consider 〈�; M [ỹ=̃x]; T〉. By (6.8), at least one of the following must be the case:

(2.1) 〈�; M [ỹ=̃x]; T〉⇑, or
(2.2) 〈�; M [ỹ=̃x]; T〉→n′ ′′, and ′′[(̃x)N] ⇑.

(Again, the other possibilities are irrelevant here.) In case (2.1),

〈�[(̃x)M]; M [ỹ=̃x]; T[(̃x)M]〉 ⇑;
which implies 〈�[(̃x)M]; M [ỹ=̃x]; T[(̃x)M]〉→k , and therefore, by (6.7), we are done.
For case (2.2), by open uniform computation, ′′ ≡〈�′; 4 · [̃z]; T′〉 (for all similar

reasons to the above). Therefore,

〈�[(̃x)M]; M [ỹ=̃x]; T[(̃x)M]〉→n′〈�′[(̃x)M]; M [̃z=̃x]; T′[(̃x)M]〉: (6.9)

where n′¿0, since M [ỹ=̃x] �≡ 4 · [̃z]. So, recalling that ′′ ≡〈�′; 4 · [̃z]; T′〉; ′≡
〈�; M [ỹ=̃x]; T〉, and ≡〈 ; C; S〉,

′′[(̃x)N] ⇑
=⇒ ∀k ′¡k: ′′[(̃x)M] →k′ (I:H:)

126 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

=⇒ ∀k ′¡k: ′[(̃x)M]→k′+n′ (6.9)

=⇒ ∀k ′¡k: [(̃x)M]→k′+n′+n (6.7)

=⇒ [(̃x)M]→k n′ ¿ 0

as required.

The generalised statement of the context lemma is:
For all terms M and N, if

∀(; S; .; n:〈(; N.; S〉 ⇓ =⇒ 〈(; M.; S〉 ⇓
and

∀(; S; .:〈(; N.; S〉 ⇑ =⇒ 〈(; M.; S〉 ⇑
then M.N .
This follows from Lemmas 11–13, and the fact that M.≡ (̃x)M · [ỹ] for .= [ỹ=̃x].
There is a cost-sensitive analogue to the context lemma; the divergence half is as

above, and the convergence half is similar to Lemma A.5 in [35].

6.6. Validating the equational theory

We present a proof of the validity of the cost equivalence variant of (value-�) and
present and prove a lemma for establishing the correctness of the cost equivalence forms
of (case-E) and (let-E). The corresponding results for observational equivalence follow
by the soundness of := and the fact that M ∼=M . The proof of the correspondence
between evaluation contexts and con/guration contexts of the form 〈(; [·]; S〉 is as
for [35]. The proofs of the more complex laws (such as a cost equivalence version of
(value-copy)) have a structure similar to that for (value-�), except they require more
extensive use of open uniform computation.

6.6.1. Proof (value-�)
We show the cost equivalence variant of (value-�):

let {x = V; ỹ = D̃[x]} in C[x] := let {x = V; ỹ = D̃[2 V]} in C[2 V]:

Let W ≡ 2 V throughout. By the cost-sensitive analogue to the context lemma, it suf-
/ces to show

∀ ;S:〈 [x]{x = V}; C[x]; S[x]〉 ⇓n

⇐⇒ 〈 [W]{x = V}; C[W]; S[W]〉 ⇓6n (6.10)

and

∀ ;S:〈 [W]{x = V};C[W];S[W]〉 ⇑ ⇐⇒ 〈 [x]{x = V}; C[x]; S[x]〉 ⇑;
(6.11)

where x �∈ dom(;S), and the only hole is [·], a non-capturing hole.

