Technical Report no. 2004-06

Controlled Declassification based on
Intransitive Noninterference !

Heiko Mantel? David Sands

CHALMERS | GOTEBORG UNIVERSITY

Department of Computing Science
Chalmers University of Technology and Goteborg University
S-412 96 Goteborg, Sweden

Goteborg, November 2004

1 An abbreviated version of this article appears in Programming Languages
and Systems: Second Asian Symposium, APLAS 2004, LNCS 3302. Prelim-
inary versions were circulated in the summer of 2003 under the title “Con-
trolled Downgrading based on Intransitive (Non)Interference”, and presented
at Dagstuhl Seminar 03411.

2Author’s present address: Swiss Federal Institute of Technology
(ETH), Department of Computer Science, CH-8092 Zurich, Switzerland,
Heiko.Mantel@inf.ethz.ch

Technical Report in Computing Science at
Chalmers University of Technology and Goteborg University

Technical Report no. 2004-06
ISSN: 1650-3023

Department of Computing Science
Chalmers University of Technology and Goteborg University
SE-412 96 Goteborg, Sweden

Goteborg, Sweden, 2004

Abstract

Traditional noninterference cannot cope with common features of secure
systems like channel control, information filtering, or explicit downgrad-
ing. Recent research has addressed the derivation and use of weaker se-
curity conditions that could support such features in a language-based
setting. However, a fully satisfactory solution to the problem has yet
to be found. A key problem is to permit exceptions to a given security
policy without permitting too much. In this article, we propose an ap-
proach that draws its underlying ideas from intransitive noninterference,
a concept usually used on a more abstract specification level. Our results
include a new bisimulation-based security condition that controls tightly
where downgrading can occur and a sound security type system for check-
ing this condition.

Contents

1

2

Introduction
Preliminaries
Strong Security for Multi-level Policies

Permitting Controlled Declassification

4.1 Permitting Exceptions to MLS-Policies
4.2 Downgrading Commands
4.3 A Modified Strong Security Condition.

Applying the Strong Security Condition

Mechanizing the Analysis

6.1 Compositionality Properties
6.2 A Security Type System
6.3 A Syntactic Approximation of the Semantic Side Condition

Related Work
Conclusion
The Multi-Threaded While Language

Proofs of Main Results

B.1 A Modified Strong Security Condition.
B.2 Compositionality Properties
B.3 A Security Type System,
B.4 A Syntactic Approximation of the Semantic Side Condition

19

21

22

26

27
27
28
30
31

1 Introduction

Research on secure information flow in a programming-language setting
has flourished in recent years, with advances in both theory and practice
[SM03b]. The basic problem is to determine: When can a program be
trusted to access confidential data even when some of its actions can be
observed by untrusted subjects? That is, information flow security goes
beyond access control as it not only restricts the program’s access to data
but also the propagation of data within the program. In the simplest
case there are two kinds of data: confidential (high) and public (low)
data, where the only permitted flow of information is from low to high.
In the general case there is a partial ordering of security levels (often a
lattice [Den76]), representing different levels of security where the ordering
relation expresses where information may legitimately flow.

Despite many recent advances in the theory and practice of secure infor-
mation flow, some serious practical concerns remain. One problem is that
secure information flow, although a worthy goal, is often an unrealistic
one. The problem is that many programs must inevitably leak certain
amounts of data.

For instance, a bank’s IT system stores data about the financial transac-
tions of its customers. Information about a transaction should be kept
confidential to the parties involved and to authorized bank personnel.
However, in the process of a criminal prosecution it might become neces-
sary and allowable for a prosecutor to analyze the data about a particular
customer in the bank’s I'T system. Hence, the system must be able to re-
veal the secret data about a customer to the prosecutor, which can be seen
as a form of declassification. Naturally, this does not mean that arbitrary
parts of the system may be able to perform declassification. For exam-
ple, there should be no danger that a procedure responsible for printing
account statements causes declassification neither with a malicious intent
nor due to a bug in the program. Rather, declassification should be limited
to designated parts of a program whose execution can then be protected
by an unmistakable request for a confirmation of the declassification or
a request for another password (e.g. to implement a two-person rule).
Moreover, permitting declassification does not mean that arbitrary data
may be declassified. For example, it would not be allowable if data about
transactions that are completely unrelated to the prosecuted customer
were revealed to the prosecutor. In summary, one wants to tightly control
where classification can occur in a program and where exceptions to the

information flow ordering are permitted in the security policy. This is
what intransitive noninterference [Rus92, Pin95, RG99, Man01, BPR04]
provides.

Our goal here is to adapt intransitive noninterference to a programming-
language setting. To our knowledge, this has not been achieved before.
Prior work on language-based information flow security has addressed
other aspects of declassification, namely controlling what or how much
information is declassified [Coh78, VS00, SS01, CHMO02, Low02, BP02,
DHWO02, SM03a, SM03b| and controlling who initiates the act of declas-
sification [ZMO01, Zda03, MSZ04]. These aspects are also important, but
orthogonal to the localization of declassification in a program and in a
security policy, i.e. the aspects that we investigate here.

Rather than re-inventing a new program analysis from scratch, we want to
illustrate how an existing analysis technique (namely, the one developed
in [SS00]) can be adapted for dealing with intransitive information flow.
The specific contributions of our work are:

e A state-based definition of security for simple concurrent program-
ming languages that is suitable for information flow policies permit-
ting forms of declassification and that exhibits good compositionality
properties (Section 4).

e A security type system for a toy language illustrating the utility of
our security definition (Section 6).

Overview. In Section 2, we introduce some notation for state transitions
and a simple programming language. In Section 3, we extend Sabelfeld
and Sands’s strong security condition (from [SS00]) to arbitrary multi-level
security policies, which is a prerequisite for talking about declassification.
In Section 4, we extend the programming language with a downgrading
command and adapt the definition of the strong security condition accord-
ing to the ideas of intransitive noninterference. We illustrate our modified
security condition by several examples in Section 5. In Section 6, we
present a security type system for mechanizing program analysis, propos-
ing different possibilities to achieve decidability in the analysis. Our work
is put into perspective wrt. related work in Section 7, and we conclude in
Section 8. Proofs of the main results are presented in Appendix B.

2 Preliminaries

The definition of security to be introduced in the next section is formulated
in terms of a “small-step” transition relation on commands and states.
The specification of the transition relation is stratified into a deterministic
layer for individual commands and a nondeterministic layer for command
vectors.

Deterministic judgments have the form (C, s) — (W, t) expressing that a
thread with program C' performs a computation step in state s, yielding a
state ¢t and a vector of programs W that has length zero if C' terminated,
length n if n > 1 threads were spawned, and length one, otherwise. That
is, a program vector of length n can be viewed as a pool of n threads that
run concurrently. Nondeterministic judgments have the form QV,SD —
QW,tD expressing that some thread C; in the thread pool 1% performs a
step in state s resulting in the state ¢ and some thread pool W'. The
global thread pool W results then by replacing C; with W

This is specified by the rule in Figure 3 in the appendix.

