Featherweight PINQ

Hamid Ebadi and David Sands

Department of Computer Science and Engineering,
Chalmers University of Technology
Gothenburg, Sweden
{hamide, dave}@chalmers.se

Abstract. Differentially private mechanisms enjoy a variety of composi-
tion properties. Leveraging these, McSherry introduced PINQ (SIGMOD
2009), a system empowering non-experts to construct new differentially
private analyses. PINQ is an LINQ-like API which provides automatic
privacy guarantees for all programs which use it to mediate sensitive
data manipulation. In this work we introduce featherweight PINQ), a for-
mal model capturing the essence of PINQ. We prove that any program
interacting with featherweight PINQ’s API is differentially private.

Keywords: Differential privacy, dynamic database, PINQ, Formaliza-
tion

1 Introduction

Differential privacy [4-6] shows that by adding the right amount of noise to
statistical queries, one can get useful results, and at the same time provide a
quantifiable notion of privacy. The definition of differential privacy for a query
mechanism (a randomized algorithm) is made by comparing the results of a query
on any database with or without any one individual: a query @ is e-differentially
private if the difference in probability of any query outcome on a data-set only
changes by a factor of e (approximately 14& for small €) whenever an individual
is added or removed.

Of the many of papers on differential privacy, a mere handful (at the time
of writing) describe implemented systems which provide more than just a static
collection of differentially private operations. The first such system is the PINQ
system of McSherry [13]. PINQ is designed to allow non-experts in differential
privacy to build privacy-preserving data analyses. The system works by leverag-
ing a fixed collection of differentially private data aggregation functions (counts,
averages, etc.), and a collection of data manipulation operations, all embedded
with a LINQ-like [3] interface from otherwise arbitrary C# code. PINQ medi-
ates all accesses to sensitive data in order to keep track of the sensitivity of
various computed objects, and to ensure that the intended privacy budget ¢ is
not exceeded; a budget could be exceeded by answering too many queries with
too high accuracy. In this way PINQ is intended to make sure that the analyst
(programmer) does not inadvertently break differential privacy.

Foundations of PINQ McSherry argues the correctness of PINQ by pointing
out the foundations upon which PINQ rests. In essence these are:

— A predefined collection of aggregation operations (queries) on tables, each
with a parameter specifying the required degree of differential privacy. Stan-
dard aggregation operations such as (noisy) count and average are imple-
mented. The core assumption is that each aggregation operation) with
noise parameter e, written here as ., is an e-differentially private ran-
domised function.

— Sequential composition principle: if two queries performed in sequence (e.g.
with differential privacy £; and e2 respectively) then the overall level of
differential privacy is safely estimated by summing the privacy costs of the
individual queries (g1 + e2).!

— Parallel composition principle: if the data is partitioned into disjoint parts,
and a different query is applied to each partition, then the overall level of
differential privacy is safely estimated by taking the maximum of the costs
of the individual queries.

— Stability composition: the stability of a database transformation 7" is defined
to be ¢ if whenever you add n extra elements to the argument of T, the result
of T' changes by no more than n x ¢ elements. If you first transform a database
by T', then query the result with an e-private query, the privacy afforded by
the composition of the two operations is safely approximated by ¢ x €.

These foundations of PINQ provide an intuition about how and why PINQ
works, but although a novel aim of PINQ was “providing formal end-to-end
differential privacy guarantees under arbitrary use”, the foundations are not
strictly sufficient to build an end-to-end correctness argument since they fall
short of describing a number of PINQ features of potential relevance to the
question of its differential privacy:

1. Parallel queries partition data, but the data which is partitioned might not
be the original input, but some intermediate table. The informal argument
for taking the maximum of the privacy costs of the query on each partition
relies on the respective queries applying to disjoint data points. But the data
might not be disjoint when seen from the perspective of the original data set
of individuals. Data derived from a participant might end up in more than
one partition, so a correctness argument must model this possibility to show
that it is safe.

2. Parallel queries are not parallel at all, but can be adaptive - the result of a
query on one partition might depend on the result of a query on another. This
means that the implementation is complicated by the bookkeeping necessary
to track the “maximum” cost of the queries.

! McSherry informally justifies PINQs implementation of privacy bookkeeping by ap-
pealing to a non-adaptive composition theorem [13][Theorem 3] which assumes that
the queries are chosen statically; fortunately for PINQ, and as is well-known, this
result also holds for adaptive queries where the choice of second query might depend
on the result of the first [7,16].

3. The foundations suggest how to compute the privacy cost of composed op-
erations from their privacy and stability properties. But in practice PINQ
does not measure the amount of privacy lost by a PINQ program, it enforces
a stated bound. Because of this, there are two kinds of results from a query:
the normal noisy answer, or an exception. An exception is thrown if answer-
ing the query normally would break the global privacy budget. To prove
differential privacy it is not enough that the query is differentially private in
the normal case — it must also be shown to be private in the case when an
exception is thrown, since this information is communicated to the program.

Although McSherry’s original informal explanations of the correctness of
PINQ fall short, we do not intend to imply that there is something fundamen-
tally suspect about the design of PINQ. Instead we give a formal argument for
the correctness of the core design of PINQ, through a judicious combination of
explicit modelling for features such as (1) and (3) above, as well as simplification
of features such as parallel adaptive queries (2) which do not appear to be used
in practice. Regarding the implementation of PINQ, work by Haeberlen et al [10]
shows that there are clearly some flaws and other issues in the enforcement of
certain abstractions, allowing direct access to the dataset, and leaking sensitive
information by a variety of channels, including privacy budget exceptions.

Our aim in this paper is to clarify the design of PINQ by constructing a
model of its core, simplified as much as possible to express the essence of the
design, while abstracting away from detail of the implementation of the key ab-
stractions, but at the same time providing enough detail to prove the correctness
of the design. In this way we are able to make a clear separation between the
implementation issues (which are attacked in [10]), and the core design which
still includes details such as budget exceptions.

The approach of building a minimalist semantic model is common in the
research area of programming languages, and our approach uses standard tech-
niques from that area — in particular operational semantics (see e.g. [19]) ex-
pressed in the form of (probabilistic) labelled transition systems.

We call our model Featherweight PINQ, as a nod to a very successful minimal
model for the Java type system, Featherweight Java [11]. Unlike Featherweight
Java, our approach does not introduce a minimal programming language contain-
ing PINQ-like primitives, but instead focuses on a minimal API that sits between
the runtime system and the client program. Thus we model the client program
completely abstractly as a deterministic labelled transition system which in-
teracts with tables via the PINQ-like API but which is otherwise completely
unconstrained. For this model we instantiate the definition of differential pri-
vacy, taking into account the interactive nature of the system, and prove that
Featherweight PINQ provides differential privacy for any client program.

Our model makes some tradeoffs, mildly restricting the functionality of PINQ
in exchange for a greatly simplified runtime system. To show that these restric-
tions do not have a significant practical impact we investigate the available PINQ
algorithms and show that they can all be rewritten to use our simplified API.