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 127

We show the forward direction of (6.10) /rst; the reverse direction is similar. Sup-
pose 〈 [x]{x=V}; C[x]; S[x]〉⇓n. We proceed by induction on n. By open uniform
computation, 〈 ; C; S〉 reduces in k¿0 steps to at least one of

(1) 〈�; V; *〉; (2) 〈�; [·]; T〉; (3) 〈�; x; T〉:
In case (1), we are done. In case (2), by extension, (Lookup) and (Update), we have

〈 [x]{x = V}; C[x]; S[x]〉
→k〈�[x]{x = V}; x; T[x]〉
→2〈�[x]{x = V}; V; T[x]〉;

and by extension and the de/nition of W ,

〈 [W]{x = V}; C[W]; S[W]〉
→k〈�[W]{x = V}; W; T[W]〉
→2〈�[W]{x = V}; V; T[W]〉:

Since (�[x]{x=V}; V; T[x]〉⇓n−(k+2), by the inductive hypothesis we have
〈�[W]{x = V}; V; T[W]〉⇓n−(k+2), and the result follows.
In case (3), we have (�[x]{x=V}; V; T[x]〉⇓n−k−2, as above. Furthermore, by

extension, (Lookup) and (Update), we have

〈 [W]{x = V}; C[W]; S[W]〉
→k〈�[W]{x = V}; x; T[W]〉
→2〈�[W]{x = V}; V; T[W]〉:

From the inductive hypothesis, we have 〈�[W]{x=V}; V; T[W]〉⇓6n−k−2, and the
result follows.
We show the forward direction of (6.11) only; the reverse direction is similar. This

amounts to proving

∀k; ; C;S:〈 [W]{x = V}; C[W]; S[W]〉 ⇑
=⇒ 〈 [x]{x = V}; C[x]; S[x]〉 →k :

We proceed via complete induction on k. The base case is immediate. Suppose
〈 [W]{x=V}; C[W]; S[W]〉⇑. At least one of the following must be the case:

(1) 〈 ; C; S)⇑, or
(2) 〈 ; C; S〉→n 〈�; D; T; 〉, and 〈�[W]{x = V}; D[W]; T[W]〉⇑.

In case (1), the result follows immediately. In case (2), by open uniform computation,
〈�; D; T〉 can take on the following forms:

(2:1) 〈�; [·]; T〉; (2:2) 〈�; x; T〉:

128 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

In case (2.1), by extension and the de/nition of W , we have

〈 [W]{x = V}; C[W]; S[W]〉
→n〈�[W]{x = V}; W; T[W]〉
→2〈�[W]{x = V}; V; T[W]〉

and

〈 [x]{x = V}; C[x]; S[x]〉→n〈�[x]{x = V}; x; T[x]〉: (6.12)

Then the result follows, since

〈�[W]{x = V}; V; T[W]〉 ⇑
=⇒ ∀k ′¡k:〈�[x]{x = V}; V; T[x]〉→k′ (I:H:)

=⇒∀k ′¡k:〈�[x]{x = V}; x; T[x]〉→k′+2 (?)

=⇒ ∀k ′¡k:〈 [x]{x = V}; C[x]; S[x]〉→k′+2+n

=⇒ 〈 [x]{x = V}; C[x]; S[x]〉→k ; (6.12)

where (?) follows by (Update) and (Lookup).
In case (2.2), by extension, (Update), and (Lookup), we have

〈 [W]{x = V}; C[W]; S[W]〉
→n〈�[W]{x = V}; x; T[W]〉
→2〈�[W]{x = V}; V; T[W]〉

and

〈 [x]{x = V}; C[x]; S[x]〉 →n 〈�[x]{x = V}; x; T[x]〉: (6.13)

Then the result follows, since

〈�[W]{x = V}; V; T[W]〉 ⇑
=⇒ ∀k ′¡k:〈�[x]{x = V}; V; T[x]〉→k′ (I:H:)

=⇒∀k ′¡k:〈�[x]{x = V}; x; T[x]〉→k′+2 (?)

=⇒ ∀k ′¡k:〈 [x]{x = V}; C[x]; S[x]〉→k′+2+n

=⇒ 〈 [x]{x = V}; C[x]; S[x]〉→k ; (6.13)

where (?) follows by (Update) and (Lookup).

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 129

6.6.2. A lemma for (case-E) and (let-E)
The following lemma can be used to validate (case-E) and (let-E). CV(E) denotes

the capture variables of E.

Lemma 14. For all E, there exist (; S, such that dom((; S)⊆CV(E) and

∀,; T:〈,; E; T 〉→∗〈,(; [·]; ST 〉:

Proof. By virtue of the correspondence between evaluation contexts and con/gurations,
there exist (and S such that trans〈(; [·]; S〉≡ E, so by translation 〈∅; E; *〉→∗〈(; [·];
S〉, and thus by extension, provided dom((; S)⊆CV(E); 〈,; E; T 〉→∗〈,(; [·]; ST 〉.