We abstract from the details of scheduling and work with a purely non-
deterministic semantics for thread pools. This has shortcomings in terms
of security modeling as the way in which nondeterminism is resolved can
be exploited to create additional covert channels (see [SS00]). We adopt
this simplification to reduce technical overhead. However, we believe that
it is not a fundamental limitation of our approach and that most of our
results would carry over to a more scheduler-specific setting, i.e. one in
which the scheduler is under the control of the attacker [SS00].

For the sake of concreteness, we introduce a minimalistic programming
language that we will use for illustrating the basic principles. The lan-
guage that we adopt is the multi-threaded while language (short: MWL)
from [SS00]. It includes commands for assignment, conditional branching,
looping, and dynamic thread creation. The complete set of commands
C € Com is:

C ::= skip | Id := Exp | Cy; Cs| if B then C; else Cs| while B do C | fork(C'V)

In the following (and above), the metavariable C' denotes an individual
command, and 17, W denote command vectors. The set of all command
vectors is defined by Com = Unen Com™. We assume a set Var of program
variables and a (not further specified) set Val of values. States are map-
pings from variables to values being denoted by s or t. A configuration is

4

a pair 417, s) where V specifies the threads that are currently active and s
defines the current state of the memory. Ezpressions are simply variables,
constants, or binary operators applied to expressions. Our treatment of
expressions is rather informal; we assume the existence of a subset of ex-
pressions that yield boolean results. These boolean expressions are ranged
over by B. We use a judgement (Ezp,s) | n for specifying that the ex-
pression Fzp evaluates to the value n in state s. Expression evaluation is
assumed to be total and to occur atomically.

The rules for deterministic judgments are given in Figure 4 in the ap-
pendix. The operational semantics require an implementation that exe-
cutes small-step transitions atomically.

3 Strong Security for Multi-level Policies

The strong security condition has been defined in [SS00] for a security
policy with a high and a low domain. In the following, we generalize
this definition to multi-level security policies with an arbitrary number of
security domains.

Definition 1 (MLS Policy). A multi-level security policy is a pair (D, <)
where D is a set of security domains and < C D x D is a partial ordering.

Definition 2 (Domain Assignment). A domain assignment is a func-
tion dom : Var — D that assigns a security domain to each program
variable.

In examples, we adopt the convention that names of variables reflect their
domains. For example, in the context of a two-level security policy (L <
H), [and h denote typical variables of the domains L and H, respectively.

Security will be defined with reference to the way that an observer with
a given clearance (i.e. a security domain) observes the behavior of the
system. We assume, in a standard manner, that an observer at domain D
can see the values of variables at domain D, and at all domains below D.
However, we focus not on this projection, but rather on the equivalence
relation that it induces on states:

Definition 3 (D-equality). Let D € D. Two states s; and s, are D-equal
(denoted by s; =p o) iff Vvar € Var : dom(var) < D = s(var) =
so(var).

The intuition is: if s; =p s» then the states s; and s, are indistinguishable
for an observer with clearance D.

In [SS00] a strong low-bisimulation relation captures when two command
vectors are indistinguishable (from the low observer’s perspective). This
is an auxiliary definition that is used to define when a program is secure.
Here we generalize the definition to the multi-level case:

Definition 4 (Strong D-bisimulation). The strong D-bisimulation ~p,
(for D € D) is the union of all symmetric relations R on command vectors
V. V'€ Com of equal size, i.e. V = (Cy,...,Cp) and V= (Cy,...,Ch),
such that

Vs, s\ t:Vie{l...n}:YW: VRV' As=p s A{C;, s) — (W, t)
= AW (CLs') — (W E)AWRW' At =p t'

Intuitively, two programs C' and C' are strongly D-bisimilar (C =p C') iff
their behavior on D-equivalent states is indistinguishable by an observer
with clearance D. The definition is “strong” in a number of senses:

1. The programs must be indistinguishable for D not only if being run
in identical starting states, but also if being run in different states
that are D-equal.

2. The programs must not only be indistinguishable for D in their
complete runs, but they must be strongly D-bisimilar after each
computation step.

3. The relationship requires that threads match one-for-one and step-
by-step.

The first property relates to the standard noninterference view: Being
strongly D-bisimilar to itself means for a program that an observer can
infer the starting state at most up to D-equality. That is, such a program
cannot leak to domain D any information that D is not permitted to
access. The second property is crucial for making the security condition
compositional. This is related to the well-known fact that a (standard)
compositional semantics cannot be given to the language if we only model
the uninterrupted traces of computation. The third property is justified
by the fact that the semantics remains sound for particular choices of the
scheduler (see [SS00] for the details.) Note that &p is not reflexive as some
programs yield different observations if run in D-equal starting states:

6

Example 1. For the two-level security policy L < H, the program [:= h
is not L-bisimilar to itself. For instance, the states s (defined by s(I) = 0,
s(h) = 0) and ¢ (defined by t(l) =0, t(h) = 1) are L-equal, but the states
s' and t' resulting after [:= h is run in s and ¢, respectively, are not
L-equal (s'(1) =0#1=1%(1)). O

The security of a given program is then defined by using self-bisimilarity.

Definition 5 (Strong D-Security). Let Pol = (D, <) be an MLS policy

and D € D be a security domain. A program V' is strongly secure for D
iff VepV.

Strong D-security says that the program does not leak information to an
observer with clearance D). Strong security is then defined by requiring
this at all levels:

Definition 6 (Strong Security). Let Pol = (D, <) be an MLS policy.
A program V is strongly secure iff it is strongly secure for all D € D.

4 Permitting Controlled Declassification

Declassification features are needed for many applications, but, unfortu-
nately, they cause a fundamental problem for the security analysis: On
the one hand, it shall be enforced that the flow of information complies
with the given MLS policy, but on the other hand, violations of the policy
should be tolerated. Obviously, these goals are conflicting. There is a wide
spectrum of possible solutions, each of which involving some compromise.
For instance, the strong security condition in the previous section is at the
one end of the spectrum as it does not tolerate any exceptions to the MLS
policy. A solution at the other end of the spectrum is employed in the
Bell/La Padula model [BL76] where processes are considered as trusted
processes if they involve downgrading and to exempt such processes from
the formal security analysis. Such an analysis investigates the system
without trusted processes although the system will always run with these
processes.! Since the system being formally analyzed differs, it is not en-
tirely clear which guarantees such a security analysis can provide for the
system in operation.

!The traditional terminology is somewhat confusing. The term trusted processes
expresses that one needs to trust these processes for the overall system to be secure
although they have only been informally inspected.

7

Our goal here is to move away from such extreme solutions. We are
aiming for a security condition that provides formal guarantees regarding
the security of the system as it is in operation, but, nevertheless, also
permits declassification under certain conditions. That is, we do not want
to permit arbitrary downgrading but rather want to control tightly where
downgrading can occur. In comparison to the trusted-processes approach,
our aims differ as follows:

e Rather than localizing declassification in a program at the level of
entire processes, we want to localize it at the level of individual
commands.

e Rather than granting rights for arbitrary exceptions to a program
(or parts thereof), we want to restrict exceptions to certain parts of
the security lattice.