© W N O ;oA W N =

2 PINQ

In this section we provide a brief description of the PINQ system from the
user perspective. PINQ is a .NET API which provides an interface similar to
the Language Integrated Queries (LINQ) that is a language extension to .NET.
Analyses that use PINQ are typically written in C#.

Listing 1.1 shows a code fragment for a sample analysis producing the av-
erage ages of adult males and adult females, respectively and then separately
computing the average of age for all individuals.

Listing 1.1. PINQ sample code
var agent = new PINQAgentBudget (budget);
var data = new PINQueryable<Recordstype>(rawdata.AsQueryable(), agent);
var adults = data.Where(x => x.age > 17);
var genders = new [] {0,1};
var parts = adults.Partition(genders, x=>x.gender);
foreach (var a in genders) {
result[a]l= parts[a].NoisyAverage(budget/2, x=>x.age /100) ;
}
foreach (var a in genders) {
Console.WriteLine("Average age of {0} is {1}",
a==0 7 "Males " : "Females ",
result[a] * 100) ;
}

Console.WriteLine("Average age (all):"
+ data.NoisyAverage(c, x=>x.age/100) * 100) ;

The first two lines of the program initialises a PINQueryable object with
sample sensitive data (rawdata) structures and set the privacy limit (budget). A
PINQueryable object is a wrapper to the database which enables PINQ to track
the properties that are relevant for differential privacy. The supplied “agent” pa-
rameter expresses the amount of differential privacy that the system will enforce
on this database.

The analysis starts by selecting (line 3) a subset of records of interest (those
who are adults). Behind the scenes PINQ records the fact that the stability of
data is unchanged: adding a single record to the rawdata does not change the
size of the result of this transformation by more than a single record.

In line 5 a partitioning operation splits the data into two groups based on
the gender field (0 for Male, 1 for Female). Partition is not a standard LIN-
Q/SQL style operation, but is specific to PINQ. For each partition (i.e. for each
gender), the code outputs a noisy average of the age. NoisyAverage is one of a
collection of built-in differentially private primitive aggregation operations pro-
vided by PINQ. The amount of differential privacy for each query in the loop
is budget/2. After executing the foreach loop there will be budget/2 of the
original budget remaining. The outcome of the last line depends on the accu-
racy /privacy parameter c. If ¢ is larger than budget/2 the program will throw
an exception (because answering the query with that degree of precision would
break the budget).

3 Modelling Preliminaries

In this section we briefly introduce the modelling methods that we will use,
which can be broadly described as operational semantics using labelled transition
systems. We will introduce the basic terminology and mention how it will be
used in this particular work. Readers familiar with these areas can safely skip
the remainder of this section.

Operational semantics refers to the formal description of computation mech-
anisms (typically of programming languages). In the case of the present work we
will be working with small-step operational semantics in which a computation
is described by defining its constituent computation steps. Standard references
include, for example [19].

Labelled Transition Systems The basic mathematical object used to describe
the small-step operational semantics in this work is a labelled transition system.
A labelled transition system, formally, is a 4-tuple (P, A, T, po), where

— S is the set of system states (i.e. the states of the system under considera-
tion), and so € S is a distinguished initial state, modelling the starting point
for a computation.

— A is a set of actions, typically used to model the interactions between the
system and its external environment — for example input and output events.
The environment itself may or may not be modelled explicitly as a labelled
transition system.

— T, the transition relation, is a subset of S x A x S. If (s,a,s’) € T then
this models the fact that if the system is in state s, if it interacts with the
environment in the manner described by action a, then it will, after this
interaction, be in state s’.

Common Notational Conventions It is typical to use some form of arrow-
symbol to denote the transition relation T, for example —. In this case we write
(s,a,s") € — in a more graphical syntax as s = s'.

When defining a suitable set of actions to model interactions with an environ-
ment, a distinguished action 7 is usually used to denote a silent or null action.
A transition s = s’ then models a system that evolves in one computation step
from s to s’ without any interaction with its environment.

Common Definition Conventions A specific labelled transition system can
be defined in a number of ways. If the states are finite then the system can
be written as a graph. In the case of systems which are not finite state (as
the systems defined in this article), a labelled transition system may be defined
hierarchically in terms of other labelled transition systems, or inductively using
recursive specifications. In both cases it is common for such definitions to be
presented in the form of a collection of deduction rules of the form

premise; - - - premise,,

s s
The premises are typically a list of zero or more predicates, possibly involving
metavariables used in the description of s, a and s’. If the premises do not involve

any transition relations they are also commonly written to the right of the rule
literally as side conditions.

A rule of this form says “If the premises are all true, then s — s'”. In the
case where the premises themselves make use of the transition relation itself then
the definition is inductive.

Probabilistic Labelled Transition Systems Labelled transition systems can
be extended to model discrete probabilistic systems by adding an additional
component to the transition relation, representing the probability of a given
transition. There are many variations on this idea depending on whether both
probability and nondeterminism is modelled, and whether the probabilistic be-
haviour comes from the system being modelled, or from the environment. In the
present paper we will use transitions of the form s i>p s’ to denote the transition
of a system from a state s by action a to a state s’ where s’ with probability p
determined by the system.

Usage in this Paper In this paper we will be defining two kinds of labelled
transition system. To model a client program we will use a labelled transition
system where the states are the program states (e.g. the program code, the local
variables etc.), and the actions model the PINQ APT calls. However, we do not
model any specific client program, but make our overall model parametric in the
choice of client program (with some modest restrictions) as long as the labels
correspond to the our chosen model of PINQ APIT calls.

To model the complete system we define a probabilistic labelled transition
system. In this system, the states are tuples consisting of the program state of
the client program, together with an environment storing the privacy-sensitive
data, and various privacy bookkeeping information. The actions of the complete
system are the values returned by database queries as the computation proceeds.
The transition relation is defined by deductive rules, with premises using the
transition relation of the client program. The non zero/one probabilities arise
solely from running one of a family of primitive probabilistic queries.

4 Idealised Program

In this section we describe the abstract model of the program and API to
the PINQ operations. In the section thereafter we go on to model the PINQ
internals, what we call the protected system, before combining these components
into a the overall model of Featherweight PINQ.

The first thing that we will abstract from is the host programming language.
Here one could chose to model a simple programming language, but it is not
necessary to be that concrete. Instead we model a program as an arbitrary de-
terministic system that maintains its own internal state, and issues commands
to the PINQ internals. In this sense we idealise PINQ by assuming that the API
cannot be bypassed. In fact the PINQ system does not successfully encapsulate
all the protected parts of the system, and so some programs can violate differen-
tial privacy by bypassing the encapsulation [10], or by using side effects in places
where side-effects are not intended. By idealising the interface we make clear the

intended implementation, but not the details of its realisation in any particu-
lar language. By treating programs abstractly we also simplify other features
of PINQ including aspects of its architecture which promote certain forms of
extensibility. Before describing the program model it is appropriate to say a few
words about the protected system (described formally in the next section). The
protected system contains all the datasets (tables) manipulated by the program.
Since these are the privacy sensitive data, we only permit the program to access
them via the API. The protected system tracks the stability of all the tables
which it maintains, together with a global budget. Our program interacts with
the protected system by the following operations:

Assignment Tables in the protected system are referred to via table variables.
A program can issue an assignment command. The model allows the program
to manipulate a table using transformation that assign a new value to table
variables.

