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Abstract

Techniques for reasoning about extensional properties of functional programs are well understood, but methods for
analysing the underlying intensional or operational properties have been much neglected. This paper begins with the
development of a simple but useful calculus for time analysis of non-strict functional programs with lazy lists. One
limitation of this basic calculus is that the ordinary equational reasoning on functional programs is not valid. In order
to buy back some of these equational properties we develop a non-standard operational equivalence relation called cost
equivalence, by considering the number of computation steps as an ‘observable’ component of the evaluation process.
We define this relation by analogy with Park’s definition of bisimulation in CCS. This formulation allows us to show
that cost equivalence is a contextual congruence (and thus is substitutive with respect to the basic calculus) and provides
useful proof techniques for establishing cost-equivalence laws. It is shown that basic evaluation time can be derived by
demonstrating a certain form of cost equivalence, and we give an axiomatization of cost equivalence which is complete
with respect to this application. This shows that cost equivalence subsumes the basic calculus. Finally we show how a
new operational interpretation of evaluation demands can be used to provide a smooth interface between this time analysis
and more compositional approaches, retaining the advantages of both.

Keywords: Time analysis, lazy evaluation, operational semantics.

1 Introduction

An appealing property of functional programming languages is the ease with which the extensional
properties of a program can be understood—above all the ability to show that operations on
programs preserve meaning. Prominent in the study of algorithms in general, and central to
formal activities such as program transformation and parallelization, are questions of efficiency,
i.e. the running-time and space requirements of programs. These are intensional properties
of a program—properties of how the program computes, rather that what it computes. The
study of intensional properties is not immediately amenable to the algebraic methods with which
extensional properties are so readily explored. Moreover, the declarative emphasis of functional
programs, together with some of the features that afford expressive power and modularity, namely
higher-order functions and lazy evaluation, serve to make intensional properties more opaque. In
spite of this, relatively little attention has been given to the development of methods for reasoning
about the computational cost of functional programs.

As a motivating example consider the following defining equations for insertion sort (written
in a Haskell-like syntax)
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isort[] = []

isort (h:t) = insert h (isort t)
insert x ] = [X]

insertx (h:t) = x:(h:t) ifx <h

= hi(insert xt) otherwise.

As expected, isort requires ((n?) time to sort a list of length n. However, under lazy evaluation,
isort enjoys a rather nice modularity property with respect to time: if we specify a program which
computes the minimum of a list of numbers, by taking the head of the sorted list,!

minimum = head o isort

then the time to compute minimum is only O(n). This rather pleasing property of insertion-sort
is a well-used example in the context of reasoning about running time of lazy evaluation.

By contrast, the following time property of lazy ‘quicksort’ is seldom reported. A typical
definition of a functional quicksort over lists might be:

gsort[] = [l
gsort (hit) = gsort (below h t) ++ (h:gsort (above h t))

where below and above return lists of elements from t which are no bigger, and strictly smaller
than h, respectively, and 4+ is infix list-append. Functional accounts of quicksort are also
quadratic time algorithms, but conventional wisdom would label quicksort as a better algorithm
than insertion-sort because of its better average-case behaviour. A rather less pleasing property
of lazy evaluation is that by replacing ‘better’ sorting algorithm gsort for isort in the definition of
minimum, we obtain an asymptotically worse algorithm, namely one which is (n?) in the length
of the input.

1.1 Overview

In the first part of the paper we consider the problem of reasoning about evaluation time in terms
of a very simple measure of evaluation cost. A simple set of time rules are derived very directly
from a call-by-name operational model, and concern equations on (e}H (the ‘time’ to evaluate
expression e to (weak) head normal form) and (e) N (the time to evaluate e to normal-form). The
approach is naive in the sense that it is non-compositional (in general, the cost of computing an
expression is not defined as a combination of the costs of computing its subexpressions), and does
not model graph reduction. However, despite (or perhaps because of) its simplicity, the method
appears to be useful as a means of formalizing sufficiently many operational details to reason
(rigorously, but not necessarily formally) about the complexity of lazy algorithms.

One of the principal limitations of the approach is the fact that the usual meanings of ‘equality’
for programs do not provide equational reasoning in the context of the time rules. This problem
motivates development of a non-standard theory of operational equivalence in which the number
of computation steps are viewed as an ‘observable’ component of the evaluation process. We

1 The example is originally due to D. Turner; it appears as an exercise in informal reasoning about lazy evaluation in [6][Ch. 6], and in the majority(!) of
papers on time analysis of non-strict evaluation.
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define this relation by analogy with Park’s definition of bisimulation between processes. This
formulation provides a uniform method for establishing cost-equivalence laws, and together with
the key result that cost equivalence is a contextual congruence, provides a useful substitutive
equivalence with which the time rules can be extended, since if e; is cost equivalent to e2, then
for any syntactic context C, (Cle1])* = (Clea])”.

In addition we show that the theory of cost equivalence subsumes the time rules, by providing
an axiomatization of cost equivalence which is sound and complete (in a certain sense) with
respect to simple evaluation time properties of expressions.

Finally, we return to a significant flaw in the time model, namely of its use of call-by-name
rather than call-by-need. We sketch a method to alleviate this problem which provides a smooth
integration of the simple time analysis here, and the more compositional call-by-need approaches,
with some of the advantages of both.

The development of the theory of cost equivalence is somewhat technical, but the paper is
written so that the reader interested primarily in the problem of time analysis of programs in a
lazy language should be able to skip the bulk of the technical development, but still take advantage
of its results, namely cost equivalence. In the remainder of this introduction we summarize the
rest of the paper.

Sections 2 to 5 develop a simple time analysis for a first order language with lazy lists. Sec-
tion 2 gives some background describing approaches to the efficiency analysis of lazy functional
programs. In Section 3 we define our language and its operational semantics. Section 4 defines
the notion of time cost over this operational model, and introduces the time rules which form the
basis of the calculus. Section 5 provides some examples of the use of the time rules in reasoning
about the complexity of simple programs.

Section 6 motivates and develops the theory of cost equivalence. Cost equivalence is based
upon a cost simulation preordering which is shown to be preserved by substitution into arbitrary
program contexts. It is also shown that it is the largest such relation. Section 7 gives some
variants of the co-induction proof principal which are useful for establishing cost equivalences,
and presents an axiomatization of cost equivalence which is complete with respect to the basic
time properties of expressions. In Section 8 we extend the language with higher-order functions.
Time rules are easily added to the new language, and the theory of cost equivalence is extended
in the obvious way by considering an ‘applicative’ cost simulation, which is also shown to have
the necessary substitutivity property.

Section 9 presents an example time analysis, illustrating the combined use of time rules and
cost equivalences.

Section 10 outlines a flexible approach to increasing the compositionality and accuracy of the
time analysis with respect to call-by-need evaluation, via the definition of a family of evaluators
indexed by representations of strictness properties.

To conclude, we consider related work in the area of intensional semantics.

A preliminary version of this paper appeared as [39], and summarized [36][Ch. 4]. In addition
to the inclusion of proofs, further examples and additional technical results, Sections 7, 8, 9 and
10 are new, and contain a number of important extensions to the earlier work.

2 Time analysis: background

A number of researchers have developed prototype (time) complexity analysis tools in which the
algorithm under analysis is expressed as a first-order call-by-value functional program [44, 22,
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33, 17]. It could be argued that the subject of study in these cases is not functional programming
per se; the choice of a functional language is motivated by the fact that, for a first-order language
with a call-by-value semantics, it is straightforward to construct, mechanically, functions with the
same domain as a given function, which describe (recursively) the number of computation steps
required by that function. Although this does not by any means trivialize the problem of finding
solutions to these equations in terms of some size-measure of the arguments, it gives a simple but
formal reading of the program as a description of computational cost. This is because the cost of
evaluating some function application fun(£) can be understood in terms of the cost of evaluating
I, plus the cost of evaluating the application of fun to the value of £.