6.7. Proof. Unique 9xed-point induction

We will use the following lemma to prove unique /xed-point induction.

Lemma 15. For all k, if M :=N then for all ,

[(̃x)M]→k ⇐⇒ [(̃x)N]→k :

Proof. Assume M := N , i.e., that for all ; n,

[(̃x)M] ⇓n ⇐⇒ [(̃x)N] ⇓n (6.14)

and

∀k: [(̃x)M] →k ⇐⇒ ∀k: [(̃x)N] →k : (6.15)

Suppose [(̃x)M] →k for some k. There are two (by no means mutually exclusive)
possibilities:

(i) The partial sequence is a subsequence of a convergent sequence. Then (6.14)
yields the desired result.

(ii) The partial sequence is a subsequence of a divergent sequence. Then (6.15) yields
the desired result.

Recall the statement of unique /xed-point induction:
For any M and N, the following proof rule is sound:

M := C[M] N := C[N]
M := N

:

We generalise C[M] to C[(̃x)M]. Assume the premises hold, i.e., that for all ,

[(̃x)M] ⇓n ⇐⇒ [C[(̃x)M]] ⇓n; (6.16)

[(̃x)N] ⇓n ⇐⇒ [C[(̃x)N]] ⇓n; (6.17)

130 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

[C[(̃x)M]] ⇑ ⇐⇒ [(̃x)M] ⇑; (6.18)

[C[(̃x)N]] ⇑ ⇐⇒ [(̃x)N] ⇑ : (6.19)

It suRces to show, under the assumption of the premises, that

∀ : [(̃x)M] ⇓n ⇐⇒ [(̃x)N] ⇓n (6.20)

and

∀k; : [(̃x)M] ⇑ ⇐⇒ [(̃x)N]→k (6.21)

(where the are such that [(̃x)M] and [(̃x)N] are closed).
We /rst show the forward direction of (6.20). Suppose [(̃x)M]⇓n. We proceed by

induction on n. By open uniform computation, reduces in k¿0 to one of

(1) 〈�; V; *〉; (2) 〈�; 4 · [ỹ]; T〉:

In case (1), we are done. In case (2), /rst note that, letting .= [ỹ=̃x]; C[(̃x)M].≡
C.[(̃x)M] since x̃⊇ FV(M), and similarly for N . Then we have that

[(̃x)N] →k 〈�[(̃x)N]; N.; T[(̃x)N]〉 (6.22)

and

〈�[(̃x)M]; M.; T[(̃x)M] ⇓n−k

⇐⇒ 〈�[(̃x)M]; C[(̃x)M].; T[(̃x)M]〉 ⇓n−k (6.16)

⇐⇒ 〈�[(̃x)M]; C[(̃x)M].; T[(̃x)M]〉 ⇓n−(k+1) ()

=⇒ 〈�[(̃x)N]; C.[(̃x)N]; T[(̃x)N]〉 ⇓n−(k+1) (I:H:)

⇐⇒ 〈�[(̃x)N]; C[(̃x)N].; T[(̃x)N]〉 ⇓n−k ()

⇐⇒ 〈�[(̃x)N]; N.; T[(̃x)N]〉 ⇓n−k (6.17)

⇐⇒ [(̃x)N] ⇓n−k : (6.22)

The reverse direction is almost identical.
We show the forward direction of (6.21) by complete induction on k. Suppose
[(̃x)M] ⇑. Then at least one of the following must be the case:

(1) ⇑, or
(2) →n ′9 , and ′[(̃x)N] ⇑.