The general form of assignment is of the form tv := F(tvy,...,tv,), where
F is taken from a set of function identifiers representing a family of transforma-
tions with bounded stability (i.e. for each argument position ¢ there is a natural
number ¢; such that if the size of the ith argument changes by n elements, then
the result will change by at most ¢; - n elements). This stability requirement
comes from PINQ and is discussed in more detail in the next section. Trans-
formations include standard operations such as the .Where(x => x.age > 17)
from the example in listing 1.1, and simple assignments t; := ¢5 (taking F to be
the identity function), as well as assignments of literal tables (the case when F
has arity 0).

Query The only other operation of the PINQ API is the application of a primi-

tive differentially private query. In the example above we saw a compound trans-

formation and query operation parts[a] .NoisyAverage (budget/2, x=>x.age).
It is sufficient to model just the query, since the transformation (x=>x.age) can

be implemented via an intermediate assignment. Thus we assume a set of prim-

itive queries Query, ranged over by @, which take as argument a positive real

(the e parameter) and a table, and produce a discrete probability distribution

over a domain of result values Val. We generalise the single query operation to

a parallel query, with syntax query(tv, f, @,), where

1. tv is the table variable referring to the table that will be used for the analysis,
2. f is the partitioning function that maps each record to an index in codomain(f) =
{1,...,k} for some k € N,

3. @ is a vector of k queries from Query.

The execution of this operation (as described in the next section) involves com-
puting the sequence of randomised values

Qi(e,{reT| f(r) =1}),i € codomain(f)

where T is the table bound to tv. This is the “parallel query” operation described
informally in the description of PINQ [13]. We use a single ¢ for all queries
because if we chose an ¢; for each query the privacy cost will be maximum of

all the epsilons in any case, so we may as well enjoy the accuracy of the largest
epsilon. However, we note that the implementation of PINQ is more general than
this, since the queries on each partition may be performed in an adaptive way.
Here we are making a trade-off in keeping our model simple at the expense of
not proving differential privacy for quite as general a system.

Client Program Model The above abstraction of the PINQ API allows us
to abstract away from all internal details of the programming language using
the API. Following [8] we model a program as an arbitrary labelled transition
system with labels representing the API calls:

Definition 1 (ProgAct Labels). The set of program action labels ProgAct,
ranged over by a and b, are defined as the union of three syntactic forms:

1. the distinguished action T, representing computational progress without in-
teraction with the protected system,

2. tvar := F(lvy,...,tv,) where F' is a function identifier, i.e. the formal name
of a transformation operation of arity n,

3. query(tv, f,Q,€)?V, where f is a function from records to {1,...,k} for
some k > 0, where T is a vector of values in Val®, and C_Q) s a vector of k
queries.

Every label represents an interaction between a client program and the pro-
tected system. The labels represent the observable output of a system which are
a sequence of those actions: internal (silent) steps (7) modelling no interaction,
and vectors of values ¥ which are the results of some query being answered and
returned to the program.

To define these transitions, we assume a client program modelled by a labelled
transition system modelling the API to the protected system. For cLient pro-
grams, the label corresponding to a query call is of the form query(tv, f,Q,) ? ¥,
and models the pair of query and the returned result (as described before) as a
single event. This allows us to model value passing with no need to introduce
any specific syntax for programs. Note that the value returned by the query is
known to the program, and the program can act on it accordingly. From the
perspective of the program and the protected system together, this value will be
considered an observable output of the whole system.

Definition 2 (Client Program). A client program is a labelled transition
system (P, —, Py), with labels from ProgAct, where P is all possible program
states, Py is the initial state of the program, and the transition relation — C
(P x ProgAct x P) is deadlock-free, and satisfies the following determinacy

property: for all states P, if P < P’ and P L P then
1. ifa=10 then P' = P",
2. if a is not a query _then a =, N
3. if a = query(tv, f,Q,) 7 U then b = query(tv, f,Q,€) ? U for some U, and
for all actions ¢ of the form query(tv, f, Zj, €) 7 W there exists a state P. such
that P 5 P..

The conditions on client programs are mild. Deadlock (i.e. termination) free-
dom simplifies reasoning; a program that terminates in the conventional sense
can be modelled by adding a transition P = P for all terminated states P.
Query transitions model both the query sent and the result received. Since we are
modelling message passing using just transition labels, the condition on queries
states that the program must be able to accept any result from a given query.
Modulo the results returned by a query, the conditions require the program to
be deterministic. This is a technical simplification which (we believe) does not
restrict the power of the attacker.

Remark: Implicit parameters We will prove that Featherweight PINQ pro-
vides differential privacy for any client program. To avoid excessive parametri-
sation of subsequent definitions, in what follows we will fix some arbitrary client
program (PP, —, Py) and some arbitrary initial budget ¢ and make definitions
relative to these. As an example, the program provided in Listing 1.1 can be
modelled as follows:

adult = adultSelector(data)

1
[girls, boys] = query(adult, gender Partitioner, [Average, Averagl, €))

5 Featherweight PINQ

In this section we turn to the model of the internals of PINQ, and the overall
semantics of the system. We begin by describing the components of the pro-
tected system, and then give the overall model of Featherweight PINQ by giving
a probabilistic semantics (as a probabilistic labelled transition system) to the
combination of a client program and a protected system.

5.1 The Protected System

Global Privacy Budget The first component of the protected system is the
global privacy budget. This is a non-negative real number representing the re-
maining privacy budget. The idea is that if we begin with initial budget b then
Featherweight PINQ will enforce b-differential privacy. The global budget is
decremented as queries are computed, and queries are denied if they would cause
the budget to become negative. In PINQ the budget is associated with a given
data source. In our model we assume that there is only one data source, and
hence only one budget. Further, PINQ allows the budget to be divided up and
passed down to subcomputations. This does not fundamentally change the ex-
pressiveness of PINQ since, as we show later, we are free to extend Featherweight
PINQ with the ability to query the global budget directly. Thus any particular
strategy for dividing the global budget between subcomputations can be easily
programmed.

The Table Environment The other data component of the protected system
is the table environment, which maps each table variable to the table it denotes,
together with a record of the scaling factor, which is a measure of the stability of
the table relative to the initial data set. We define this precisely below. Formally
we define a table as power-set of records, P(Record), a protected table is a pair

of a table with its scaling factor:
ProtectedTable = Table x N
5.2 The Featherweight PINQ Transition System
Featherweight PINQ is defined by combining a client program with the protected
system to form the states of a probabilistic transition system.