In the case of a higher-order strict language cost is not only dependent on the simple cost of
evaluating the argument £, but also on the possible cost of subsequently applying £, applying
the result of an application, and so forth. Techniques for handling this problem were introduced
in [34], where syntactic structures called cost closures were introduced to enable intensional
properties to be carried by functions. Additional techniques for reasoning about higher-order
functions which complement this approach are described in [36].

A problem in reasoning about the efficiency of programs under lazy evaluation (i.e. call-by-
name, or more usually, call-by-need, extended to data structures) is that the cost of computing the
subexpression ' is dependent entirely on the way in which the expression is used in the function
fun. More generally, the cost of evaluating some (sub)expression is dependent on the amount of
its value needed by its context.

The compositional approach

One approach to reasoning about the time cost of lazy evaluation is to parameterize the description
of the cost of computing an expression by a description of the amount of the result that is needed by
the context in which it appears. This approach is due to Bjerner [7], where a compositional theory
for time analysis of the (primitive recursive) programs of Martin-Lof type-theory is developed.
A characterization of ‘need’ (more accurately ‘not-need’) provided by a new form of strictness
analysis [43] enabled Wadler to give a simpler account of Bjerner’s approach [42] in the context
of a (general) first-order functional language. The strictness-analysis perspective also gives a
natural notion of approximation in the description of context information, and gives rise, via
abstract interpretation to a completely mechanizable analysis for reasoning about (approximate)
contexts. In [37, 36] the context information available from such an analysis is used to characterize
sufficient-time and necessary-time equations which together provide bounds on the exact time
cost of lazy evaluation, and the method is extended to higher-order functions using a modification
of the cost-closure technique.

A problem with these compositional approaches to time analysis remains: the information
required about context is itself an uncomputable property in general. The options are to settle
either for approximate information via abstract interpretation (or a related approach), or to
work with a complete calculus for contexts and hope to find more exact solutions. The former
approach, while simplifying the task of reasoning about context (assuming that an implementation
is available), can lead to unacceptable approximations in time cost. The latter approach (see [8])
can be impractically cumbersome for many relatively simple problems, and is unlikely to extend
usefully to higher-order languages.
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The naive approach

In the following three sections, we explore a complementary approach which begins with a more
direct operational viewpoint. We define a small first-order lazy functional language with lists, and
define time cost in terms of an operational model. (The treatment of a higher-order language in
the naive approach is just as straightforward, but is postponed in order to simplify the exposition
of the theory of cost equivalence.) The simplicity of the chosen semantics (a substitution-based
call-by-name model) leads to a correspondingly straightforward definition of time cost, which is
refined to give an unsophisticated calculus, in the form of time rules with which we can analyse
time cost. We illustrate the utility of the naive approach before going on to consider extensions
and improvements.

3 A simple operational model

We initially consider a first-order language with lists. For simplicity we present an untyped
semantics, but the syntax will be suggestive of a typed version. List construction is sugared with
an infix cons ‘:°, and lists are examined and decomposed via a case-expression. Programs are
closed expressions in the context of function definitions

filzy, .. zn,) = €.

We also assume some strict primitive functions over the atomic constants of the language
(booleans, integers etc.). Expressions are described by the grammar in Fig. 1.

e == fler,...,en) (function call)
| pler, ... en) (primitive function call)
| if e1 then e, else e3 (conditional)
case e of
| nil = es (list-case expression)
X . rs—=e€3
| €1 :eq (cons)
| = (identifier)
| ¢ (constant)

FIG. 1. Expression syntax

3.1 Semantic rules

It is possible to reason about time-complexity of a closed expression by reasoning directly
about the ‘steps’ in the evaluation of an expression. The problem with this approach is that it
requires us to have the machinery of an operational semantics at our fingertips in order to reason
in a formal manner. The degree of operational reasoning necessary can be minimized by an
appropriately abstract choice of semantics. In particular, simplicity motivates the choice of a
call-by-name calling mechanism—shortcomings and improvements to this model are discussed
in Section 10. The semantics is defined via two types of evaluationrule: one describing evaluation
to head-normal-form, and one for evaluation to normal-form. Including rules for evaluation to
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normal-form is somewhat non-standard for the semantics of a lazy language. To talk about
the complete evaluation of programs it is usual to define a print-loop to describe accurately the
top-level behaviour of a program. Since our motivation is the analysis of time cost, the rules for
evaluation to normal-form give a convenient approximation to the printing mechanism (since in
the case of non-terminating programs we would need to place them in some ‘terminating context’
to describe their time behaviour anyway).

eiler/z1-en;/2n} —a u

Fun
filer, ... en;) —a u
) €1 —m €1 - €n, —ucr (v =apply,(pi,c1,...,¢n,))
Prim
piler, ..., eny) —a U
e1 —g true ez —, u e —y false ez —, u
Cond -
if e1 then ey else e3 —, u if e1 then e else ez —, u
€1 —n V1, €2 —N U2
Cons - -
€1 : ey —n U] Vg €1 €3 —g €1 1 €2
Const
c—, C
e1 —u Nl es —, u e1 —mep ey ezlen/x e/ust —, u
ey of
Case case € 9 case €7 of
nil = e» —, U nil=e» —, U
T . xrs=e3 X .rs=e€3

FIG. 2. Dynamic semantics

We define the operational semantics via rules which allow us to make judgements of the form:
e —y v and e —4 h . These can be read as ‘expression e evaluates to normal form v’ and
‘expression e evaluates to head-normal form? A’ respectively. There is no rule for evaluating a
variable—evaluation is only defined over closed expressions. These rules are presented in Fig. 2,
using meta-variable « to range over labels /7 and N. Normal-forms, ranged over by v, v, va
etc. (sometimes referred to simply as values) are the fully evaluated expressions i.e. either fully
evaluated lists, or atomic constants (¢):

vi=c| v s,

Head-normal forms, ranged over by h, h1, hs etc., are simply the constants and arbitrary cons-
expressions:
hi=cle;:es.

A brief explanation of the semantic rules is given below:

2The use of the term head-normal-form is not to be confused with the corresponding notion in the (pure) lambda calculus; we use this term as a first-order
manifestation of the notion of weak head-normal-form from the terminology of lazy functional languages [31].
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o To describe function application we perform direct substitution of parameters. We use the
notation e{e’ /z} to mean expression e with free occurrences of 2 replaced by the expression
e’ (see comments below).

e We assume the primitive functions are strict functions on constants, and are given meaning
by some partial function applyp. Since the constants are included in the head-normal forms
is it sufficient to evaluate the arguments to primitive functions with —,. In a lower-level
semantics in which errors (eg. ‘divide-by-zero’) are distinguished from non-termination this
choice would be significant, but here it makes no difference.

o To evaluate a case-expression either to normal or head-normal-form, we must evaluate the list-
expression e to determine which branch to take. However, we do not evaluate the expression
any further than the first cons-node.

Notation

We summarize some of the notation used in the remainder of the paper.

Variables and substitution A list of zero or more variables x1, . . .z, will often be denoted Z,
and similarly for a list of expressions.

We use the notation e{eq, ...,e,/21,. .., Z, } to mean expression e with free occurrences of
xi,...,Z, simultaneously replaced by the expressions ey, .. ., €,. In a case expression

case ey of
nil= e»
T .Irs—=€3

the variables z and x s are considered bound in e3. A formal definition of substitution is omitted,
butis standard (see e.g. [4]). We will also assume the following substitution property (the standard
‘substitution lemma’): if variables Z and ¥ are distinct, then

plq/EH{7/ g} = p{r/gHa{7/ g}/ T}

where ¢{r/y} = {7/}, ..., ¢u {7/}

The idea of a context, ranged over by C, C1, etc. will be used (informally) to denote an
expression with a ‘hole’, [ ], in the place of a subexpression; C'[e] is the expression produced by
replacing the hole with expression e. Generally we will assume that the expression is closed, and
so this notation can be considered shorthand for substitution.?