In other words, we aim for a finer-grained localization of declassification in
the program as well as for a localization of declassification in the security
policy. This is what we mean by controlling tightly where declassification
can occur.

To this end, we modify the definition of a security policy such that it be-
comes possible to specify permissible exceptions, enrich the programming
language with designated downgrading commands, and relax the strong
security condition such that it becomes compatible with the extended
language and the modified definition of security policies (and such that it
meets our above goals).

4.1 Permitting Exceptions to MLS-Policies

We introduce a relation ~» between security domains for expressing where
exceptions to the information flow ordering < are permitted: D; ~» D,

means that information may flow from D; to D, even if Dy < Dy does
not hold.

Definition 7 (MLS Policy with exceptions). A multi-level security
policy with exceptions is a triple (D, <,~+) where D is a set of security
domains, < C D x D is a partial ordering, and ~» C D x D is a relation.

Adding the information flow relation ~~ to an MLS policy changes where
information flow is permitted, but does not affect visibility. An observer

can still only see the values of variables at his clearance and below (accord-
ing to <). In particular, the definition of D-equality remains unchanged.

Note that the flow of information permitted by an MLS policy with ex-
ceptions does not constitute a transitive relation, i.e. neither < U ~~ nor
~» is transitive, in general. For example, a standard example of such a
policy is information flow via a trusted downgrader. Suppose we wish to
allow information to flow from levels A to B, but only if it is vetted by a
trusted downgrader (representing a physical audit, or a mechanical pro-
cedure such as encryption). This could be represented by the intransitive
information flow relation A ~» D ~» B. As a second example, suppose
we have a three level policy www < Employee < Webmaster with a down-
grading relation: Webmaster ~» www; in this case it is the relation < U ~~
which is intransitive. Ultimately, the webmaster chooses what informa-
tion is released to the web, which means that employee-level information
can only be published to the web if the information passes through the
webmaster.

4.2 Downgrading Commands

We extend our programming language with a downgrading command
[Id := Id']. This command has the same effect as the usual assignment
command Id := Id', but it is handled differently in the security analysis.
It may violate the information flow ordering < as long as it complies with
the information flow relation ~-. Differentiating between downgrading
commands and assignment on the syntactic level allows a programmer to
make explicit where he intends to downgrade information in a program.
For the analysis, this makes it possible to distinguish intentional down-
grading from accidental information leakage.

We deliberately extend the language with a rather simple command for
declassification. The motivation for this choice will be discussed in Sec-
tion 5 where we will also illustrate how to program with this downgrading
command.

Transitions that involve downgrading are highlighted in the operational
semantics: The transition relation — is split into a relation —, (the or-
dinary transitions) and a family —27P2 of relations (the downgrading
transitions). The commands in Section 2 cause ordinary transitions, which
means that —, corresponds to — in the standard semantics. In contrast,

[Id := Id'] causes downgrading transitions (as specified in Figure 1). The

9

(Id',s)ln dom(ld')= D, dom(Ild)= D,
([d:=1d],s) —3* 7 (), [Id = n]s)

Figure 1: Downgrading transitions

operational semantics are also extended with variants of the rules for se-
quential composition and for thread pools that propagate the annotations
of downgrading transitions from the premise to the conclusion in the ob-
vious way. From now on, transitions are either ordinary or downgrading

o . _ D1—D>
transitions, i.e. - = —,UUp, p,ep >4 .

4.3 A Modified Strong Security Condition

The strong security condition enforces that the flow of information com-
plies with the information flow ordering and does not tolerate any ex-
ceptions. In order to cope with downgrading, we need to weaken this
condition. To this end, we modify the notion of a strong D-bisimulation
that underlies the strong security condition, and then use the modified
notion to define a new security condition.

Intuitively, we want this condition to provide the following guarantees:

1. The strong security condition holds for programs without downgrad-
ing.

2. Downgrading commands may violate <, but the programs resulting
after downgrading again satisfy the modified strong security condi-
tion.

3. Downgrading obeys the information flow relation ~-:

(a) If Dy + Dy then no declassification from D; to Dy occurs.

(b) A command that supposedly downgrades information to Ds
may only affect observations at D, or above D, in the security
lattice.

(c) A downgrading command that supposedly downgrades infor-
mation from D; must not leak information from other domains.

10

Note that the first item above subsumes the guarantees provided by the
trusted processes approach. The other items above go beyond what the
trusted processes approach can achieve. Also note that (3c¢) is not a trivial
requirement because executing [Id := Id']| might leak information beyond
Id'. There is a danger of information leakage from other domains than
dom(Id") via the control flow:

Example 2. Consider the program
[cl:=b1]; [c2:=b2]; if a==0 then [c0:=b1] else [c0:=b2]

and the policy represented by the following diagram (which could be part
of a larger lattice):

o —

o —Q

We assume that variable names follow their security classification. If the
program is run in a state where b1#b2 then an observer at domain C' can
determine at the end of the run whether a is zero or not although the
program was meant to downgrade only from B to C' (and not from A to
(). Intuitively, such a program is insecure due to the information leakage
via the control flow and this should be captured by a sensible security
definition. O

Let us now try to formalize each of the three aspects. Formalizing prop-
erty (1) is somewhat straightforward because this is the strong security
condition restricted to ordinary transitions (‘7 and V' shall be as in Defi-
nition 4):

Vs,s',t:Vie{l,...,n} : VW : (1)

VRV As=ps ACi,s) —o (W, 1)

= JW' 1" (O,) = (WL EVAW RW' At =p t'
The remaining properties are concerned with downgrading transitions.
Obviously, the analog of the strong security condition cannot hold for
such transitions, in general. In particular, it cannot be guaranteed, in

general, that the resulting states are Ds-equal if the starting states are
Dy-equal (due to downgrading information from some domain D; to Ds).

11

However, it can be guaranteed that downgrading commands are executed
in lock step and that the resulting programs are in relation. Demanding
that downgrading commands are executed in lock step prevents down-
grading commands occurring in one branch of a conditional but not in
the other. Otherwise, there would be a danger of information leakage in
a branch without a downgrading command, which would violate the re-
quirement that declassification in a given program shall be localized to its
downgrading commands. That the programs resulting after downgrading
are in relation is precisely what property (2) demands. We arrive at the
following condition (leaving a place holder for property (3)).

Vs, s’ t:Vie{1,...,n}: YW : (2)
VRV As=ps A (Cs, s) »le%m QV—V’tD
= AWt (Cs') =D P2 (W')AW R W' A (3)

Properties (3a)—(3c) express special cases where the resulting states must
be D-equal although a downgrading command has occurred. Property
(3a) says that downgrading must not have any effect if the information
flow relation would be violated, i.e. D; v Dy = t =p t'. Property
(3b) says that downgrading to D, may only affect the observations at Do
and at domains being above D, in the lattice, i.e. Dy £ D = t =p t'.
Finally, property (3c) says that downgrading information from D; to D,
in two states that are indistinguishable for D; should result in states that
are also indistinguishable, i.e. s =p, s = ¢ =p t'. In summary, we
arrive at the following condition:

(Dl')L)DQ\/DQﬁD\/S:DISI):>t:Dtl (3)

Let us summarize our variant of a strong D-bisimulation. The remaining
definitions proceed along the same lines as those in Section 3.