In case (1), the result follows directly. For case (2), by open uniform computa-
tion, ′ ≡〈 ; 4 · [ỹ]; S〉. Then the result follows, since (letting ′′≡〈 [(̃x)N]; [·],

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 131

S[(̃x)N]〉):

〈 [(̃x)M]; (̃x)M · [ỹ]; S[(̃x)M]〉 ⇑
=⇒ 〈 [(̃x)M]; C[(̃x)M]; S[(̃x)M]〉 ⇑ (6:18); (:= cong:)

=⇒ ∀k ′¡k: ′′[C[(̃x)N]] →k′ (I:H:)

⇐⇒ ∀k ′¡k: ′′[C[(̃x)N]] →k′+1 ()

=⇒ ∀k ′¡k: ′′[(̃x)N · [ỹ]] →k′+1 (lemma 15); (ass:)

=⇒ 〈([(̃x)N]; (̃x)N · [ỹ]; S[(̃x)N]〉 →k : ()

The reverse direction is almost identical.

7. Conclusions and future work

We have presented a semantic theory of the stream processors at the heart of the
Fudgets toolkit. The theory is built upon a call-by-need language with erratic non-
deterministic choice. Our semantic theory correctly models sharing and its interaction
with non-deterministic choice, and still contains proof principles for reasoning about
recursive programs. We have shown that in this theory, the congruences and reduction
rules of Carlsson and Hallgren’s proposed stream processor calculus are equivalences
and re/nements, respectively. The semantic model improves on the calculus of Kutzner
and Schmidt-SchauQ, and unlike Taylor’s theory of core fudgets it models the e@ects
of shared computation.

7.1. Making parallel composition fair

As it stands, parallel composition is not fair: if either operand fails to produce output,
then so may the composition as a whole, and an operand’s output may never appear as
output from the composition. This is because the merging of output streams is erratic.
There are three di@erent kinds of “fair” merge one might consider instead. Assuming
each accepts two streams xs and ys, and produces a third, their behaviour may be
described as follows:

Fair merge. Every element of xs and ys appears eventually (with relative order pre-
served) in the output.

Bottom-avoiding merge. If one of xs or ys is /nite or partial, then every element of
the other appears in the output.

In9nity-fair merge. If one of xs or ys is in/nite, then every element of the other
appears in the output.

The ideal merge for our purposes is the /rst: it is fair with respect to in/nite lists
(i.e., it avoids starvation in both operands), and is also able to avoid non-termination

132 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

associated with partial streams. The second can avoid non-termination associated with
partial lists, but may starve one of its input streams, if both streams are in/nite. The
third, in/nity-fair merge, does not starve in/nite input streams, but cannot avoid the
divergence inherent in partial streams.
The /rst merge cannot be implemented with McCarthy’s amb [38], and would require

study in its own right. However, the last two can be implemented by amb (see e.g.,
chapter 2 of [34]). A call-by-need theory for amb would have all of the advantages
of the current theory, as well as yielding bottom-avoiding implementations of | and l.
As stated elsewhere, amb is a much more diRcult operator to model. The technical
development outlined in Section 6 does not carry through for amb: the divergence
relation is far less tractable. Nevertheless, amb warrants further study.

7.2. Streams as data structures

In the current implementation, Fudgets are represented by a continuation-like data
structure. An interesting di@erence from the rather direct stream representation used
here is that it permits a stream processor to be unplugged from its point of use and
moved to another location. 7 This has been used in the Fudget library to implement
interaction by drag-and-drop, where the user can actually move a fudget from one
place in the program to another. The feature can even be pushed further, allowing
stream processors to migrate over networks to implement mobile agents in the full
sense. Although the present theory allows stream processors to be passed as data, it
does not permit this degree of freedom. We see no particular obstacle in working with
this more concrete representation—although it is likely that we would need to impose
a type discipline in order to be able to establish the expected laws.

7.3. Full abstraction of the translation

We have shown that “expected” equivalences and reduction rules of the stream pro-
cessor calculus correspond to equivalence and re/nements in the translated language.
An interesting (and very useful) result would be to show the reverse: that equiva-
lences (re/nements) between target terms correspond to equations and reductions in
the stream processor calculus. Among other things, this would require us to build an
observational theory for the calculus. This is non-trivial, as it seems to require higher-
order bisimilarity (since stream processors may be passed as messages to other stream
processors), but is nonetheless an interesting avenue for future work.

Appendix A. A small Fudget program

The following Fudget program implements a little counter with a display and two
push buttons, which can be used to increment or decrement the counter. The dataHow

7 This open the possibility to dynamically change the topology of a running program, an important feature
in other coordination languages such as MANIFOLD [2].