Definition 3 (Featherweight PINQ States). The states (otherwise known
as configurations) of Featherweight PINQ), ranged over by C, C' etc., are triples
of the form (P, E, B) where P is a client program state, E € TVar — ProtectedTable
is the table environment, and B € R* is the global budget.
There is a family of possible initial states, indexed by the distinguished input
table, and the initial budget. We define these by assuming the existence of a
distinguished table variable, input, which we initialise with the input table, while
all other table variables are initialised with the empty table:

Definition 4 (Initial configuration).
(T,1) if tv = input
({},0) otherwise.

The operational semantics of featherweight PINQ can now be given:

Init(T, B) < (Py, Er, B) where Ep(tv) £ {

Definition 5 (Semantics). The operational semantics of configurations is given
by a probabilistic labelled transition relation with transitions of the form C i>p (04
where a € Act = {r, LYulU, ey Val™, and (probability) p € [0,1]. The definition
is given by cases in Figure. 1.

PSP
(P,E,B) =1 (P',E, B)

Silent

E(tvi) = (Ti,si),i € {1,...,7’1,}

tv:=F(tvy,..., tug) , -
) oy tability (F) = (c1,...,¢n
Assign P p P where { ° 0 ”Z/L()= (e1nsen)
(P,E,B) 51 (P',E[tv — (T',s)], B) §=) 1 ,Ci X5

T = [F|(Th,..., Ty)

P query(t1),f,§,s) ? L P, {E(tv) _ (T, S)
where
(P,E,B) = (P',E, B) ers>B

Query,.

E(twv)=(T,s), e-s<B

Query p Qe £,@.2) T T b where codomain(f) = {1,...,71‘} . v € Val”
(P,E,B) T, (P E,B~1-2) To={t[teT f(t)=i}i€{1,.,n}

p =11, Pr[Qi(e, T;) = vi]

Fig. 1. Operational semantics

We note at this point that some of the primitives have not yet been defined
(e.g. stability in the Assign rule), and that the rules of the system do not, a
priori, define a probabilistic transition system. We will elaborate these points in
what follows. We begin by explaining the rules in turn.

Assign When a program issues an assignment command tv := F(tvy,..., tv,),
the value of the stored table for tv is updated in the obvious way. We must also
record the scaling factor of the table thus computed. The scaling factor is com-
puted from the scaling factors of the tables for tvy,..., tv,, and the stability of
the transformation f. We assume a mapping [-] from formal function identifiers
F to the actual table transformation functions [F] of corresponding arity.

Definition 6. A table transformation f of arity n has stability (c1,...,cn) if
for alli e {1,...,n}, we have

\f(Ty, ...\ Th,... T © f(T,....T,,...T)| < c; x |T; © T}

This is the n-ary generalisation of McSherry’s definition [13], and bounds the
size change in a result in terms of the size change of its argument. This is made
more explicit in the following:

Lemma 1. If f has stability (c1,...,cn) then |f(Ty,...,Ty) o f(Ty,...,T))| <
Y (e x|T; e Tjl)

Note that not all functions have a finite stability. An example of this is the
database join operation (essentially the cartesian product); adding one new ele-
ment to one argument will add k£ new elements to the result, where k is the size
of the other argument. Thus there is no static bound on the number of elements
that may be added. Thus PINQ (and hence Featherweight PINQ) supports only
transformation operations which have a finite stability. The variant of the join
operation, Join® deterministically produces bounded numbers of join elements.
For the purpose of this paper we do not need to be specific about the transfor-
mations. We simply assume the existence of a function stability which soundly
returns the stability of a function identifier, i.e., if stability(F) = (c1,...,¢p)
then [F] has stability (c1,...,c).

The transition rule for assignment in featherweight PINQ is thus

E(t?]z) = (T,',Si),i S {1,,n}

r P stability(F') = (¢1,...,¢n)
p- where "
(P,E,B) 5, (P',E[tv — (T",)], B) 5= i1Ci X8

T = [F|(T1,..., Ty)

tv:=F(tv1,...,tv,)
A A ASSIEAN

The label on the rule 7 says that nothing (other than computational progress)
is observable from the execution of this computation step. The subscript 1 is the
probability with which this step occurs.

Understanding the scaling factor Here we provide more intuition about
the scaling factor calculations, and explain some differences between the PINQ
implementation and the Featherweight PINQ model. As an example, suppose
we have a computation of a series of tables A-G depicted in Figure. 2.

The figure represents a PINQ computation involving three unary transfor-
mations (producing B, C, and D), one binary transformation producing G, and
one partition operation (splitting C' into E and F'). We have labelled the trans-
formation arcs with the stability constants of the respective transformations.

Transformation Stability
Select(T', maper) (1)
Where(T', predicate) (1)
GroupBy/(T1, keyselector) (2)
Join*(T1,T2, n, m, keyselector1, keyselectors)| (n,m)
Intersect(771,7%) (1,1)
Union(T},T%) (1,1)
Partition(T', keyselector, keysList) (1)

Table 1. Transformation stability

Calculation
Input table
s(A) x 2

rio=i
A
N, @ 2
C
F
22|s(D) x 1+ s(F) x 4

Fig. 2. Transformations Fig. 3. Scaling factors (s)

=N =’

Q" gOQW >
ww g
B @
Q o)

)

What is the privacy cost of an ¢ differentially private query applied to, say, table
D? Since D is the result of two transformations on the input data, the privacy
cost is higher than just €. The product of the sensitivities on the path from D
backwards to the input A provide the scaling factor for . In this case the scaling
factor for a query on D is 10. The remaining scaling factors are summarised in
the table in Figure 3.

The scaling factor is the stability of that specific table; it bounds the max-
imum possible change of the table as a result of a change in the input dataset,
assuming that it was produced using the same sequence of operations. The scal-
ing factor is computed from the stabilities of transformations that produced it.
The scaling factor for each protected table (except input table which has the
scaling factor one) is computed compositionally using the scaling factors (s;)
of all the arguments and the sensitivities of corresponding transformation argu-
ments (¢;) using the following formula: s4 = ZiEparent(A) c; X s; Figures 2 and
3 allow us to explain two key differences between PINQ and our model:

1. In PINQ, the tree structure depicted in the figure is represented explicitly,
and scaling factors are calculated lazily: at the point where a query with
accuracy ¢ is made on a table it is necessary to calculate its scaling factor
s in order to determine the privacy cost s.e. To do this the tree is traversed
from the query at the leaf back to the root, calculating the scaling factor
along the way. At the root the total privacy cost is then known and deducted
from the budget (providing the budget is sufficient). In Featherweight PINQ
the scaling factors of each table are computed eagerly, so the tree structure
is not traversed.

2. In Featherweight PINQ we restrict the partition operation to the leaves of the
tree, and combine it with the application of primitive queries to partitions.