Definition 8 (Strong D-bisimulation). The strong D-bisimulation &p,
(for D € D) is the union of all symmetric relations R on command vectors
V,V' € Com of equal size, i.e. V = (Cy,...,C,) and V= (Cy,...,Ch,
such that
Vs,s',t:Vie{l,...,n} VYW

VRV As=ps ANCi,s) —o (W, 1)
| — AW (C,)= (W) AWR W' At=p t'|
A
[V RV'As=ps A(Ci,s) —=212P2 (W 1)
= [AWt': (CL, s') =D =P (W) AW RW!

/\((D1 ‘%')DQ V D2 ﬁD V S=p, SI) - t:Dtl)] |

12

Definition 9 (Strong D-Security). Let Pol = (D, <,~>) be an MLS
policy with exceptions and D € D. A program C' is strongly secure for D
ift C =p C.

Definition 10 (Strong Security). Let Pol = (D, <,~-). A program V
is strongly secure iff it is strongly secure for all D € D.

The following two theorems justify our re-use of terminology. They show
that our new definition of strong security is equivalent to the original one
for programs without downgrading and also for policies that do not permit
declassification.

Theorem 1. Let Pol = (D, <,~). A program C without downgrading
commands is strongly secure under Definition 10 if and only if it is strongly
secure under Definition 6.

The proofs of this and subsequently presented results are in Appendix B.

Theorem 2. Let Pol = (D, <,~>) with ~= 1. Let C be an arbitrary pro-
gram and C" be the program that results from C by replacing each down-
grading command with the corresponding assignment statement. Then C
is strongly secure under Definition 10 if and only if C' is strongly secure
under Definition 6.

From now on, we will refer by the terms “strong D-bisimulation”, “strong

D-security”, and “strong security” to Definitions 8, 9, and 10, respectively
(rather than to Definitions 4, 5, and 6).

5 Applying the Strong Security Condition

Let us illustrate the strong security condition with some simple example
programs that do or do not satisfy the modified strong security condition.

Example 3. For the policy in Example 2, the program c:=b1 is intuitively
insecure because it leaks information outside a downgrading command.
This information leakage is ruled out by the strong security condition
because running the program in any two C-equal starting states that differ
in the value of bl results in states that are not C-equal. Hence, condition
(1) is violated. The intuitively secure program [c:=b0], however, satisfies
the strong security condition.

13

Composing these two programs sequentially results in [¢:=b0]; ¢:=bl, an
intuitively insecure program. This is detected by our strong security con-
dition. In other words, the program is not strongly secure: for any two
C-equal starting states that differ in the value of bl the resulting states
are not C-equal. Note that the proposition W R W' in condition (2) en-
sures that the first downgrading command does not mask the information
leakage in the second command. O

The security condition also rules out information leakage via the control
flow.

Example 4. The program
if a==0 then [c:=b1] else [c:=Db2]

is intuitively insecure because it leaks information about the value of a to
C' (see Example 2). The program is not strongly secure: Take two C-equal
starting states s; and so with s;(a)=0, so(a)=1, and s;(b1)#s(b2). Less
obviously, the program

if b0 then [c:=b1] else [c:=b2]

is also not strongly secure: Take two C-equal starting states that differ
in their value of b0. Condition (1) demands that the two downgrading
commands are C-bisimilar to each other. Running these commands in the
same starting state (taking any state with bl#b2) results in two states
that are not C-equal. This contradicts condition (3c). O

We have limited the declassification capabilities in our programming lan-
guage to one very simple downgrading command, i.e. assignment of vari-
ables to variables. This is a deliberate choice that shall prevent the pro-
grammer from accidentally creating information leaks. Let us illustrate
this aspect in the following example where we assume a language with
more powerful declassification capabilities. In this extended language,
any program fragment can be marked as a trusted piece of code that may
declassify information from some domain to another one.

Example 5. RSA encryption is based on computing a* mod n, where a
represents the plaintext and &k the encryption key. To efficiently compute
r := a* mod n without first computing a* the following exponentiation
algorithm can be used:

14

w:=length(k);

r=1;

while w > 0 do r:=r*r mod n
if klw]==1 then r:=(r*a) mod n
wi=w-1

Here we have assumed a primitive function length that returns the number
of bits needed to encode the key, array indexing k[w] returning the wth bit
of k (where k[1] is the least significant bit), and an if-statement without
else-branch with the obvious semantics. Let us assume a two-level policy.
In a typical context of use, we expect the key k and the data a to be
high. Therein lies the problem. If w is secret, then the program is not
strongly secure, since it loops over w, and the duration of this loop may
be indirectly observed by other threads.

We might want to mark the entire algorithm as a trusted piece of code,
e.g. by surrounding it with brackets (assuming we had such a powerful
declassification capability in our language). However, this is a rather
course-grained solution and one might not want to trust a piece of code
of this size (as we will see, mistrust is justified). Alternatively, one might
only modify the assignment w:=length(k) into a downgrading command
and change the security level of w into low. Interestingly, it turns out for
this second solution that the resulting program is not strongly secure (take
two low-equal starting states that differ in the number of ones in the value
of k). The problem is that the number of small-step transitions not only
differs depending on how often the loop is executed, but also depending on
whether the body of the conditional is executed or not. Hence, observing
the runtime may reveal to a [ow-level observer more information about
the key k than only its length (namely, the number of ones in the key).
This is a well-known problem for real implementations [Koc96].

This problem can be solved without significantly changing the algorithm
by adding an else-branch with a skip-command, which results in an iden-
tical number of atomic computation steps no matter whether the guard
of the conditional is true or false. Agat [Aga00] discusses variants for a
finer-grained time model.

Downgrading commands where an expression is assigned to a variable
are less troublesome than the ones we started out with at the beginning
of the example. Though there still is a danger of accidental informa-
tion leakage, in particular, if the expressions are complex. Therefore, we
limit downgrading to even simpler commands that only permit the as-

15

signment of variables to variables. In order to meet this constraint, the
above program fragment can be modified by replacing [w:=length(k)] with
h:=length(k);[w:=h] (where h is a high-level variable).

In summary, we arrive at the following strongly secure program:

h:=length(k);
[w:=h];
r=1;

while w > 0 do r:=r*r mod n
if klw]==1 then r:=(r*a) mod n
else skip
w:=w-1

Policy Refinement The policy that allows high to be declassified to
low is potentially dangerous. In order to get more fine-grained control over
declassification it is useful to refine the security lattice to make it more
informative. In the case of cryptographic keys it is clear that keys are
different from the secrets which they are used to protect. In particular,
keys should not be influenced by public data or other secrets (which in
turn may have been influenced by public data). In other words, there
should be no information flow from public data (low) to the domain of
keys. However, the length of keys can be publicly known, and can of
course influence the choice of keys. This leads us to the following domain:

high

This additionally ensures that keys are not influenced by non-secret data
(i.e. it ensures the integrity of keys), but allows the possibility of controlled
downgrading of key length to the bottom domain. The upper three points
in this domain are isomorphic to the one used by Abadi in typing security
protocols[Aba99] - although Abadi does not type implementations of se-
curity primitives (and this would not be straightforward in this case since
his type system does not permit branching on high).