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 133

is speci/ed in counterF, which de/nes a serial composition of a display, a stream
processor keeping the integer state, and a parallel composition of the buttons (>==< is
serial composition, >+< is parallel composition, where the output is tagged with Left
or Right to indicate its source). The buttons output “clicks” when pressed, which are
counted by the stream processor, which in turn updates and outputs its internal state
to the display. mapstateF is a derived combinator which applies a state transforming
function accepting a state and an input message, yielding a new state and a list of
output messages.

import Fudgets

main = fudlogue (shellF "Up/Down Counter" counterF)

counterF = intDispF >==< mapstateF count 0 >==<
(buttonF filledTriangleUp >+<
buttonF filledTriangleDown)

count n (Left Click) =(n+1,[n+1])
count n (Right Click) =(n-1,[n-1])

When run, this small program pops up a window like this:

References

[1] G.A. Agha, I.A. Mason, S.F. Smith, C.L. Talcott, A foundation for actor computation, J. Functional
Program. 7 (1997) 1–72.

[2] F. Arbab, I. Herman, P. Spilling, An overview of MANIFOLD and its implementation, Concurrency:
Practice Exper. 5 (1) (1993) 23–70.

[3] Z.M. Ariola, M. Felleisen, The call-by-need lambda calculus, J. Functional Program. 7 (3) (1997)
265–301.

[4] Z. Ariola, M. Felleisen, J. Maraist, M. Ordersky, P. Walder, A call-by-need lambda calculus, in: Proc.
POPL’95, ACM Press, New York, 1995, pp. 233–246.

[5] A. Arnold, M. Nivat, Metric interpretations of in/nite trees and semantics of non-deterministic recursive
programs, Theoret. Comput. Sci. 11 (1980) 181–205.

[6] G. Berry, G. Boudol, The chemical abstract machine, Theoret. Comput. Sci. 96 (1) (1992) 217–248.
[7] G. Boudol, A lambda-calculus for parallel functions, Rapports de Recherche No. 1231, INRIA

Sophia-Antipolis, May 1990.
[8] M. Broy, A theory for nondeterminism, parallelism, communication, and concurrency, Theoret. Comput.

Sci. 45 (1) (1986) 1–61.
[9] M. Carlsson, T. Hallgren, Fudgets—purely functional processes with applications to graphical user

interfaces, Ph.D. thesis, Department of Computing Sciences, Chalmers University of Technology and
University of Gothenburg, Gothenburg, Sweden, March 1998.

134 A. Moran et al. / Science of Computer Programming 46 (2003) 99–135

[10] W. Clinger, Nondeterministic call by need is neither lazy nor by name, in: Lisp and Functional
Programming, 1982, pp. 226–234.

[11] U. de’Liguoro, A. Piperno, Must preorder in non-deterministic untyped �-calculus, in: CAAP ’92,
Lecture Notes in Computer Science, vol. 581, 1992, pp. 203–220.

[12] U. de’Liguoro, A. Piperno, Non-deterministic extensions of untyped �-calculus, Inform. Comput. 122
(2) (1995) 149–177.

[13] H. Erdogmus, R. Johnston, M. Ferguson, On the operational semantics of nondeterminism and
divergence, Theoret. Comput. Sci. 159 (2) (1996) 271–317.

[14] W. Ferreira, M. Hennessy, Towards a semantic theory of CML (extended abstract), in: J. Wiedermann,
P. Hajek (Eds.), Proc. MFCS’95, Lecture Notes in Computer Science, vol. 969, Springer, Berlin, 1995.

[15] W. Ferreira, M. Hennessy, A. Je@rey, A theory of weak bisimulation for core CML, in: Proc. ICFP’96,
ACM Press, New York, 1996, pp. 201–212.

[16] S. Finne, S.P. Jones, Composing Haggis, in: Proc. 5th Eurographics Workshop on Programming
Paradigms in Graphics, 1995.

[17] E.R. Gansner, J.H. Reppy, eXene, in: Proc. 1991 CMU Workshop on Standard ML, Carnegie Mellon
University, 1991.