Relations If R is arelation, then we will usually write @ R b to mean (a, b) € R. A relation R
is a preorder if it is transitive and reflexive, and an equivalence relation if it is also symmetric.
Syntactic equivalence up to renaming of bound variables will be denoted =. The maximum
relation on closed expression will be denoted by T.

4 Deriving time-rules

We wish to reason about the time cost of evaluating an expression. For simplicity we express this
property in terms of the number of non-primitive function calls occurring in the evaluation of the
expression.

3 Formal definitions usually allow free variables in e to be captured by C'. We will revert to the substitution notation when we need to be more formal, and
consider the special case of variable capture explicitly.
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For the operational semantics given, the evaluation process is understood in terms of (the
construction of) a proof of some judgement according to the semantic rules. The above property
of an evaluation corresponds to the number of instances of the rule Fun in the proof of € —, u
for some closed expression e, whenever such a proof exists for some . In order to extract rules
for reasoning about this property, we rely on some basic properties of the semantics:

e The rules describe deterministic computation: if e —, u and e —, v’ thenu = v’

o Proofs are unique: if A and A’ are proofs of ¢ —, u then A and A’ are identical.

In the following let S, .57 . .. range over judgements of the form e —, u , and let A, Aq ...
range over proofs of judgements.

DEFINITION 4.1
Let T'(A) be the number of instances of rule Fun in a given proof A.

Since all proofs are finite,* assuming the inferences are labeled, we can define 7" inductively in
the structure of the proof, according to the last rule applied:
Ay A
S
_ 1+ T(A1)+ -+ T(Ag) ifr=Fun
- T(A) + -+ T(Ag) otherwise.

To define equations for reasoning about time we can abstract away from the structure of the
proof, and express this property in terms of the structure of expressions, since the last rule used
in the proof of some judgement S is determined largely by the expression syntax. Using this
principal we define equations for (e)N, the time to compute the normal-form, and {e) H, the time
to compute head-normal-form of expression e. The rules for () N and (}H are given in Fig. 3.

When we write {¢)* = M we mean that this is provable from the time rules, together
with standard arithmetic identities. Since we do not include an axiomatization of integers and
their addition, this statement is not completely formal, but will be sufficient for non-automated
reasoning.

The rules are adequate in the following sense:

PROPOSITION 4.2
For all expressions ¢, if A is a proof of e —, u , for some u, then

T(A)=n < ()" =n

The proof of this proposition is a straightforward induction in the structure of A. Notice that
the premiss of the proposition makes a termination assumption about the evaluation of e. In this
sense the time rules are partially correct. We could then refine this correctness statement further
by treating run-time errors separately from non-termination.

5 Direct time analysis

The time rules in Fig. 3, although simple, are sufficient to reason directly about the cost of
evaluating closed expressions in this language. We illustrate the utility of this approach with

4Proofs correspond to terminating computations; our calculus will therefore allow us only to conclude time-properties under a termination assumption. For a
further discussion of this point see [36].
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(filer, .. en))* = 14 (ei{er/ar, ... eni/on,})”

(pler, .. ex)® = (en) 4+ (er)?
. o H e2)” if e; —p true
(it o1 then ¢ else ¢3) = fa)" 4 { ge:&ia if e —; false

case ey of
nil = e = +{ (e2)” if e1 — nil

Z:xs=e3 (es{en/z, er/2s})™ if e1 —p en @ e

= (en) + ()

FI1G. 3. Time rules

some small examples. The examples are chosen to emphasize features of non-strict evaluation,
rather than to present interesting asymptotic analyses, for which the reader may consult a standard
text on the analysis of algorithms (e.g. [20, 2]) or associated mathematical techniques (e.g. [15]).

To reason about complexity we consider expressions containing some non-specified input
value (i.e. normal-form), which we will denote by a (meta-)variable (written in an italic font). We
sometimes also allow meta-variables to range over arbitrary expressions, although usually this is
more awkward since the calculus is not compositional.

5.1 Example

Consider the functions over lists given in Fig. 4.

case xs of
nil =ys
h:t =-h:append(t,ys)
case xs of
nil =nil
h:t =append(reverse(t), h:nil)
head(xs) = case xs of
nil =>undefined
hit =h

append(xs,ys)

reverse(xs)

FIG. 4. Some list-manipulating functions
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Now we wish to consider the cost of evaluating the expression
head(reverse(v))

which computes the last element of some non-empty list-value v = v : v4;. Applying the
definitions in Fig. 3

(head(reverse(v)))N =1+ (reverse(v))H + (eh)N

where reverse(v) — €y, : €; for some ep, e;. It is not hard to show that ey, is a value (using the
fact that v is, and by induction on its length), and hence that (e h>N = 0. Now since v = vp, : vy,
and hence v —4 vy : v; we have that
(reverse(v))”!
= 1+ (U)H + (append(reverse(vy),vp, :nil))H
= 1+ (append(reverse(vy),vp, :nil))H
= 141+ (reverse('vt))H
(niI)H, if reverse(vy) — nil

+q (e, : append(e;,vp :niI))H,

if reverse(v;) —y €}, @ €}

= 2+ (reverse(v;))”
We now have the recurrence equations parameterized by the input value:

i 1

(reverse(v : vs))H = 2+ (reverse(vs)

(reverse(nil)
>H

whose solution is (reverse('v))H = 1 + 2n, where n is the length of the list v. Thus we have a
total cost of
(head(reverse(v))) Y = 2(1 + n)

where n is the length of the list v, i.e. linear time complexity (compare with quadratic complexity
. N
for the call-by-value reading, and for (reverse(v))™ ).

5.2 Example

Here we present the example from the introduction (in the syntax we have defined) which shows
the rather pleasing property that one can compute the smallest element of a list in linear time
by taking the first element of the (insertion-) sort of the list. The equations in Fig. 5 define an
insertion-sort function (isort).

The time to compute the head-normal-form of insertion-sort given some list-value (normal-
form) v is easily calculated from the time rules. First consider the insertion function. Any
exhaustive application of the time rules together with a few minor simplifications allow us to
conclude that for integer valued expressions €1, and integer-list valued expressions ez,

(insert(el,eg))H =1+ (62>H
if eg —g nil

+{ eV + (W) i b—yh:t .
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isort(xs) = case xs of
nil =>nil
h:t =insert(h, isort(t))

insert(x,ys) = case ysof
nil =x:nil
hit =ifx <h
then x:(h:t)
else h:insert(x,t)

FIG. 5. Insertion sort

Now consider computing the head-normal-form of insertion-sort applied to some list of integers
Up :...: w1 :nilwhere n > 1. To aid notation, let V; denote the list nil and, for each ¢ < n, let
Vit1 denote the list v; 41 : V;.
(isort(Vo))H =1
(isort(Vi_H))H
= 1+ (insert(v; 41 isort(V;))
= 141+ (isort(Vi))H
N 0 if isort(V;) —¢ nil
(UZ'+1>H + (h)H if isort(V;) —x h it .

>H

Clearly (‘UZ'+1>H = 0. A simple induction in # establishes that if isort(V;) —x h : ¢ then
(h)H = 0 also. This leaves us with the simple recurrence

(isort(Vo)) ™ 1
(isort(Vi_H))H = 2+ (isort(V})

>H

giving (isort(Vn))H =2n+ 1L

5.3  Example

Consider the following (somewhat non-standard® ) definition of Fibonacci:

fib(n)
f(n, r)

f(n,0)
if n=0 then 1 .
elser + f(n-1, f(n-2,0))

5Note that under a call-by-value semantics fib is divergent for any n > 0.
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Consider the time to compute an instance of fib:

(fib(k))N = 1+ (f(k, 0))
(i(k, )

_ if k=0 then 1 N
o else 0 + f(k-1, f(k-2,0))
if k=0 — true

{ 0+ f(k-1, 1(k-2,0))"  if k=0 —, false

if k=0 — true
f(k 1,1(k-20)" if k=0 —, false .