This program is secure under this refined policy if we assume that & has
level key, and 7 is high. All we need is to downgrade the length of the key
from key to keylength before assigning it to w. O

16

6 Mechanizing the Analysis

Proving the strong security condition for a given program is rather tedious.
Here, we develop a security type system that can be used to mechanize
the information flow analysis. The type system is sound in the sense that
any type correct program is also strongly secure. This soundness result
provides the basis for mechanically analyzing that a program is strongly
secure. Before presenting the (syntactic) type system, we derive some
compositionality results that will be helpful for proving soundness.

6.1 Compositionality Properties

The strong security condition with downgrading satisfies a number of com-
positionality properties. The main compositionality properties are estab-
lished based on the following reasoning principles for ~p:

Lemma 1. If C, & C!, Cy 2p Cly and V =p V', then
1. C;Cy =p CF;CY
2. fork(C1V) =p fork(C1 V)
3. If Vs=p s :(B,s)ln <= (B,s) | n then

(a) if B then C, else Cy Xp if B then C] else C},
(b) while B do C; 2p while B do C!

From here it is a small step to the following “hook-up” properties:

Theorem 3. If C;, Cy and V are strongly secure then so are
1. 01; 02
2. fork(C,V)

3. if B then C; else Cy and while B do C; given that there is a least
security domain, low, and Vs =y s' 1 (B, s) Il n < (B,s')In

17

[Var] Id: dom(Id) [Const] n:D [Skip] F skip

i Exp,: Dy FEzp,:Dy Dy <D Dy <D FC, FCy
Arith S - 2
[Arithm] op(Ezp,, Ezp,) : D [Sea] FCp; Cy

.. Ezp:D D < dom(Id) FC FV
Assign Fork] ——
s ~1d = Erp o oo™

dom(Id') ~ dom(Id) _ B:low FC

[DG] FId := Id'] [While] F while B do C'

[If] B:D |_Cl |_02 VE%DCH&ECQ

Fif B then Cy else Cy

Figure 2: The Proto Type System

Aside It should be noted that many compositionality properties above
are bi-implications. For example, C; (5 is secure iff C; and C5 are secure.
This is a typical approximation in most security type systems. However,
in the present setting it is actually not an approximation. This is because
we have a concurrent semantics. For example in a sequential language
h := 0 ;| := h might be a secure program even though a type system would
typically reject this. However, in the presence of concurrent threads this
program is not secure since another (secure) thread might execute h := b/,
and thus a particular run of these threads might have the same effect as
the obviously insecure command h := 0;h := h';] := h. More generally
we can say that if a program C' is secure, then any sub program which
is reachable when C is run (as part of a larger thread pool) must also be
secure. With the exception of programs containing constant conditional
expressions or always-true loop guards, then for a program to be secure,
every sub-program must also be secure.

6.2 A Security Type System

We begin with the “proto” type system given in Figure 2. The typing
rules can be used to deduce when a program is secure. The rules for
expressions are quite simple: the security level of variables is determined
by the domain assignment, constants may have any level, and the level

18

of compound expressions must be an upper bound of the security levels
of each subexpression. The statement Fzp : D implies that Fzp only
depends on the part of the state at or below level D. This is captured by
the following standard noninterference property for expressions.

Lemma 2. If Exp : D then s =p 8 = ({Ezp,s) | n < (FEzp,s') |

The rules for commands largely follow the compositionality properties for
the strong security condition. The only point of note for the downgrading
rule itself is that there is no “subtyping” permitted. This reflects the tight
control of intransitive information flow enforced by the semantic condition.
The thrust of the “type” system is concentrated in the conditional rule.
This rule has a semantic side condition — so the system is not decidable —
but it serves as a starting point for a variety of refinements (to be presented
later in this section), and helps to modularize the correctness argument.
The rule says that a conditional is secure if each branch is typeable and if
the branches have identical behavior for all observers who are not permit-
ted to see the value of the guard. The latter condition ensures that we do
not indirectly leak information via the control flow. Note that this also
includes the leaking of the conditional test via a downgrading operation
in the branches. We obtain the following soundness result:

Theorem 4. If FC then C is strongly secure.

6.3 A Syntactic Approximation of the Semantic Side
Condition

It remains to mechanize the check of the semantic condition VE % D :
C: =g (5. Here, we provide a couple of approximations that can be easily
mechanized. As the condition only occurs as a premise of the [If] rule, we
may safely assume that the programs being compared, i.e. C'; and C5, are
each strongly secure.

“Minimal” Typing Approximation. Assume the existence of a least
security level, low. A simple approximation of the semantic rule is the

conditional rule
B : low "Cl |_CQ

Fif B then Cy else Cy

19

This is indeed a safe approximation of the semantic rule as there are no
levels E % low when B : low and, hence, the semantic side condition is
vacuous.

If we restrict our system to this special case, then the rules correspond,
in essence, to the approach taken in the type system of [VS97] (ignoring
other language features considered there). As pointed out in [Aga00], such
a restriction is rather severe, since programs are not allowed to branch on
other data than low data. In the presence of downgrading, however, the
restriction is not nearly as severe because one can downgrade the data to
the lowest level before branching.

Approximation Relations. In order to be more permissive than only
permitting branching on low guards, we need to find a computable ap-
proximation of the condition VE # D : C' &g C' for an arbitrary level D.
Before looking at a particular instance, let us clarify the requirements of
a safe approximation.

Definition 11 (Safe Approximation Relation). A family {Rp}pep
of relations on commands is a safe approrimation relation if given that
C and C" are strongly secure and C(Rp)C’ holds for some level D then
VE 7,)_4 D:C=gp(C.

Theorem 5. Let {Rp} be a safe approximation relation. Let Fr C be the
predicate on commands obtained by replacing the [If] rule in Figure 2 with

the rule
B:D |_01 l_CQ Cl(RD)CQ

I
In F if B then C; else Cy

Whenever FgC then C is strongly secure.

A Safe Approximation Relation. The starting point for a variety
of approximations is the syntactic identity relation, i.e. C(Rp)C' <=
C = ('. This is a safe approximation, though not a too useful one as it
amounts to the typing rule

B:D HC
Fif B then C else C

However, we can derive more useful approximation relations by carefully
relaxing syntactic equality while retaining E-bisimilarity of the branches
for all levels E' that are not permitted to see D (i.e. E # D). For instance,
an observer at level E cannot directly observe the changes caused by an

20

assignment Id := Ezp when E % dom(Id) (due to transitivity of >).
This fact motivates a larger relation than the syntactic identity, which
additionally relates Id := Ezp to skip and to assignments Id' := Ezp’ with

dom(Id") = dom(Id).