The consequence of these two simplifications is that we do not need to represent
the PINQ computation tree at all — all computations are made locally at the
point at which a table is produced or queried.

Queries Parallel queries were described in detail in the previous section. When
a program issues a query is it represented as a parallel query and a possible
result — i.e. we model the query and the returned result as a single step. There
are two cases to consider, according to whether the budget is sufficient or not. If
the queried table T has scaling factor s then the cost of an € query is s x €. If this
is greater than the current global budget then the result is the exceptional value
L. This value is the observable result of the query, and it occurs with probability
1. On the other hand, if the budget is sufficient, then the vector of query results
7 is returned with probability p =], Pr[Qi(e,T;) = v;] where T; is the ith
partition of T'. Note that p is indeed a probability, since the component queries
are independent.

6 Differential Privacy for Featherweight PINQ

In this section we prove that Featherweight PINQ is differentially private.
We begin by recapping the goals of differential privacy, before showing how to
specialise the definition to Featherweight PINQ. Doing this entails building a
trace semantics for Featherweight PINQ. Differential privacy, guarantees that a
data query mechanism (abstractly, a randomized algorithm) behaves similarly
on similar input databases. This “similarity” is a quantitative measure € on
the difference in the information obtained from any data set with or without
any individual. When this difference is small, the presence or absence of the
individual in the data set is difficult to ascertain.

Definition 7. Mechanism f provides e-differential privacy if for any two datasets
A and B that differ in one record (| A© B |=1), and for any two possible out-
come f(A) and f(B), the following inequalities holds : e=¢ < % <ef

In this definition, S is subset of the range of outcomes for f (S C Range(f))
and for similarity of outcomes we use the ratio between the probabilities of
observing outcomes Pr[(f(datasets) € S)] when the analyses are executed on
any two similar datasets A and B. Finally for similarity of datasets hamming
distance is used as a metric. In this work we assume that the primitive query
mechanisms (and thus Featherweight PINQ) provide answers over a discrete
probability distribution, so that it is sufficient to consider S to be a singleton
set.

6.1 Trace semantics

The first step to instantiating the definition of differential privacy to Feather-
weight PINQ is to be able to view Featherweight PINQ as defining a probabilistic

function. In fact each client program gives rise to a family of probabilistic func-
tions, one for each length of computation that is observed. This is given by
building a trace semantics on top of the transition system for Featherweight
PINQ.

The semantics of Featherweight PINQ is a probabilistic labelled transition
system of the simplest kind: for each configuration C, the sum of all probabilities
of all transitions of C is equal to 1. The system is also deterministic, in the sense
that if C i>p1 Cy; and C i>p2 Cy then p; = ps and C; = C,. This makes it
particularly easy to lift the probabilistic transition system from single actions to
traces of actions:

Definition 8 (Trace semantics). Define the trace transitions = C Config x

Act™ x [0,1] x Config inductively as follows: (i) C :[kl C where || € Act™ is the
empty trace, and (ii) if C =, C' and C’ :t>q C” then C g}p_q c”

Traces inherit determinacy from the single transitions:

Proposition 1 (Traces are Deterministic). If C :t>p1 Cy and C :t>p2 C,
then p1 = po and C; = C,

This follows by an easy induction on the trace, using the fact that the single
step transitions are similarly deterministic.

Lemma 2 (Traces are Probabilistic). Define

(1) {p ifCs,C

0 otherwise.

For all configurations C, and all n > 0,

Z w(C,t) =1

teAct™

where Act™ is the set of traces of length n.

The proof is a simple induction on n, using the proposition above. The lemma
says that whenever C $p, then p is the probability that you see trace t after
having observed size(t) steps of the computation of C. We will thus refer to the
probability of a given trace to mean the probability of producing that trace from
the given configuration among all traces of the same length. We denote this by
writing Pr[C =] = p when C :t>p.

Differential Privacy for Traces We are now in a position to specialise the def-
inition of differential privacy for Featherweight PINQ. The probabilistic function
is determined by the client program (which we have kept implicit but uncon-
strained), the initial budget ¢, and the length of trace n that is observed for any
combination of these we define the function which maps a table T to trace t of

length n with probability p precisely when Pr[Init(T,¢) é] =p.

The instantiation of the differential privacy condition to Featherweight PINQ
is thus:

_ PrfInit(T,¢) <]

Vt, T, T e.if [T&T'| =1 then e * < — <€
Pr[Init(77,¢) =

Towards a proof of this property we introduce some notation to reflect key
invariants between the pairs of computations (for T and T” respectively).

Definition 9 (Similarity). We define similarity relations ~ between tables,
environments, and configurations as follows:

— For tables T and T', and s € N define T ~, T' (“T is s-similar to T'”) if
and only if | T ST'| < s.

— For protected environments E and E’, define E ~ E’ if and only if for all
tv, if E(tv) = (T,s) and E'(tv) = (T",s') then s =" and T ~s T".

— For configurations, define (P, E,B) ~ (P',E',B’) if and only if P = P’,
E~FE and B= B'.

The configuration similarity relation captures the key invariant between the
two computations in our proof of differential privacy. First we need to show that
the invariant is established for the initial configurations:

Lemma 3. If T ~; T’ then Init(T, B) ~ Init(7", B).

This follows easily form the definition of the initial configuration. Now the
main theorem shows that this is maintained throughout the computation:

Theorem 1. IfT ~; T' and Init(T, B) =, C = (P, E, B—¢), then Init(T", B) =,

C'=(P,E,B —¢) where C ~ C' and p < q.exp(B —¢) for somee < B .

Corollary 1 (B-differential privacy). If T ~; T’ and Pr[Init(T, B) é] =p
then Pr[Init(7", B) é] = ¢ for some q such that p < q - exp(B).

Proof. Assume Init(T, B) :t>p C. We proceed by induction on the length of the
trace t, and by cases according to the last step of the trace.
Base case: ¢ = [|. In this case p = ¢ = 1 and C = Init(7, B) and C' =
Init(7’,B). Soe =¢' =0 and C ~ C'.
Inductive step: ¢t = tja. Suppose that Init(T, B) %pl (P1,Ey,By) 5,
(P, E,B) = C, and hence that p = p1ps.
The induction hypothesis gives us ¢1, P;, E] and &; such that

Init(T", B) 2, (P1, B}, By) (2)
FEy ~ E{ (3)
p1 < qi.exp(B —e1) (4)

by cases that is applied to the rule as the last transition ((Pp, Ey, B1) <,
(P, E, B)) we have p; = 1 except for query execution and that (Py, Ej, By) %, €'

for some C'. In those cases it follows that p < ¢ - exp(B — ¢) by taking ¢ =
and using (4).
Case 1: Silent. In this case a = 7 and P, = P.

<P17E17B1> L>1(D:<P17E17B1>
<P17E17Bl> ;1 C/:<P17E17-Bl>
It follows directly from (3) that C ~ C'.