Instantiating & we have

(0,00 = 1 (5.1)
1, 0N = 14 (10, 11-2,0))"
= 2 (5.2
(e +2,00 = 1+ (i(k+1,1k,0))"
= 1+ 1+ (ko)™ (5.3)
+ (itk, 1k — Lop) ™. (5.4)

Now (itk + 1,0)" = 1+ (i(k, f(k — 1,0))"

(i(k,0))Y

+
fk + 2,00\ =
(f( )) bkt 1 o)

(5.5)

Equations (5.1), (5.2) and (5.5) give a linear recurrence-relation that can be solved (exactly) using
standard techniques e.g., [15]; the asymptote for (f(k, 0))N has the form:

a(14+v5)/2)% + b(1 — V5)/2)*

for some constants a and b.

6 A theory of cost-equivalence

6.1 Motivation

The previous example subtly illustrates some potential problems in reasoning about cost using
the equations for ()H and ()N The use of the time rules in the previous examples follows a
simple pattern of case analysis (instantiation) and simplification, leading to the the construction
of a recurrence by a simple syntactic matching. In the simplification process, it is tempting to
make simplifications which are not directly justifiable from the time rules.

The potential problems stem from the fact that if we know that two expressions are extensionally
equivalent, e; = eo, it is clearly not the case that (€1>N = (62)N in general since we expect,
with any reasonable definition of extensional equivalence, that an expression and its normal-form
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(supposing one exists) will be equivalent. More generally given any context C', we expect that
C[e1] = Clea], but not that (Cle1])® = (Clez])™ in general, so ordinary equational reasoning
is not valid within the time rules. Similarly if <61>H = <62>H then we cannot expect in general
that (Cley])” = (Clea]) .

However, even in the last example above we have used simple equalities such as (line 5.4)
(k+ 1)-1 = k in precisely this way (albeit benignly) to simplify cost expressions in order
to construct a recurrence.® In this instance the simplification is obviously correct, but with the
current calculus we cannot justify it.

To take a less contrived example, where the limitations of the method are more significant,
consider the quicksort program given in the introduction. The following equations (Fig. 6) define
a simple functional version of quicksort (gs) using auxiliary functions below and above, and
append (as defined earlier) written here as an infix function 4+4-. Primitive functions for integer
comparison have also been written infix to aid readability. The definition for above has been
omitted, but is like that of below with the comparison ‘>’ in place of ‘<’.

gs(xs) = case xs of
nil =-nil
h:t =gs(below(h,t))
-+ (h : gs(above(h,t)))

below(x,ys) = case ys of
nil =-nil
h:it =if h < x then h : below(x,t)
else below(x,t)

FIG. 6. Functional quicksort

The aim will be fairly modest: to show that quicksort exhibits its worst-case ((n?) behaviour
even when we only require the first element of the list to be computed, in contrast to the earlier
insertion sort example which always takes linear time to compute the first element of the result.
First consider the general case:

0 if e — nil

(ase) = 1+ ()" + gs(below(y, 2)) " if € —y yiz
+H(y:gs(above(y, 2))). m Y

From the time rules and the definition of append, this simplifies to

0 if € — nil 6.1
14+ (qs(below(y,z)))H ©.1)

if e =5 yiz .

(qs(e))H =1+ (6)H + {

Proceeding to the particular problem, it is not too surprising that we will use non-increasing
lists v to show that (qs('v)}H = Q(n?). Towards this goal, fix an arbitrary family of integer

6Spclling this simplification out, we have an application of a primitive function (subtraction) to the (meta) constant ‘k + 1’ (i.e., the constant one larger than
the meta-constant k), which we simplify to ‘k’.
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values {v; };>0 such that v; < v; whenever i < j. Now define the family of non-increasing lists
{A;}i>0o by induction on i:
AO = il

Ary1 = Vp41: Ag.

The goal is now to show that {qs(Ay, ))H is quadratic in n. Instantiating the general equation (6.1)
in the ‘interesting’ case when e = A4 for some & > 0 we obtain:

(as(Ar42))"
= 1+ (Ak+2)H + 1 + (as(below(y,z))
where Ajy2 —wu Y2

>H

= 2+ (gs(below(vg2,Apr1) "
At this point we can only further manipulate the expression (gs(below(vj 42, A% +1 )))H
{as(below(vg 42, Ap11)) "

= 1+ (below(v42.4541))" + 1 + (as(below(y,2))
where below(vg42,4k+1) —u Y2

>H

= 3+ (qs(below(vg 41 below(v o, Ax)) " .

So now we have the equation
H H
(as(Ar+2))" = 5+ (as(below(vy41.below(vg +2,4%))) .
This should be sufficient to convince the reader that quadratic-time behaviour is a possibility,
since in the successive recursive calls to gs (with respect to this time equation) we can see that
the arguments become increasingly complex, and it becomes increasingly costly to compute their
respective head-normal-forms.

With the current calculus we can do little more than give this intuition. What we are not able
to do is to simplify or generalize the calls to below to obtain a simple recurrence equation. We
will return to this example.

The remainder of this section is devoted to developing a stronger notion of equivalence of
expressions which respects cost, and allows a richer form of equational reasoning on expressions
within the calculus. We will conclude the above example in Section 7.3.

What is needed is an appropriate characterization of (the weakest) equivalence relation =,
which satisfies

e=y e = (Cle])” = (CleN™.

To develop this general ‘contextual congruence’ relation, we use a notion of simulation similar to
the various simulations developed in process algebras such as Milner’s calculus of communicating
systems [26]. In the theory of concurrency a central idea is that processes that cannot be
distinguished by observation should be identified. This ‘observational’ viewpoint is adopted in
the ‘lazy’ A-calculus [1], where an equivalence called applicative bisimulation is introduced. In
the lazy A-calculus, the observable properties are just the convergence of untyped lambda-terms.
For our purposes we need to treat cost as an observable component of the evaluation process, and
so we develop a suitable notion of cost (bi)simulation.
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6.2 Cost simulation

The partial functions — and — together with ()N and (}H are not sufficient to characterize
completely the cost behaviour of expressions in all contexts, since we need to characterize possibly
infinite ‘observations’ on expressions which arise in our language because of the non-strict list-
constructor (c.f. untyped weak head-normal-forms in [1]).

Roughly speaking, the notion of equivalence we want satisfies:

e and €' are equivalent iff (¢)” = (') and their head-normal-forms are either
1. identical constants, or
2. cons-expressions, whose corresponding components are equivalent.

Unfortunately, although this is a property that we would like our equivalence to obey, it does not
constitute a definition (to see why, note that we not only wish to relate expressions having normal-
forms, but also those which are ‘infinite’), so following [26] we use a technique due to Park [30]
for identifying processes—the notion of a bisimulation and its related proof technique. We will
develop the equivalence relation we require in terms of preorders called cost simulations—we
will then say that two expressions are cost equivalent if they simulate each other.

To simplify our presentation we add some notation:

DEFINITION 6.1
If R is a binary relation on closed expressions, then R * is the binary relation on head-normal-forms
such that
(R R h') < either h=h'=c
or h=e1:e, h =¢€| :¢e\and
€1 R e}, andes R €.

DEFINITION 6.2
The cost-labelled transition, in,, t € N is defined

1 def. o
e —, u = e—, uand(e)” =t.

Now we define a basic notion of cost simulation, by analogy with Park’s (bi)simulation:

DEFINITION 6.3 (Cost Simulation)

A binary relation R on closed expressions is a cost simulation if, whenever e R e’
e—t>Hh = (¢ —t>H A and h R ).

DEFINITION 6.4
For each relation () on closed expressions, define F () to be the relation on closed expressions
that relates e and e’ exactly when

€Sy h = (e Ly h' andh Q' B').
Now we can easily see that

¢ F is monotonic, i.e., R € S = F(R) C F(S)
e S is a cost simulation iff S C F(S) (since S C F(S) means that Vey, ez, €15¢3 =
er F (S )62 , and by expanding the definition of /' we recover Definition 6.3).
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DEFINITION 6.5
Let < denote the maximum cost simulation

LH{s:8C 7))

PROPOSITION 6.6
< is the maximal fixed point of F.