Definition 12 (Non Visible Equality). Let for each level D, let ~p be
the least pre-congruence relation on commands (transitive, reflexive and
symmetric relation closed under the constructs of the language) satisfying
the following rule:

dom(Id) > D
(Id := Exp) ~p skip

Theorem 6. The family of relations {~p}pep is a safe approximation
relation

Example 6. The modular exponentiation algorithm from the end of Ex-
ample 5 is typeable using the above safe approximation relation. In the
case of the the simple policy (L < H, L ~» H) for any non-high observer,
the two branches look identical, i.e., r:=(r * a) mod n ~y;g skip. The
program is also typeable for the more refined policy which separates keys
from other secrets. In that case the conditional is at level key, and the
types rule demands the milder condition that

r:= (r * a) mod n ~y,, skip

i.e., that the branches are also indistinguishable to levels that cannot see
level key. O

7 Related Work

Prior work on intransitive noninterference has focused on more abstract
specifications of systems in terms of state machines [Rus92, Pin95, Ohe04],
event systems [Man01], or process algebras [RG99, BPR04]. In this ar-
ticle, we have demonstrated how the underlying ideas can be adapted to
a programming-language setting. The main objective in the derivation
of our novel security condition has been to provide tight control of where
declassification can occur in a program and where exceptions to the in-
formation flow ordering are permitted in a security policy. Prior work
on controlling declassification in a language-based setting has focused on
other aspects and can be classified into the following two categories: What
1s downgraded? and Who can influence the downgrading decision?

21

What? Using Cohen’s notion of selective dependency [Coh78], one would
show, e.g., that a program leaks no more than the least significant bit of
a secret by establishing the standard information flow property, firstly,
for the case where the secret is even and then for the case where the se-
cret is odd, thereby proving that no more than the least significant bit
is leaked. A more compact formulation of this idea can be made using
equivalence relations to model partial information flow [SS01]. Sabelfeld
and Myers [SM03a| have considered a condition which permits ezpressions
in a program to be declassified if, roughly speaking, the entire program
leaks no more than the declassified expressions would in isolation. An
alternative to specifying exactly what is leaked, is to focus on the amount
of information that is leaked [CHMO02, Low02], or on the rate at which it
is leaked. Complexity-theoretic and probabilistic arguments have been
used to argue that leaks are “sufficiently small” or “sufficiently slow”
(e.g. [VS00, BP02, DHWO02]). An alternative is to modify the model
of the attacker, making him less sensitive to small/slow information leaks
[MRSTO1, Lau03].

Who? Zdancewic and Myers [ZMO01, Zda03] introduce robust declassi-
fication, a security condition focusing on the integrity of downgrading
decisions, thereby limiting who can control downgrading. For example, in
a two-level setting, a program exhibits robust declassification if decisions
about downgrading of high-level data cannot be influenced by an attacker
who controls and observes low-level data. A recent extension includes,
amongst other things, also an account of endorsement, i.e. the controlled
upgrading of low-integrity data [MSZ04].

Each the three broad approaches (What?, Who?, Where?) has its merits
— but also its limitations. Therefore, it would be desirable to combine
these approaches with each other. However, this is outside the scope of
the current paper.

8 Conclusion

Our main objective has been to localize possibilities for permitted declas-
sification, both in the program and in the security policy. The basis for
this has been the introduction of a designated downgrading command and

22

of the information flow relation ~» that co-exists with the usual informa-
tion flow ordering <. These concepts allowed us to tightly restrict by our
security condition where downgrading can occur. For checking the secu-
rity condition mechanically, we have presented a security type system that
is pleasingly simple, given that it can deal with controlled downgrading.
Both, richer language features (from the point of view of the type system)
and weaker definitions of security (e.g. without threads or termination
sensitivity) deserve further investigation.

It would be desirable to integrate the different approaches for controlling
declassification (What?, Who?, Where?). As pointed out before, these
approaches are largely orthogonal to each other and, e.g., an analysis of
what is leaked in a given program can be performed independently from an
analysis of where information is leaked. The benefit of a tighter integration
of these analysis techniques would be that more complicated questions
could be investigated like, e.g., What information is leaked where? or
Who can leak what information where?

Acknowledgments. Thanks to Andrei Sabelfeld for useful discussions
and to Daniel Hedin and Boris Kopf for helpful comments. The first author
thanks Chalmers/Go6teborg University for providing an inspiring working

environment during his research stay. The work is partially funded by
SSF and Vinnova.

References

[Aba99] M. Abadi. Secrecy by Typing in Security Protocols. Journal
of the ACM, 46(5):749-786, 1999.

[Aga00] J. Agat. Transforming out Timing Leaks. In Proceedings of the
ACM Symposium on Principles of Programming Languages,
pages 40-53, 2000.

[BL76] D. E. Bell and L. LaPadula. Secure Computer Systems: Uni-
fied Exposition and Multics Interpretation. Technical Report
MTR-2997, MITRE, 1976.

[BP02] M. Backes and B. Pfitzmann. Computational Probabilistic
Non-interference. In Proceedings of ESORICS, LNCS 2502,
pages 1-23, 2002.

23

[BPRO4]

[CHMO02]

[CohT78|

[Den76]

[DHWO2]

[Koc96]

[Lau03|

[Low02]

[Man01]

[Mil89]

[MRSTO1]

A. Bossi, C. Piazza, and S. Rossi. Modelling Downgrading in
Information Flow Security. In Proc. of IEEE CSFW, 2004. to
appear.

D. Clark, S. Hunt, and P. Malacaria. Quantitative Analysis of
the Leakage of Confidential Data. In Quantitative Aspects of

Programming Languages—Selected papers from QAPL 2001,
volume 59 of ENTCS, 2002.

E. S. Cohen. Information Transmission in Sequential Pro-
grams. In Foundations of Secure Computation, pages 297-335.
Academic Press, 1978.

D. E. Denning. A Lattice Model of Secure Information Flow.
Communications of the ACM, 19(5):236-243, 1976.

A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate Non-
Interference. In Proceedings of IEEE CSFW, pages 1-17, 2002.

P. C. Kocher. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Neal Koblitz,
editor, Advances in Cryptology — CRYPTQ’96, volume 1109
of LNCS, pages 104-113. Springer-Verlag, 1996.

P. Laud. Handling Encryption in an Analysis for Secure In-
formation Flow. In Proceedings of ESOP, LNCS 2618, pages
159-173. Springer-Verlag, 2003.

G. Lowe. Quantifying Information Flow. In Proceedings of
IEEE CSFW, pages 18-31, 2002.

H. Mantel. Information Flow Control and Applications —
Bridging a Gap. In Proceedings of Formal Methods Furope,
LNCS 2021, pages 153-172, 2001.

R. Milner. Communication and Concurrency. Prentice Hall,
1989.

J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A
Probabilistic Polynomial-Time Calculus for Analysis of Cryp-
tographic Protocols (Preliminary report). In Proc. of the

Conf. on the Math. Foundations of Programming Semantics,
volume 45 of ENTCS, 2001.