Case 2: Assign. Here P, M P, and so we have

C = (P, Ei[tv— (T,s)], B1)
C' = (P, E{[tv — (T',5)], B1)
where for i € (1,...,n)
Eq(tv;) = (T3, ;)
Ey(tv;) = (T}, 5})

stability(F') = (c1,...,¢n)
s = Z C; X S;
7

T = [F](Th,...,T,)
T = [F(T},...,T")

From (3) we have Fj(tv;) ~ Ef(tv;) which means s; = s, and T; ~, T}. Using
similarity definition and Lemma 1 we have T ~4 T’ and hence we have C ~ C'.
Case 3: Query. The result of query execution depends on the remained
budget and the sensitivity of the table that the query is executed on. If privacy
budget is insufficient an exception is thrown to inform the program about the
shortage of budget, otherwise each query in the list of queries will be executed
on its corresponding partition and the result of execution is returned as a list of
values, 7.

Case 3.1: Query(run out of budget). Here we have a rule instance of the
form:

query(tv,f,G.e) 7 L _, E(tv) = (T
Query, P P where{ (tv) = (T>)

(P,E,B) =5, (P',E, B) €-s>B
In this case C ~ C’ and is similar to silent case.
Case 3.2: Query. Similarly we have a rule instance of the form:
N E(tv)=(T,s), e€-s<B
p e S @) TV, by codomain(f) = {1,...,n} ¥ € Val”
Query — where o
<P,E7B> L>p <P/,E7B —t<€> T‘,L = {t | te T,f(t) = Z},’L € {1,,71}
p =12, Pr[Qi(e, T;) = vi

Hence we have a transition : (Py, Fy, By) im C = (P, E, B) and the analogous
transition : (Pp, E}, B1) —+,, €' = (P, E’, B). The needed value for theorem 1

ise=¢e1+ (t-ea).
For parallel queries on disjoint set we have the following equation:

uery(tv, f,Q 7T
Pr[P, query(tv.£, &) HPr (s-e2,T;) = vy

Here we need to show that the following 1nequa11ty is valid:

HPT[Qi(s'f?z,) = v HPI" Qi(s - €2, T}) = vj] x HQXP(52X | T: =17 |)
i=1 i=1 i=1

From Y@ (| T; — T/ |) = s, we have [[;_ exp(eax | T; — T/ |) < exp(e2 X s)
which we conclude:

HPT[Qi(S -e2,T;) = vy HPT (s-e2,T) = vj] x exp(ez - 5)

i=1
These parallel queries provide (s - e)-dlfferentlal privacy which means:

P2 < g2 - exp(ez - 5)
Multiplying two sides of the previous inequality with (4) we get:
p1-P2 < q1-q2 - exp(er) - exp(ez -)

Knowing B; = B — &7 result in choosing € to be e = B — g1 — (g5 - s). Finally
it is easy to see C ~ C’ as the proper reduction in the global budget is the only
change in the configuration. O

7 Practical Evaluation

We have developed a minimalistic model of PINQ and shown that the model
is sufficiently precise to give a rigorous proof of differential privacy. A remaining
concern, addressed in this section, is the extent to which the simplifications and
tradeoffs made in the modelling of PINQ actually capture the true essence of
PINQ. In particular, we simplified the concept of a parallel query to closely match
the informal description of PINQ [13], but not the actual implementation. The
key difference between Featherweight PINQ and actual PINQ was described in
Section 5 in connection with Figure 2, which depicts a partition operation which
is not supported by Featherweight PINQ since it is not immediately followed
by queries on the partitions. In fact the “parallel” queries in PINQ are not
parallel at all, but are implemented by some sequential traversal of the partitions.
Furthermore, the queries could, in principle, be adaptive (i.e., the result of a
query on one partition can be used to influence the choice of query on other
partitions). This feature is not easily supported by a small change to our model
since it does not seem to be implementable using Featherweight PINQ’s simple
history-free use of explicit scaling factors.

In this section we report on the results of practical experimentation with our
model, studying all the existing PINQ programs available in the distribution,
plus further examples from [12]. Our approach was to implement the Feather-
weight PINQ API in PINQ, and see which PINQ examples can be reimplemented
in a faithful way with this simpler API. Our observations based on this practical
experiment can be summarised as follows:

— No existing PINQ programs take advantage of adaptiveness of parallel queries.
— All examples can be rewritten to use the simpler Featherweight PINQ API.

In the remainder of this section we describe the implemented Featherweight
PINQ API, and summarise the difficulty of reimplementing the examples.

7.1 Implementing the Parallel Query Operator in PINQ

The essence of our simplified model is a parallel query operation. In our model
the parallel query operation on a table requires (i) a mapping f from records to
a set of indices {1,...,n}, and (ii) a vector of n queries. The idea is that the ith
query is applied to the table of all records r for which f(r) =i.

The signature we use in the C# implementation, function Partition Query,
is isomorphic to this, but more general for the sake of programming convenience,
narrowing the gap to PINQ in a technically insignificant way. Instead of using a
set of natural numbers {1,...,n}, Partition Query allows (as for the Partition
operation of PINQ) an arbitrary set of keys K; instead of a vector of n queries,
a dictionary mapping keys to queries is used. In concrete C# terms, queries are
represented by a Query0Obj class, Partition_Query accepts two parameters:

1. a dictionary of query objects Dictionary<K, QueryObj<T>> with generic
key type K, and

2. a partitioning function Func<T, K> that maps each element to one of the
provided keys2.

Upon the execution, the partitioner function creates lists of elements that are
mapped into the same key and executes the corresponding query (stored in
QueryObj) on the elements of each list).

7.2 Evaluation

To examine the limitation of our proposed model we attempted to adapt projects
that are implemented using PINQ in [12] and [13]. The aim was to replace unre-
stricted use of PINQ’s partition method with Partition Query to see to what
extent this was possible. The results are summarised in Table 2. Simple observa-
tion of the existing PINQ projects confirmed that none of them use adaptiveness.

The conclusion is that we did not find any examples that cannot be rewritten
(with the same privacy cost) to use Partition_Query. Here we analyse the
examples from the perspective of the relative difficulty of the translation, which
we have summarised in right-hand column of the table.

The “Trivial” cases In majority of cases (marked “Trivial”) the code takes the
form of a partition followed by a simple for-loop over the keys of the partition,
applying a static query to the table for each partition. Listing 1.2 illustrates the
result of this process on the examples in Listing 1.1.

In translating this and similar examples, we simply remove the partition
operation, replicate the structure of the for-loop, but instead of applying the

2 Since PINQ is built on top of an embedded database query language LINQ, this is
further packaged as a LINQ expression Expression<Func<T, K>> keyFunc

© W N o o oA W N =

query to the partition, we simply build the query object and add it to the key-
query dictionary(line 8-11), and after the for-loop we call Partition Query with
the partition function and the query dictionary thus constructed (line 13).