PROOF. Follows from the Knaster—Tarski fixed point theorem, by the fact that F is a monotone
function on a complete lattice. [ |

With these results we have the following useful proof technique: to show that e < e’ it is
necessary and sufficient to exhibit any cost simulation containing (i.e. relating) the pair (e, e’).
This technique will be illustrated later in the proof that < is a precongruence.

6.3 Expressing —y in terms of —y

The above definition of cost-simulation is described in terms of evaluation to head-normal-form
only. For this to be sufficient to describe properties of evaluation to normal-form we need
some properties relating —, and —. The following property allows us to factor evaluation to
normal-form through evaluation to head normal form, while preserving cost behaviour:

PROPOSITION 6.7
For all closed e, €’
® £ —nyC < € —gC.

oe—t>Nv <= ethandh ngandtl + t5 =t for some h.

And finally we have

LEMMA 6.8
Ife < ¢ thenife —t>N u then €’ —t>N u.

The proofs are outlined in Appendix A.

Remark The (first) implication in the lemma cannot be reversed. For example, if | is an identity
function, then the expressions I(nil):nil and nil:l(nil) take the same time to reach identical normal
forms but are not cost simulation comparable.

6.4 Precongruence

Now we are ready to prove the key property that we demand of cost simulation: cost-simulation
is a precongruence, i.e. it is a substitutive preordering (the fact that < is a preorder is easily
established).

Some notation: for convenience we abbreviate some indexed family of expressions {e; : j €
J} by €. Similarly we will abbreviate the substitution {e; /z; : j € J} by {€/Z}, and when, for
allj € J, (¢; Q €}) for some relation ), we write (€ @ €').

DEFINITION 6.9
R is defined to be the relation

R = {(ele/2), e{@/8)) | 5 C FV(e),e < &),
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LEMMA 6.10
R is a cost simulation.

PROOF. Assume that € < €', for some closed expressions €, é’. Abbreviate substitutions {é/Z}
and {€'/Z} by o and o’, respectively, and assume that € is any expression containing at most
variables . Assume that ec —t>H h. The lemma now requires us to prove that ec”’ —t>H h
for some h' such that h $° h’. We establish this by induction on the structure of the proof
of ec — h , and by cases according to the structure of expression e. We give a couple of
illustrative cases:

Observe that < is contained in %, and the result follows.

‘eEf(el...en)‘
Assume that f is defined by f(y1...yn) = €f. Since f(e1...e,)0 = f(e10...€,0), the
last rule in the above inference must be an instance of Fun, and so we must have ¢ {ero/yr -

€no/Yn} t;}q h. We can take variables in Z to be distinct from y; . . . ¥, and so
effero/yi - eno/yn} = (ef{er/y1- - en/yn})o.
Now since (ej{e1/y1 - en/yn})o t;%q h by a smaller proof, the inductive hypothesis gives
(epfer/yr - enfyn})o’ =l B where h R K.
So by rule Fun, together with Definition 4.1 we can conclude that
flerd' ... e 0’) N Y

with A ** A’ as required. ||

THEOREM 6.11 (Precongruence)
If € < & for some commonly indexed families of closed expressions €, €', then for all expressions
e containing at most variables

e{¢/5} < e{é' /).

PROOF. The relation 3, given above, is such that (e{€/Z}, e{é'/Z}) € R whenever € < &’ and e
contains at most variables &. Lemma 6.10 establishes that 3 is a cost simulation, i.e. that R C <,
and so we must also have (e{¢/z},e{€'/2}) €. | |

Although in this case we can see that R is identically <, we express the proof in this way since it
illustrates a general method for establishing cost simulations. Now we can define our notion of
cost equivalence to be the equivalence relation:

DEFINITION 6.12 (cost equivalence)
(:O) = (j N j_l), le

(e1 =y €2) <= (e1 <€) & (e2 X ey)

So two expressions are cost equivalent if they cost simulate each other. Now we have as the main
corollary of precongruence
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COROLLARY 6.13
For all contexts C, and closed expressions € and €', if e =0 e’, then

whenever Cle]] .,

PROOF. « = H, immediate from Theorem 6.11 and the definition of <, viewing a context as
an expression containing a single free variable; &« = N, immediate from Theorem 6.11 and
Lemma 6.8 n

Open expressions In the obvious way we can extend cost simulation to open expressions by
saying that e < ¢’ if for all closing substitutions o, ec < ec’. As a consequence we can show
that, on open expressions,

e<e &ep=ex=eler/z} < e{es/a}.

We can extend the congruence property to open expressions (where free variables may be captured
by the context) by showing that, for any expressions e; and e2 containing at most free variables
x and zs, and for any closed expressions € and €’ such that e; < e

case € of case e of
nil = ¢’ =< nil= ¢’
r.rs=e; T .Ts= €y

Open endedness A statement of cost equivalence involving some function symbol f naturally
assumes a particular defining equation, so strictly speaking, cost equivalence should be parame-
terized by a set of function definitions. The semantic rule for function application is really a rule
schema, but in the proof that cost simulation is a precongruence, it is not necessary to assume
a particular set of definitions. As a result, adding a new function definition (i.e., a defining
equation for a new function name) does not invalidate earlier cost equivalences; furthermore,
the maximality results of the next section imply that such an extension of the language must be
conservative with respect to cost equivalence.

6.5 Cost simulation as the largest contextual cost congruence

We have shown that cost simulation is a precongruence, which was sufficient for it to be substi-
tutive with respect to the time rules. A remaining question is whether it is the largest possible
precongruence with respect to the time rules. i.e. are there expression pairs €, €’ such that in all
contexts C, (C[e]}* = (C[e])* but for which e £ €’?

In this section we outline the result that, under a mild condition on the constructs of the language
(outlined below), < is indeed the largest such relation, i.e.

(VC. Clella= (Cle])” = (C[e])") = e 2 €',

Roughly speaking, we say that two expressions e, e’ are cost distinguishable whenever there
exists a context C' such that (Ce])* # (C[e'])”. A necessary (and, as we will show, sufficient)
condition for the above implication to hold is that every pair of distinct constants in the language are
cost distinguishable. We refer to this as the CD condition. The CD condition is not a particularly
strong one since it is satisfied if, for example, we assume a primitive function providing an
equality test over the constants.
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We prove the above result by exploring the relationship between cost simulation and various
contextual congruences. We summarize these results below, and refer the reader to Appendix B
for more details.

e We define a cost congruence preorder <. between closed expressions such that e; <. es
if and only if for all contexts C, Cle;] F(T) Clesz]. i.e. if the results of evaluation to
head-normal-form are produced in the same number of steps, and the results have the same
‘outermost’ form (see Definition 6.4).

o We show that < = <,.

e We define a pure cost congruence preorder <,. which does not take into account the actual
head-normal-forms produced: e; <,. e ifand only if for all contexts C', whenever C[e] —t>H
uy then there exists us such that Ces] —t>H us.

e Assuming the CD condition, we show that <. = <,.. As a corollary, we have that

(VC. Cler] lu= (Clea))” = (Clea])) = € < ¢’. The extension of this to include
evaluation to normal-form is straightforward.

7 Proof principles and an axiomatization of cost equivalence

The definition of cost simulation comes with a useful proof technique for establishing instances.
In the first part of this section we outline some simple variations of this technique.

In the second part of this section we show that cost equivalence subsumes the time rules (i.e.can
be viewed as the basis of a time calculus independently) by giving a complete axiomatization of

. . Lot
cost equivalence with respect to the cost-labelled transition —.