24

[MSZ04]

[Ohe04]

[Pin95]

[RGYY]

[Rus92]

[SM03a]

[SMO3b]

SS00]

SS01]

[VS97]

[VS00]

[Zda03]

A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing Robust
Declassification. In Proc. of IEEE CSFW, 2004. to appear.

David von Oheimb. Information flow control revisited: Non-
influence = Noninterference 4+ Nonleakage. In Proc. of the
9™ European Symposium on Research in Computer Security,
LNCS. Springer, 2004. to appear.

S. Pinsky. Absorbing Covers and Intransitive Non-Interference.
In Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 102-113, Oakland, CA, USA, 1995.

A. W. Roscoe and M. H. Goldsmith. What is Intransitive
Noninterference? In Proceedings of IEEE CSFW, pages 228-
238, 1999.

J. M. Rushby. Noninterference, Transitivity, and Channel-
Control Security Policies. Technical Report CSL-92-02, SRI
International, 1992.

A. Sabelfeld and A. C. Myers. A Model for Delimited In-
formation Release. In International Symposium on Software
Security, 2003.

A. Sabelfeld and A. C. Myers. Language-Based Information-
Flow Security. IEEE Journal on Selected Areas in Communi-
cations, 21(1):5-19, 2003.

A. Sabelfeld and D. Sands. Probabilistic Noninterference for
Multi-threaded Programs. In Proceedings of IEEE CSFW,
pages 200-214, 2000.

A. Sabelfeld and D. Sands. A Per Model of Secure Information
Flow in Sequential Programs. HOSC, 14(1):59-91, 2001.

D. Volpano and G. Smith. Eliminating Covert Flows with
Minimum Typings. In Proceedings of IEEE CSFW, pages 156
168, 1997.

D. M. Volpano and G. Smith. Verifying Secrets and Relative
Secrecy. In Proceedings of POPL, pages 268-276, 2000.

S. Zdancewic. A Type System for Robust Declassification. In
Proc. of the Conf. on the Math. Foundations of Programming
Semantics, ENTCS, 2003.

25

[ZMO01] S. Zdancewic and A. C. Myers. Robust Declassification. In
Proceedings of IEEE CSFW, pages 15-23, 2001.

Appendix
A The Multi-Threaded While Language
The operational semantics for MWL are given in Figures 3 and 4.

401" SD - QWI’ tl)
({Cy...Cn_i),sh) = {(Co...CioiW'Ciyq ... Cri), t)

Figure 3: Small-step nondeterministic semantics

_ (Ezp,s) I n
(skip: b = 40-5) = T, 5) = (0, [1d = mla)
(Cr,s) = {0, t) (C1, 8) — (C1V, 1) T

(C1;Cy,y 8) = (Co,t) (C;Co, s) — 4(01;02)17,759 (fork(OV). s = (OV.s)

(B, s) | True (B, s) | False
(if B then C else Cy, s) — {C4, s) (if B then C else Cy, s) — (Cy, s)

(B, s) | True (B, s) | False

{while B do C,s)) — (C;while B do C,s) {while B do C,s) — {(), s)

Figure 4: Small-step deterministic semantics

(Cy, s) =572 (), 1)
(C1; Ca, s) —>§HD2 (Ca, t)

401'; S[> _>§1_>D2 QW'JD
q<CO - Cn—1>; 8|> _951—>D2 q<00 e Ci_1WICi+1 - Cn_1>, tD

Figure 5: Propagation of downgrading transitions

26

B Proofs of Main Results

This appendix provides the proofs of all results presented in the body of
the article.

The names of subsections equal the names of those subsections in the body
of the article where the respective results have been presented.

B.1 A Modified Strong Security Condition

Lemma 3. Let Pol = (D,<,~) and D € D. Let V.W € Com be
vectors of equal size that do not contain downgrading commands. Then 1%
1s strongly D-bisimilar to |14 according to Definition 8 if and only if V is
strongly D-bistmilar to |4 according to Definition 4.

Proof. For ordinary transitions, the second conjunct in Definition 8 is
irrelevant. The first conjunct is identical to Definition 4 (after replacing
—, with —). O

Proof. (of Theorem 1) The theorem follows from Lemma 3 for V = C =
w.

O

Lemma 4. Let Pol = (D, <,~) with ~=0 and D € D. Let V,W €
Com be vectors of equal size. Let ‘7’, W' € Com be the vectors that result
from ‘7, W, respectively, by replacing each downgrading command with the
corresponding assignment statement. Then V is strongly D-bisimilar to
W according to Definition 8 if and only if V! ois strongly D-bisimilar to
W according to Definition 4.

Proof. Since D; /4 D, holds for any two domains D, Dy € D, the second
conjunct in Definition 8 imposes the same requirements on the configu-
ration resulting after a transition like the first conjunct in this definition.
Thus, V' is strongly D-bisimilar to W according to Definition 8. From
Theorem 1, we obtain that V! is strongly D-bisimilar to W' according to
Definition 4. [l

Proof. (of Theorem 2) The theorem follows from Lemma 4 for V = C =
Wand V' =C' =W O

27

B.2 Compositionality Properties

First we note a proof technique which will simplify the presentation of
our bisimulation correctness proofs. The proof technique is analogous to

a form of “bisimulation up-to” — a proof technique well known from CCS
[Mil89].

Definition 13 (D-bisimulation up to &p). A symmetric relation R on
commands is a D-bisimulation up to Xp, if whenever C R C' and s =p ¢/,
then)
(C,s) =0 (C1...Cp,t)
= 3C1,...,CLt'{C", ') —, (C]...CL, ')
Niegi.ny : Ci (RURD)T Cint=p t/
A
(C,s) =D (Cy...Cp,t)
= [3C;...CL 1 C, s') =Py O)
Niegi..n} : Ci (Ru=zp)t C]
/\((Dl ‘7L>D2 \% D2£D V s=p, SI) - t:Dt,)]

where () denotes the transitive closure operation.

Proposition 1. If R is a D-bisimulation up to Xp, then R C =p.

Proof. (Sketch) Construct the relation S on command vectors such that
forallk, (C1,...,Cy)S(C,...,C}) whenever C; (RU=Rp)T ClLie {1,...,k}.
Now it is straightforward to show (we omit the details) that if R is a D-
bisimulation up to &p, then S is a strong D-bisimulation, and hence that
S C =p. Now by construction, R C S, and hence R C =p as required. [

Proof. [of Lemma 1]
1. We show that the relation

R ={(C;C5,C1;Cy) | €y =p Ci}

is a D-bisimulation up to ®p. Suppose Ci;Cy R C};C, and that we
have two D-equal states s and t. Now suppose that C; Cy can perform a
computation step on state s yielding state s'. We need to show that C1; C}
can perform a matching computation step in ¢ such that the conditions of
Definition 13 are met.