[18] A.D. Gordon, A.M. Pitts (Eds.), Higher Order Operational Techniques in Semantics, Publications of
the Newton Institute, Cambridge University Press, Cambridge, 1998.

[19] M.C.B. Hennessy, The semantics of call-by-value and call-by-name in a nondeterministic environment,
SIAM J. Comput. 9 (1) (1980) 67–84.

[20] M.C.B. Hennessy, E.A. Ashcroft, A mathematical semantics for a nondeterministic typed �-calculus,
Theoret. Comput. Sci. 11 (1980) 227–245.

[21] M. Hennessy, E.A. Ashcroft, The semantics of non-determinism, in: Automata, Languages and
Programming, 1973.

[22] T. Hildebrandt, P. Panagaden, G. Winskel, A relational model of non-deterministic dataHow, in:
CONCUR ’98, Lecture Notes in Computer Science, vol. 1466, Springer, Berlin, 1998.

[23] S.P. Jones, A. Gordon, S. Finne, Concurrent Haskell, in: Proc. POPL’96, ACM Press, New York, 1996,
pp. 295–308.

[24] S.P. Jones, W. Partain, A. Santos, Let-Hoating: moving bindings to give faster programs: in: Proc.
ICFP’96, ACM Press, New York, 1996, pp. 1–12.

[25] S.P. Jones, A. Santos, A transformation-based optimiser for Haskell, Sci. Comput. Program. 32 (1–3)
(1998) 3–47.

[26] B. Jonsson, J.N. Kok, Comparing two fully abstract dataHow models, in: E. Odijk, M. Rem, J.-C.
Syre (Eds.), Proc. Conf. on Parallel Architectures and Languages Europe, Lecture Notes in Computer
Science, vols. 2, 366, Springer, Berlin, 1989, pp. 217–234.

[27] A. Kutzner, M. Schmidt-SchauQ, A non-deterministic call-by-need lambda calculus, in: Proc. 1CFP’98,
ACM Press, New York, 1998, pp. 324–335.

[28] S.B. Lassen, Relational reasoning about functions and nondeterminism, Ph.D. Thesis, Department of
Computer Science, University of Aarhus, May 1998.

[29] S.B. Lassen, A.K. Moran, Unique /xed point induction for McCarthy’s Amb, in: Proc. MFCS’99,
Lecture Notes in Computer Science, vol. 1672, Springer, Berlin, 1999, pp. 198–208.

[30] J. Launchbury, A natural semantics for lazy evaluation, in: Proc. POPL’93, ACM Press, New York,
1993, pp. 144–154.

[31] I. Mason, C. Talcott, Equivalence in functional languages with e@ects, J. Functional Program. 1 (3)
(1991) 287–327.

[32] R. Milner, Fully abstract models of the typed �-calculus, Theoret. Comput. Sci. 4 (1977) 1–22.
[33] M.W. Mislove, F.J. Oles, A simple language supporting angelic nondeterminism and parallel

composition, in: S. Brookes, M. Main, A. Melton, M. Mislove, D. Schmidt (Eds.), Mathematical
Foundations of Programming Semantics, 7th Internat. Conf., PA, USA, March 1991, Proc., Lecture
Notes in Computer Science, vol. 598, Springer, Berlin, 1992, pp. 77–101.

[34] A.K. Moran, Call-by-name, call-by-need, and McCarthy’s Amb, Ph.D. Thesis, Department of Computing
Sciences, Chalmers University of Technology, Gothenburg, Sweden, September 1998.

[35] A.K. Moran, D. Sands, Improvement in a lazy context: an operational theory for call-by-need (extended
version), extended version of [36]; available from the authors (Nov. 1998).

A. Moran et al. / Science of Computer Programming 46 (2003) 99–135 135

[36] A.K. Moran, D. Sands, Improvement in a lazy context: an operational theory for call-by-need, in: Proc.
POPL’99, ACM Press, New York, 1999, pp. 43–56.

[37] F. Nielson, H.R. Nielson, From CML to its process algebra, Theoret. Comput. Sci. 155 (1) (1996)
179–219.

[38] P. Panangaden, V. Shanbhogue, McCarthy’s amb cannot implement fair merge, Technical Report,
TR88-913, Cornell University, Computer Science Department, May 1988.