7.1 Co-induction principles

We motivated the theory of cost equivalence with a need for substitutive laws (i.e. cost-equivalence
schemas) with which to augment the time rules. Some example laws are given below:
PROPOSITION 7.1

(Z) p(Cl,...,Cn) ) leapply(pa Cl,...,Cn) =6
(”) (61 + 62) + €3 =0 €1 =+ (62 =+ 63);

case eg of
case nil= e of
(4i1) Y:ys=es
nil=e3
T xS= €y
=0
case eg of
nil=-( case e; of
nil=e3
T xs=reyq)
y:ys=( case ey of
nil=e3
T xs=req)
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The proof of Theorem 6.11 illustrates a general technique for establishing cost-equivalence
laws such as the above, where we construct a suitable relation (i.e. containing all instances of the
law), and show that it is a cost simulation. Recall from the previous section the functional F(_):
for each relation ) on closed expressions,

eF(Q) e < eSyh = (e Sy h' andh Q')

The definition of < as the maximal fixed point of F(_) comes with the following useful proof
technique, which following [27] we call co-induction:

To show thate < ¢’ it is necessary and sufficient to exhibit any relation R containing (i.e.
relating) the pair (e, €’) and such that R is a cost simulation (i.e. R CF(R)).

Some minor variations of this technique also turn out to be useful.

PROPOSITION 7.2
To prove R is a cost simulation, it is sufficient to prove either of the following conditions (cost
simulation modulo S, and cost simulation up to cost equivalence respectively):

1. R CF(RUS) for some cost simulation S.

PROOF. 1. R CF(R U S) implies

RU=< C F(RUS)U=
= F(RUS)UZF(X) (Risaf. p)
C F(RUSUX) (monotonicity)
= F(RUX) (SC=x)

which implies that (RU <) C < and hence R C <.

2. For arbitrary relations A and B it is not hard to show that
F(A); F(B)CF(4;B) .
Using the fact that =, is transitive, and a fixed point of F(_) we can show that
(=0 F (=05 Bi=);i=q) SF(=¢; B =) -
Now R CF(=; R; =) implies

=n =y =0 F(=pi Ri=4)i=¢

-
S Fl=o; =)
Hence (=y; R; =,) C=, and since =, is greater than the identity relation, R C <. | |

Method (i) is typically used with S taken to be the relation of syntactic equivalence. Method (ii)
can be viewed as a ‘semantic’ co-induction principle. For example, part (iii) of Proposition 7.1 is
proved by showing that the relation containing all instances is a cost simulation modulo syntactic
equivalence. This goes through by a simple case analysis on the possible outcomes of the
conditionals, and is left as an exercise.
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7.2 An axiomatization of cost equivalence

The language is too expressive to expect a complete set of cost equivalence laws. However we
can give a set which is complete with respect to the time rules in a sense that we will make precise
below.

The key to this axiomatization is the use of an identity function to represent a single ‘tick’ of
computation time.

DEFINITION 7.3
Let | be an identity function given by a program definition I(x) = x. For any integer n > 0, write
I" (exp) for the expression given by n applications of the function | to exp:

|(. .. |( exp) .. )
S——

n
We will write I' (exp) as simply I(exp).

In Fig. 7 we state a set K of cost-equivalence laws. We write

Fun.| filer, ... en,) =¢ Meider/z1---en;/2n,})
Prim.| piler, .., 1(g), ... en,) =¢ Ipiler,...,€, ... €ny))
Prim pi(ci,. . cny) = v ifv=apply,(pi,c1,...,cn,)
Cond.| if I(e1) then ey else e3 =,y I(if €1 then e5 else ez)
Cond.true if true then €5 else e =, €3
Cond.false if false then €5 else e3 =, e3
case I(ey) of case e; of
Case.l nil= es =4 | nil = es
r:.xrs=e€3 Tr.rs—=e3
case nil of
Case.nil nil= €2 =y €32
X .xrs—=e€3
case €j : €; of
Case.cons nil = es =, esfen/z, e;/as}
X .xrs—=e€3

FIG. 7. Cost-equivalence laws K

Fr el =y €2
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if e; = €9 is provable from the cost-equivalence laws K together with the facts that =,
is a congruence relation (i.e. reflexivity, transitivity and substitutivity rules) and the following
tick-elimination rule:

I(e1) = 1(e2)

€1 = €2

l-elim

Now we have the following soundness and completeness results for the system Fx , with respect
to the cost-labelled transition relation —t>H:

THEOREM 7.4 (completeness)

For all closed expressions e, if ¢ —, h then Fg ¢ =, I"(h).

The proof is given in Appendix A

THEOREM 7.5 (soundness)
For all closed expressions €, and head-normal-forms A1, if

b e =4 1" (h1)
then e =, hs for some hs such that Fx Ay =4 ha.

PROOF. By definition of I, and the fact that h is a head-normal-form, "™ (hy) 2, hi. By
definition of cost equivalence it follows that e 2., hy for some hy such that hy =y ha It
remains to show that this cost equivalence is provable:

el hy = Fg I"(hy) = € (Theorem 7.4)
= kg I"™(h1) =4 1"(h2)
= l_K hl I() h2 (I—ehm)

7.3 Example (continued)

Now we conclude the example from the beginning of Section 6.1, illustrating the use of cost
equivalence, together with its proof techniques and axiomatization.

Recall the definition of quicksort (gs) from figure 6. From the time rules and the earlier analysis
of the append function we obtained the time equation

(qs(e))H =1+ (e)H

n 0 if e — nil
1+ (qs(below(y,z)))H if € —yyiz.

Then we considered the special case of non-increasing lists {Ai}iZOa and we showed that
H H
(as(Ag42))" = 5 + (as(below(vy 41, below(vg42,4r))) " .

The key to showing that (qs(A, ))H is quadratic in 7 is the identification of a cost equivalence

which allows us to simplify a general instance of below. Define the family of lists { A{ }i>0,a>0
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inductively as follows:”
AS = 1%(nil)
*(vgp41 @ AD).

a

k41
So the list-valued expression Af is just like A; except that each cons-cell (or nil) that is needed
takes a evaluation steps to produce.

PROPOSITION 7.6
Foralla > 0,and ¢, j suchthat 0 < 5 <2,

below(v;, Af) =, A;»H'l.

PROOF. We sketch two proofs of the proposition. The first illustrates the basic cost-simulation
proof techniques. Cost-simulation proofs are quite low level since they reason directly from the
operational semantics. The second proof is more ‘calculational’ in style, and serves to illustrate
the practical application of the axiomatization of cost equivalence.

1. We construct a family of relations containing all instances of the proposed cost equivalence,
and show that each member (and hence their union) is a cost simulation. For eachz > 0
a > 0,let X be the symmetric closure of the following relation:

{(filterAz.z < v;, A}’),A}Hl) | j <i}

Now it is sufficient to show that each X' is contained in a cost simulation, since this implies
that their union is also contained in a cost simulation. To do this we show that X is a cost
simulation modulo identity, i.e., that X; C F (XU =). Each pair of related elements in X
has the form (below(v;, Af), AJ‘»’H) (or vice versa). We proceed by cases according to the

value of j. Suppose 7 = 0. Then from the definitions we have that below(v;, Af) ai%, nil and

Att ai%q nil, and we are done. Suppose j = k + 1 for some £ > 0. Then by calculation

from the definitions

242
below(v;, Ag ) +—>; Vp41 : below(v;, Af)

1 2(a+1) 1
AZ‘L — Vg1 :AZ"’ .

Now the heads are related by the identity, and the tails by X', so the results are related by
(XfU =) and we are done.

2. By induction on j, using the cost equivalence laws K (Fig. 7).
Base: j = 0

below(v;, A§) = Il(case Ajof...)
=y I(1%(case Ag of...))
=y 1°Finil)
= Agth

7Rccalling from earlier in the section that | is just the identity function I(x) = x, and 1™ ( e) denotes 7 applications of the identity function to e, with the
convention that IO(e) is just e.
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Induction: j =k + 1

below(v;, Ay ;) = lcase Af,, of ..)
=y 19"l (case vp41 : Ad of ...)
=0 12+ (if v; < V41 then vg 1 below(v;, A%) else . . )
=y 19" (g 41 below(v;, AL))

=y 1T (g4 :AZ'H ) (Hypothesis)
_ Aa+1
= k41

Remark While a proof using the cost-equivalence laws and simple induction may be preferable,
the proof method of constructing a cost simulation is strictly more powerful—for example, it
allows the proposition be generalized to include possibly infinite non-increasing lists (although
this generalization is not relevant in the context of the sorting example).