A canonical example is a differentially private analysis K-means clustering
algorithm described in [13]. For K-means algorithm the parts of the code using
partition are listed in Listing 1.5 and its translation is provided in Listing 1.6.

Listing 1.2. FeatherweightPINQ adaption for the sample code
Dictionary<int, QueryObj<Recordstype>> kq =
new Dictionary<int, QueryObj<Recordstype>> ();
var agent = new PINQAgentBudget (budget) ;
var data = new PINQueryable<Recordstype>(rawdata.AsQueryable(), agent);
var adults = data.Where(x => x.age > 17);
var genders = new [] {0,1};

foreach (var a in genders) {
kq.Add(a, new QueryObj<Recordstype>
(queryType.Average, budget/2, x => x.age/100));

var partsValue = adults.Partition_Query(kq, x=>x.gender);

foreach (var a in genders) {
Console.WriteLine("Average age of {0} is {1}",
a==0 ? "Males " : "Females ", partsValuela]l * 100) ;
}
Console.WriteLine("Average age (all):"
+ data.NoisyAverage(c, x=>x.age/100) * 100) ;

Simple Nested Partition In some cases the algorithm partitions the dataset
and recursively visits the partitions. In the simplest form the queries that are
executed in base case (leaf queries) are executed on disjoint partitions, and each
query is independent of the results of other leaf queries. To rewrite this in a way
that is faithful to the amount of computation (the number of queries) and the
use of the budget we flattened the recursive structure of the algorithm into a
single partition. The example which exhibits this behaviour is example 6 from
[13] convertible to one single partition transformation (labelled as “Flattening
nested partition”). The original and Featherweight PINQ versions are given in
Appendix A, listing 1.4.

Multi-Query Nested Partition The trickiest examples involve a more elab-
orate form of nested partitioning. In these cases not only are there nested par-
titions, but the queries are applied not only at the leaves (the smallest sub-
partitions) but also to intermediate partitions. These examples must be refac-
tored into multiple parallel queries. One such example (CDF3) is the case where
one wants to calculate a cumulative frequency histogram. A cumulative fre-
quency histogram could be computed by partitioning the data and computing
the histogram (a parallel query, of cost €) from which the cumulative histogram

can be obtained by cumulative summation. However this approach results in
a histogram in which the results are increasingly noisy from left to right. The
present algorithm recursively computes the cumulative frequency with a more
even error, and a cost €logn, where n is the histogram dimension. It is more
difficult to convert because it must be refactored in two dimentions: the control-
flow, to flatten the recursion, but also in the parallel queries, of which (in this
example) there are logn.

Transformation One example of a partition operation (Stepping Stone) ap-
peared, at first inspection, to be impossible to convert. It makes a binary par-
tition and then computes an intersection of the two partitions before applying
a query to the result. Because the intersection is computed from different parti-
tions, the query sensitivity is not magnified. One can nevertheless view this as
an instance of the Featherweight PINQ API without conversion, by observing
that the process of partitioning the data followed by a combination operation
is itself just a (compound) transformation. Thus the example can be seen as a
transformation followed by a simple query, and not a parallel query at all.

Project Function Difficulty
Trace Analysis Discover Multi-Query Nested Partition
CDF3 Multi-Query Nested Partition

FindSets Trivial

Query Frequency - Simple Nested Partition

Anomaly Detection Main Trivial

Clustering TTLs kMeansStep Trivial

Cumulative Density CDF2 Trivial

Machine Learning kMeansStep Trivial

Social Networking Main Trivial

Test Harness Main Trivial

Stepping Stones Main Transformation

Visualization Histogram Multi-Query Nested Partition

Worm Detection Main Trivial

Table 2. Result of converting projects to Featherweight-PINQ

8 Related Work

The approach described in this paper owes much to the model used in the
formalisation developed in our recent work on personalised differential privacy
[8]. The idea to model the client program as an abstract labelled transition
system comes from that work. That work also shows how dynamic inputs can
be handled without major difficulties.

The closest other prior work is developed by Tschantz et al [17]. Their work
introduces a way to model interactive query mechanisms as a probabilistic au-
tomata, and develop bisimulation-based proof techniques for reasoning about the
differential privacy of such systems. As a running example they consider a sys-
tem “similar to PINQ”, and use it to demonstrate their proof techniques. From
our perspective their system is significantly different from PINQ in an number of
ways: (i) it does not model the transformation of data at all, but only queries on

unmodified input data, (ii) it models a system with a bounded amount of mem-
ory, and implements a mechanism which deletes data after it has been used for a
fixed number of queries (neither of which relate to the implementation of PINQ).
Regarding the proof techniques developed in [17], as previously noted in [8], a
key difference between our formalisation and theirs is that they model a passive
system which responds to external queries from the environment. In contrast,
our model includes the adaptive adversary (the client program) as an explicit
part of the configuration. In information-flow security (to which differential pri-
vacy is related) this difference in attacker models can be significant [20]. However
it may be possible to prove that the passive model of [17] is sound for the active
model described here (c.f. a similar result for interactive noninterference [2]).

Haeberlen et al [10] point out a number of flaws an covert channels in the
PINQ system. This may seem at odds with our claims for the soundness of PINQ),
but in fact all the flaws described are either covert timing channels (which we
do not attempt to model), flaws in PINQ’s implementations of encapsulation, or
failure to prevent unwanted side-effects, or combinations of these. Following this
analysis, Haeberlen et al introduce a completely different approach to program-
ming with differential privacy (an approach further developed and refined in [15]
[9]) based on statically tracking sensitivity through sensitivity-types. This non-
interactive approach is rigorously formalised and proven to provide differential
privacy.

Barthe et al [1] introduce a relational Hoare-logic for reasoning formally
about the differential privacy of algorithms. They include theorems relating to
sequential and parallel composition of queries in the style of those stated by
McSherry [13]. Unlike the present work, [1] does not rely on differentially private
primitives, but is able to prove differential privacy from first principles.

9 Conclusion

We started by presenting some shortcomings(gaps) between the theory of dif-
ferential privacy and the implementation of PINQ framework. To verify privacy
assurance of analysis written in PINQ framework and to address the mentioned
concerns, we introduced an idealised model for the implementation of PINQ. In
the model, only PINQ’s internal implementation has direct access to the sensitive
data. An analysis written in this framework has indirect access to the protected
system by calling some limited well defined/crafted interface APIs. In addition
to the standard PINQ APIs, we extended the model with our own proposed
APIs responsible to retrieve scaling factor and the budget from the protected
environment. Furthermore we instantiated the definition of differential privacy
to prove any analysis constructed in this setting and its communications with
protected system would not violate the privacy guarantee promised by PINQ.

We believe that our model (and our general approach to modelling such sys-
tems) could be of benefit to formalise emerging variants on the PINQ framework,
such as wPINQ [14], or Streaming PINQ [18].