We reason by cases according to the computation step performed by
C1;Cy: (Cy;Cy,8) — (V,s'). According to the operational semantics
we have three cases:

28

(i) {C1, s) =6 (), s'), and hence V = Cs,
(i) (Cy,s) =272 ((),s'), and hence V = Cy,
(i) (Cy, s) —, (CsW, '), and hence V = (Cs; Co)W.

We prove case (iii) as a representative example — the other cases are sim-
ilar. Since Cy =p C], we have

(CL, 1) =, (O3, 1)

such that C3W’ &~p CLW' and s' =pt'). From the operational semantics
we can thus construct a transition

(C%; Ch, th —, ((CF; CHW, ')

Now since C3 ®p Cf, we have (Cs;Cy) R (Cy;C5), and the case is com-
plete.

2. We show that the relation
R= {(fork(01‘7),fork(0ﬂ7’)) O &p O,V & V'}

is a D-bisimulation up to 2. The case is straightforward since (fork(CV), s) —
(CV,s) and (fork(C'V'),t) — (C'V',t).

3(a). Construct the candidate D-bisimulation up to &p as above. Suppose
that s =p t. From the condition on B follows (B, s) I n <= (B,t) | n.
Hence, if (if B then C; else Cy,s) —, (C1,s) (the other case is similar)
then (if B then C else C, t) —, {C1,t), which completes the argument.

3(b). Can be shown along the same lines as the corresponding proof in
[SS00][Theorem 1]: It is straightforward to show that

R={(C’1;while B do CQ,Ci;While B do Cé) | Cz =p CZI}
U{(while B do C,while B do C")| C =p C'}

is a D-bisimulation up to &, (where B satisfies the required low property.)
We omit the details. [l

Proof. (of Theorem 3) The first two cases follow from the corresponding
cases in Lemma 1. For the third case, observe that if low is the least
security level then the premise: Vs =, s': (B,s)ln < (B,s)ln
implies Vs =p s': (B,s) { n < (B,s') | n for each level D. This
follows from the fact that VD : s =p ' = s =}, s'. Thus the premise
of Lemma 1(3) is satisfied, and by instantiating the lemma with the case
when Cy = C] and Cy = C) we obtain the desired result. d

29

B.3 A Security Type System

Proof. (of Lemma 2) Straightforward induction on the structure of ex-
pressions. [l

Proof Sketch. (of Theorem 4) Using Theorem 3 and Lemma 2, we can give
a purely semantic proof of the soundness result for the proto type system.
If we interpret - C' as “C' is strongly secure” and each rule is sound in the
sense that the premises imply the conclusion for the given interpretation
of F then any derivation of - C' is semantically sound (a straightforward
induction on derivations).

Let us now show that each of the rules is semantically sound.

The rules [Fork], [Seq] and [While] are semantically sound since they
correspond precisely to the properties from Theorem 3. The cases [As-
sign|, [Skip] and [DG] are also fairly straightforward. Consider the case
for [DG] (the other cases are even simpler). Suppose dom(Id') = Dy,
dom(Id) = D, and s =p t for some states s, ¢ and some domain D. From
the operational semantics, we see that

([d = Id), sh "7 (), 8') and ([Id := Id'],t) —" 7" (), ¢')
where s’ (t') differs from s (¢) at most in the value of Id.
To establish the bisimulation property we need to show:
(D1/DyV Dy DV s=p,t) = s'=pt

The first disjunct, i.e. Dy v D,, cannot hold because of the assumption
Dy ~~ D, in the typing rule. If the second conjunct (Dy £ D) is true then
1d is not visible from D. Since Id : Exp is the only variable changed by
the assignment, the D-visible parts of s’ and ¢’ are identical to those of s
and t, respectively, and hence we must have s'=pt'. If the third disjunct
(s=p, t) is true then the value of Id’ is identical in s and ¢, and hence the
values of Id in s’ and t' are equal. Thus, s'=pt'.

Finally we consider the rule [If]. Here we show that

{(if B then C] else Cy,if B then C; else Cy) |
C4, Cy strongly secure, B:D, VD' * D : C; =p Cy}

is an E-bisimulation up to =g for any security domain £ € D. We reason
by cases depending on the relation between E and D:

30

If £ > D then E-equivalent states are also D equivalent, and hence the
same branch will be taken in both runs, and we are done since each branch
is secure (and hence E-bisimilar to itself).

Consider the case where E #* D, s =f ', and
(if B then C else Cy, s) — (C1, s)

(the other possibility is the selection of Cy, but the argument there is
symmetric). If the evaluation of the same command in state s’ chooses
the same branch then we are done since C; is secure. Otherwise we have
that

(if B then C} else Cy, ') — (Cy, s')

and it only remains to show C; &g C5, which follows from the assumption
that if E # D then C; &g Cs. O

B.4 A Syntactic Approximation of the Semantic Side
Condition

Proof. [of Theorem 5] As shown in the proof of correctness of the proto
type system, all the rules are semantically sound — i.e. they are sound
independently of the other rules in the system. The definition of a safe
approximation implies that anything derivable using this rule is derivable
using the original rule, and hence the system as a whole remains seman-
tically sound. O

Proof. [Sketch of Theorem 6]

Let ~7}, denote the restriction of ~ to secure programs. We need to show
that the relation ~}, C &g for any £ #? D. To do this we construct a
simpler relation R such that the transitive closure of R is equal to ~7,,
and we show that R C =p. Since Xp is transitive, it then follows that

N*D C Xpg.

The relation R in question is constructed by a single replacement of an
assignment by a skip instriuction. Let C(-) denote a context — a command
containing zero or more missing subterms (denoted by (-)), and C(C)
denote the command obtained by filling the holes with the command C.
Let Ctx denote the set of all such contexts. Now construct the relation R

31

as the symmetric closure of the following relation:

{ (C(4d := Exp), C(skip)) |
C(-) € Ctx, dom(Id) > D
C(Id := FEzp) and C(skip) are strongly secure}

We claim that the transitive closure of R is ~}, (note that reflexivity of

R follows from the fact that contexts may contain zero holes).

We now show, for any E such that E # D, that R is an E-bisimulation up
to &g, and hence that R C &g as required. We give an informal sketch.
Suppose that s =5 ¢' and that (C(Id := Ezp), s) —, (V,t). Either the
computation step does not touch the assignment in the hole, or it executes
the assignment.

In the case where the hole is untouched, we can argue that (C(skip), s) —
QV",tD where V and V' are secure programs with components related
by RU ®Xg. Assume the transition is not a downgrade (the argument
is similar for that cases, so we omit it). Since, by construction of R,
C(skip) is secure, we know that (C(skip),s') —, (V') where t =g #
and V' &g V", Hence V(RU &g)*V" as required.

In the case where the hole is touched (i.e. an instance of the assignment
is evaluated) then (C(Id := Ezp), s) —, {V",). But since the assignment
updates Id where Id > D, it follows that s =g t. The configuration
(C(skip), s') must execute the skip instruction, which yields (V. ¢), were
we can again argue that V and V" are secure programs with components
related by R. Since skip is executed, we must have ' = s’. Thus for
the state component, we have ' = s’ =5 s =g ¢, and hence t =g t' as
required. U

32