Now we can return to quicksort. We consider the more general case of <qs(A3»1 )> . Considering
the cases when 7 = 0 and j = k£ 4 1, and instantiating the general time equation gives

(as(Ag)™ = 1+ (4g)"
= 14a
<qs(Az+1)>H = 1+ <Az+1>H + 1 + (qs(below(vg+1 ,AZ))}H

2 + a + (gs(below(vg+1 ,Az)))H.
We can simplify the right-hand side by the proposition, to give

H H
(as(diyn)” =2+ a+ (as(A;™h) "
Again the recurrence is easily solved; a simple induction is sufficient to check that

n(n +5)

anH _
(as(A)” = 3

+a(n+1)+1.

Since the A,, are just A%, we finally have

H_ n(n +5)

1.
7 +

(as(4,))

8 Higher-order functions

One advantage of a simple operational approach to reasoning about programs is the relative ease
with which we can handle higher-order functions. In this section we show how the time rules
can be easily extended to cope with the incorporation of the terms and evaluation rules of the
lazy lambda calculus [1]. The only potentially difficult part is the extension of the theory of cost
equivalence. We sketch how the precongruence proof for cost simulation can be extended, with
few modifications, to handle lambda terms and their application.

8.1 The lazy lambda calculus

We consider an extension to the language with the terms and evaluation rules of the lazy lambda
calculus[1, 29]. The lazy lambda calculus, A, shares the syntax of the pure untyped lambda
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calculus, but has an operational semantics which is consistent with implementations of higher-
order functional languages, namely, there is no evaluation ‘under a lambda’.

The usual definitions of free and bound variables in lambda terms apply, and we do not repeat
the definitions here. The evaluation rules for application and lambda terms are given below:

lambda Az.e —, Azx.e

e1 —g Az.e efea/z} —, u

apply
€1 €2 —, U

Remark Notice that we do not evaluate under a lambda even in the case of evaluation to ‘normal-
form’. This is consistent with the printing mechanisms provided for higher-order functional
languages that allow functions to be the top-level results of programs. However, in the sequel we
focus purely on the — relation.

In the analysis of cost we choose additionally to count the number of times we invoke the apply
rule in the evaluation of a term. The extension of the time rules is completely obvious:

(Az.e)® = 0
(e1€2)* = 1+ <€1>H + (ef{ea/z}), if €1 —p Azee .

8.2 Applicative cost simulation

We will sketch the following:

o the extension of the definition of cost simulation to applicative cost simulation;

o the proof that applicative cost simulation is a precongruence.

The extension of the definition of cost simulation to handle the case where an expression
evaluates to a lambda expression follows the definition of applicative (bi)simulation [1].

DEFINITION 8.1
If R is a binary relation on closed expressions, then R* is the binary relation on lambda

expressions such that (Az.e; R* Ay.ez) if and only if for all closed expressions e, (Az.e1)e R
(Ay.e2)e

As in Definition 6.5 we define applicative cost simulation as the maximal fixed point of a
monotone function: For each binary relation R on closed expressions, define the relation A(R)
by

e AR) e < if e Sy h
then ¢ . h' for some b’

such that h(R* U RM)A'.
Now we say that a relation S is an applicative cost simulation if S C A(S).

DEFINITION 8.2 (Applicative cost simulation)

Let C denote the largest applicative cost simulation, the maximum fixed point of \A(-), given by

U{S: 5 C A(9)}
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It is again straightforward to show that C is a preorder. We prove that C is preserved by
substitution into arbitrary (closed) contexts by a direct extension of the proof of that for <
(Lemma 6.10 and Theorem 6.11). As before we construct a relation which contains C and all
closed substitution instances and show that it is a cost simulation.

THEOREM 8.3 (Precongruence II)
If € C € for some commonly indexed families of closed expressions €, €', then for all expressions
e containing at most variables

e{¢/5) C e{e' /).

The proof is sketched in Appendix A.

Again the use of the term congruence could be challenged since we do not consider open
expressions whose free variables are captured by the context. As before we can extend applicative
cost simulation to open expressions e and ¢’, by saying e C ¢’ if ec C eo’ for all closing
substitutions o. It is then easy to show that, for example, Az.e C Az.e’.

9 A further example

In this section we present a final example. It gives a good illustration of the use (and proof) of
cost equivalence in the derivation of a time property. The reader is invited to attempt an analysis
without the use of cost equivalence.

9.1 Maxtails

Figure 8 defines some functions including max, which computes the first element, according to
dictionary order, of a list of words. Words are represented as lists of characters. max employs an
auxiliary binary comparison on words, dmax, which in turn employs a primitive function precedes
which tests if one character precedes another.

Two abbreviations have been adopted to aid presentation: parentheses have been elided in the
application of unary functions, and a function name f (n-ary) written directly denotes the obvious
abstraction Azy. ... Azp f(z1 ... 2y).

In what follows we will denote words just by the concatenation of the elements (so, for example,
aab represents the list a:a:b:nil). We can thus illustrate the functionality of dmax by saying that
dmax(a,aa) —» a and dmax(aa,ab) — aa.

The object of the example is the function maxtails, which computes the dictionary maximum
of the non-empty fails of a list. For example, the tails of aba are aba, ba and a, of which a is the
‘maximum’. The objective is, at first sight a modest one. We wish to show that maxtails can take
quadratic time (in the length of the list argument) to produce a normal form.

The quadratic time result is not obvious because of the interaction of the lazy evaluation order
and the (lazy) lexicographic ordering, which very often gives good performance. For example,
maxtails is linear on the following classes of lists:

o lists of strictly ‘decreasing’ elements eg. abcde...,
o lists of strictly ‘increasing’ elements, eg. zyx..., and

e stationary lists, eg bbb....

The proofs of these properties are left as exercises.
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maxtails xs

max xs

dmax(xs,ys)

tails ys

foldr(f,b,xs)

max (tails xs)

case xs of
nil =>undefined
h:t =foldr(dmax,h,t)

case ys of
nil =nil

h:t =-case xs of

nil =-nil

h’:t' =if h=h’then h: dmax(t’,t)
else if (h precedes h’) then h:t else h’:t

case ys of
nil =nil
hit = (h:t): tails t

case xs of
nil =b
h:t =f h foldr(f,b,t)

9.1.1 Overview

FI1G. 8. Maxtails

The remainder of this section builds a proof of the above quadratic time property. We break
the proof down into a number of distinct steps, each of which illustrates some techniques for
reasoning using cost equivalence.

The first step is to find a simpler representation of the problem via a cost equivalence: we
derive a recursive function and recast the problem in terms of properties of this new function.
The second step is to find a family of lists that will yield the quadratic time result (we just give
some informal motivation at this point). Now, as in the quicksort example, we find a crucial
simplifying cost equivalence relating to this family of lists. Given these steps the final time

analysis is straightforward.

9.2 An equivalent problem

From the cost-equivalence laws, including the case law from Proposition 7.1, we have that

max (tails x) = I(case (tails x) of

nil =-undefined
h:t =-foldr(dmax,h,t))
=y 1*(case xof
nil =-undefined
h:t =-foldr(dmax,(h:t),tails t))
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Now we wish to proceed by analysing the expression foldr(dmax,(h:t),tails t). We derive a recursive
function for the slightly more general expression foldr(dmax,y,tails xs). The function fot we derive
will satisfy fot(y,xs) =, I(foldr(dmax,y,tails xs)). Initially we can satisfy this by defining

fot(y,xs) = foldr(dmax,y,tails xs).