Extensions to the PINQ API We mention one extension to PINQ that
emerges from the details of the correctness proof. In PINQ, the budget and

the actual privacy cost of executing an e differentially private query on some
intermediate table is not directly visible to the program:

“An analyst using PINQ is uncertain whether any request will be accepted
or rejected, and must simply hope that the underlying PINQAgents accept
all of their access requests.” [13](§3.6)

Recall that the key invariant that relates the two runs of the systems on neigh-
bouring data sets (Definition 9) states that the budgets and the scaling factors
in the respective environments are equal. This means that they contain no infor-
mation about the sensitive data. This, in turn, means that we can freely permit
the program to query them. This would allow the analyst to calculate the cost
of queries and to make accuracy decisions relative to the current privacy budget.
Here we briefly outline this extension. We add two new actions to the set of
program actions ProgAct, namely a query on the sensitivity of a table variable
of the form tv 7 s, where s € N, and a query on the global budget, budget 7 v
where r € RZ%. The transition rules are given in Figure 4.
tv?s
Query sensitivity P— P where E(tv) = (T, s)
(P,E,B) 5, (P',E,B)

budget? B
—

P i

(P,E,B) =1 (P',E,B)
Fig. 4. Budget and Scaling Facror

Query budget

References

1. Gilles Barthe, Boris Kopf, Federico Olmedo, and Santiago Zanella Béguelin. Prob-
abilistic relational reasoning for differential privacy. ACM Trans. Program. Lang.
Syst, 35(3):9, 2013.

2. D. Clark and S. Hunt. Noninterference for deterministic interactive programs. In
Workshop on Formal Aspects in Security and Trust (FAST’08), volume 5491 of
LNCS, 2009.

3. Anders Hejlsberg Don Box. Ling: .net language-integrated query. https://msdn.
microsoft.com/en-us/library/bb308959.aspx, February 2007 (accessed Novem-
ber 18, 2015).

4. Cynthia Dwork. Differential privacy. In ICALP (2), volume 4052 of LNCS, pages
1-12. Springer, 2006.

5. Cynthia Dwork. Differential privacy: A survey of results. In Theory and Applica-
tions of Models of Computation, pages 1-19. Springer, 2008.

6. Cynthia Dwork. A firm foundation for private data analysis. Commun. ACM,
54(1), January 2011.

7. Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of Cryptography, pages
265—-284. Springer, 2006.

8. Hamid Ebadi, David Sands, and Gerardo Schneider. Differential privacy: Now it’s
getting personal. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15. ACM, 2015.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C.
Pierce. Linear dependent types for differential privacy. In Proceedings of the 40th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’18), January 2013.

Andreas Haeberlen, Benjamin C Pierce, and Arjun Narayan. Differential privacy
under fire. In USENIX Security Symposium, 2011.

Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight java: a
minimal core calculus for java and gj. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 23(3):396-450, 2001.

Frank McSherry and Ratul Mahajan. Differentially-private network trace analysis.
SIGCOMM Comput. Commun. Rev., 40(4):123-134, August 2010.

Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pages 19-30. ACM, 2009.

Davide Proserpio, Sharon Goldberg, and Frank McSherry. Calibrating data to
sensitivity in private data analysis. 40th International Conference on Very Large
Data Bases, VLDB’14, 7(8):637-648, 2014.

Jason Reed and Benjamin C Pierce. Distance makes the types grow stronger: a
calculus for differential privacy. ACM Sigplan Notices, 45(9):157-168, 2010.
Aaron Roth. The algorithmic foundations of data privacy, lecture 4, compo-
sition theorems. Lecture Notes, University of Pennsylvania, September 2011.
http://www.cis.upenn.edu/ aaroth/courses/slides/Lecture4.pdf.

Michael Carl Tschantz, Dilsun Kaynar, and Anupam Datta. Formal verification
of differential privacy for interactive systems (extended abstract). FElectron. Notes
Theor. Comput. Sci., 276:61-79, September 2011.

Lucas Waye. Privacy integrated data stream queries. In Proceedings of the 5th an-
nual conference on Systems, programming, and applications: software for humanity.
ACM, 2014.

Glynn Winskel. The formal semantics of programming languages: an introduction.
MIT press, 1993.

J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic
systems. In IEEE Symposium on Security and Privacy, pages 144-161, 1990.

Appendix
Further example of translating a PINQ program to Featherweight PINQ’s

APL

Listing 1.3. Measuring many query frequencies in PINQ

// Original PINQ code
var parts = data.Select (line => line.Split (’,’)).Partition(keys,

fields => fields[20]);

foreach (var query in keys)

{

// use the searches for query, grouped by IP address
var users = parts[query].GroupBy(fields => fields[0]);
// further partition by the frequency of searches

var freqs = users.Partition(new int[] {1,2,3,4,5},
group => group.Count());

// output the counts to the screen, or anywhere else

Console.WriteLine(query + ":");
foreach (var count in new int[] {1,2,3,4,5})
Console.WriteLine(freqgs[count] .NoisyCount (100)) ;

Listing 1.4. Measuring many query frequencies in Featherweight-PINQ

var groupedData = data.Select (line => line.Split (°,’))
.GroupBy (fields => new Tuple<string, string>
(fields [0], fields [201));
foreach (var query in keys) {
foreach (var freq in Enumerable.Range (1, 5).AsQueryable ()) {
keyQuery.Add(new Tuple<string,int>(query,freq)
,new QueryObj<IGrouping<Tuple<string,string>,stringl[]>>
(queryType.Count,epsilon, x=> 1));

}
var partValue = groupedData.Partition_Query (keyQuery
, X => new Tuple<string
, int> (x.Key.Iteml, x.Count()));
foreach (var pv in partValue) {
Console.WriteLine ("Query "+ pv.Key.Iteml
+ ",Freq "+ pv.Key.Item2
+ ":" + pv.Value);

Listing 1.5. k-Means Clustering in PINQ

public static void kMeansStep(PINQueryable<double[]> input, doublel[][]
centers, double epsilon)

{
var parts = input.Partition(centers, x => NearestCenter(x, centers));
// update each of the centers
foreach (var center in centers)
{
var part = parts[center];
foreach (var index in Enumerable.Range(O, center.Length))
center[index] = part.NoisyAverage(epsilon, x => x[index]);
}
}

Listing 1.6. k-Means Clustering in Featherweight-PINQ

public static void kMeansStep(PINQueryable<double[]> input, double[] []
centers, double epsilon)
{
foreach (var index in Enumerable.Range(0, centers[0].Length)) {
var keyQuery = new Dictionary<double[], QueryObj<double[]>> ();
foreach (var center in centers) {

var queryObject = new QueryObj<double[]> (queryType.Average,
epsilon, x => x[index]);
keyQuery.Add(center, queryObject);
}
int j = 0;
var x = input.Partition_Query (keyQuery, x => NearestCenter (x, centers))
foreach (var partValue in x) {
centers [j++][index] = partValue.Value;

}