[39] P. Panangaden, E.W. Stark, Computations, residuals, and the power of indeterminancy, in: ICALP ’88,
Lecture Notes in Computer Science, vol. 317, Springer, Berlin, 1988, pp. 439–454.

[40] D. Park, On the semantics of fair parallelism, in: Abstract Software Speci/cations, Lecture Notes in
Computer Science, vol. 86, Springer, Berlin, 1980, pp. 504–526.

[41] D. Park, The fairness problem and nondeterministic computing networks, Mathematisch Centrum,
Amsterdam, 1983, pp. 133–162.

[42] J. Peterson, K. Hammond, The Haskell Report, Version 1.4, Technical Report, Yale University, 1997.
[43] G.D. Plotkin, A powerdomain construction, SIAM J. Comput. 5 (3) (1976) 452–487.
[44] A.M. Pitts, Some notes on inductive and co-inductive techniques in the semantics of functional

programs, Notes Series BRICS-NS-94-5, BRICS, Department of Computer Science, University of
Aarhus, December, 1994.

[45] J.H. Reppy, CML: a higher-order concurrent language, in: Proc. PLDI’91, SIGPLAN Notices, vol. 26,
ACM Press, New York, 1991, pp. 294–305.

[46] D. Sands, A na:Xve time analysis and its theory of cost equivalence, J. Logic Comput. 5 (4) (1995)
495–541.

[47] D. Sands, Improvement theory and its applications, in: Gordon, Pitts (Eds.), Higher Order Operational
Techniques in Semantics, Publications of the Newton Institute, Cambridge University Press, Cambridge,
1998, pp. 275–306.

[48] D. Sands, Computing with contexts: a simple approach, in: A.D. Gordan, A.M. Pitts, C.L. Talcott
(Eds.), Proc. HOOTS II, Electronic Notes in Theoretical Computer Science, vol. 10, Elsevier Science
Publishers, Amsterdam, 1998.

[49] D. Sangiorgi, The lazy lambda calculus in a concurrency scenario, Inform. Comput. 111 (1) (1994)
120–153.

[50] P. Sestoft, Deriving a lazy abstract machine, J. Functional Program. 7 (3) (1997) 231–264.
[51] H. SHndergaard, P. Sestoft, Non-determinism in functional languages, The Comput. J. 35 (5) (1992)

514–523.
[52] M.B. Smyth, Power domains, J. Comput. System Sci. 16 (23–26) (1978) 23–35.
[53] M.B. Smyth, Power domains and predicate transformers: a topological view, in: ICALP’83, Lecture

Notes in Computer Science, vol. 154, 1983, pp. 662–676.
[54] C.L. Talcott, Reasoning about functions with e@ects, in: Gordon, Pitts (Eds.), Higher Order Operational

Techniques in Semantics, Publications of the Newton Institute, Cambridge University Press, Cambridge,
1998, pp. 347–390.

[55] C. Taylor, Formalising and reasoning about Fudgets, Ph.D. Thesis, School of Computer Science and
Information Technology, University of Nottingham, October 1998.

[56] C. Taylor, A theory for core Fudgets, in: Proc. ICFP’98, ACM Press, New York, 1998, pp. 75–85.

	Erratic Fudgets: a semantic theory for an embedded coordination language
	Introduction
	Contributions
	Organisation

	Related work
	Fudget calculi
	Other functional GUIs
	Non-determinism in functional languages

	Essence of Fudgets
	The stream processor calculus
	Implementing the stream processors
	Erratic merge
	Translating stream processors

	The operational theory
	The abstract machine
	Program contexts
	Refinement and observational equivalence
	Unique fixed-point induction

	Correctness of the translation
	Properties of merge
	The congruences
	The reduction rules

	Proofs of main theorems
	Concerning divergence
	Substituting contexts
	Open uniform computation
	Translation
	Proof. the context lemma
	Validating the equational theory
	Proof (value-beta)
	A lemma for (case-E) and (let-E)

	Proof. Unique fixed-point induction

	Conclusions and future work
	Making parallel composition fair
	Streams as data structures
	Full abstraction of the translation

	Appendix A.
	References