We consider this to be an initial specification of fot, and proceed by transforming the right-hand
side in the manner of unfold fold transformation [12], maintaining cost equivalence:

foldr(dmax,y,tails xs)
= l(case (tails xs) of (unfold foldr)
nil =y
h:t =12 (dmax(h,foldr(dmax.y.t))))
=5 12 (case xs of (unfold tails, case law)
nil =y
hit =12 (dmax((h:t),foldr(dmax,y,tails t))))
=5 12 (case xs of (unfold dmax)
nil =y
h:t :>I3(case foldr(dmax,y,tails t) of...)))
=5 12 (case xs of (case law)
nil =y
h:t =12 (case I(foldr(dmax,y;tails 1)) of...)))
=0 12 (case xs of (fold dmax)
nil =y
h:t =1(dmax((h:t),I(foldr(dmax,y,tails 1)))))
=5 12 (case xs of . (fot spec.)
nil =y
h:t =I(dmax((h:t),fot(y,1))))

So we obtain a recursive definition

fot(y,xs) = Iz(case xs of
nil =y

h:t = I(dmax((h:t),fot(y,t))))

PROPOSITION 9.1
fot(y,xs) =, I(foldr(dmax,ytails xs))

PROOF. The above derivation constitutes a proof, although the fact that this is a proof needs some
further justification, and depends critically on the fact that the steps are cost equivalences—see
[40], but we can also prove it directly by the usual method of showing that it is a simulation. The
details are left as an exercise. [ |
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We are interested in computing the normal-form of maxtails €. From the above cost equivalences,
we have that:

case ¢ of N
(maxtails €)Y = 1+ <I2 nil = undefined >
h:t = foldr(dmax,(h:t),tails t)
case ¢ of N
= 1+ <I nil = | undefined >
h:t = | foldr(dmax,(h:t),tails t)

N
case e of
2+ < nil = | undefined >

h:t = fot((h:t),t)

9.3 A quadratic case

Informally speaking, dmax evaluates enough of its arguments to determine which is the answer.
So the amount of evaluation is bounded by the length of the answer. This suggests that to obtain
worst-case inputs for maxtails, the size of the result should be O(n), where n is the length of
the input. Furthermore, to force dmax to ‘recurse’ often, the various tails of the input should be,
as far as possible, element-wise equal. Inputs of the form a...ab satisfy these requirements— the
result is the input itself, and any pair of tails, eg. aaaab and aab, are element-wise equal up to but
not including the last element of the shorter.

DEFINITION 9.2
For k > 0, let a*b denote the list consisting of k as followed by a single b.
We will show that this family of lists gives rise to quadratic time performance.
The following family of functions will be instrumental in expressing a key cost equivalence

DEFINITION 9.3
The functions { T }kzo are given by the following scheme:

Toxs = xs
Tr41Xs = case xsof
nil =-nil
hit =h:(Tg 1)

For list-valued arguments, Ty, ‘traverses’ its argument up to a depth k. The following properties
of the Ty, follow easily:

PROPOSITION 9.4

1. TO@ =0 |(€)
2. Tp41 (e1:€2) = lle1:Trea).
3. For all expressions e such that e — vy @ ...v; tnil, j > 0,

(Tee)Y =1+ maz(j, k) + ().

Before we state the key cost equivalence we need one technical construction:
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DEFINITION 9.5

A closed expression is element cheap if there exists a set £/’ containing the expression, such that
the following property is satisfied. For alle € E,ife — e : €5 thene =, Ik(v : ') for some
k > 0, some normal-form v and some ¢’ € F.

The intuition behind the definition of element-cheap expressions is that if it evaluates to a cons-
expression, then the head will already be in normal-form, and that this property holds for the tail
of the list, the tail of the tail and so on. The following gives an example, and will be needed later:
PROPOSITION 9.6

If e and e are element cheap, then so is fot(e; ,e2).

PROOF. From the definition we need to construct a set £ containing fot(e;,e2) and satisfying the
condition of the proposition. The set we take is

E = {fot(e,e’) | e, ¢ are element cheap} U {e” | ¢ is element cheap}.

Now assume that fot(e1,e2) evaluates to a cons (otherwise we are done). The remainder of the
proof is a straightforward case analysis on the evaluation of fot(e1,e2), and we omit the details. [ |

PROPOSITION 9.7
For all n, k such that 0 < k& < n, if € is element cheap and e —, a™b, then

dmax(a®b.e) =y Tre =y dmax(e,a* b).

PROOF. We prove the first cost equivalence; the second is similar (but not symmetrical). Since
n > 0 and e is element cheap, then e =, P (a : €’), for some j. Unfolding dmax, and applying
the tick-laws to the outer case-expression:

dmax(a®b.e) =y V4! case a*bof
nil =>nil
ht =ifa = h’ then a: dmax(t’,¢)
else if (a precedes h’) then a:e’ else h':t
Now we show, by induction on k, that this is cost equivalent to Tye.
Base(k = 0): Then a*b is just b:nil, so the above simplifies to

1 if a = b then a: dmax(nil,e’) =, P*l@e)
else if (a precedes b) then a:e’ else b:nil
=¢  le)
=0 To €.

Induction(k = m + 1): In this case a*b is (a:a™b), so the above simplifies to
F+1if a = a then a: dmax(a™b,e’)

else if (a precedes a) then a:e’ else a:a™ b
=, P*! (@admax(@™b,e’)).

Now e’ has normal form a”~'b, and is element cheap (since e is), so we can apply the inductive
hypothesis:
P+l @dmax(@™be’)) =, P+l (@T,ée)
=y P Tm+1(a:e’)
=y Tmt1l (a€))
=y Tm+1€.
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9.4 The final analysis

We now draw the components together to show that maxtails a™b is @(n?). First, assume n > 0.
From the simplifying cost equivalence in Section 9.2 we have that

case a”b of
2+ < nil = | undefined >

h:t = fot((h:t),t)
= 2+ <fot(a”b,a"_1b)>N.

>N

(maxtails a™b

Now we take advantage of our knowledge of the extensional properties of maxtails (without
proof)—in particular, that the normal-form of fot(a™b,a™ b) for any m < n is a™b. In the general
case where n > m > 0 we have that

(fot(a”b,amb))N = 3+ <dmax(amb,fot(a”b,am_lb))>N
= 3+ <Tmfot(a”b,am_1b) >N (Prop (9.6), Prop (9.7))
= 3+m+ <fot(a"b,am_1b)>N (Prop (9.4)).

The case when n > m = 0 is given by direct calculation from the time rules:
(fot(a™b,b)) ™ = 8.

So we can solve this recurrence when n > m > 0 to give

m

(fot(@”b.a™ b)) = (i) +3m +8.
1

So returning to the main problem,
<fot(a" ban~1 b)>N

M) +3(n—1)+8
nn+1)+2n+7.

(maxtails a”b)" =

2
2
1
2

Final remark Some of the intermediate steps are more general than necessary to obtain this
result. In particular the technicalities Definition 9.5—Proposition 9.7 regarding element-cheap
expressions and the properties of dmax could be eliminated by a more direct proof in the final
analysis above, but they help make the result robust with respect to, for example, the order in
which the tails are ‘folded’ together. For example it is an easy exercise to show that replacing
foldr by a ‘fold from the left” does not essentially change this quadratic-time case.

10 Call-by-need and compositionality

The calculus is betrayed by its simple operational origins because it describes a call-by-name
evaluation mechanism, when most actual implementations of lazy evaluation use call-by-need.
For example, consider the definition

average(xs) = divide(sum(xs),length(xs))

where divide is a primitive function, and sum and length are the obvious functions on lists. In
reasoning about the evaluation of an instance, average(e), our method will overestimate the
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evaluation time, because of the duplication of expression e on substitution into the body of
average. Assuming e has a normal-form which is a non-empty list of integers, to compute the
necessary calls to sum and length each cons in the result of e must be computed, but this work
will be performed independently by sum and length using their own copies of e, whereas under
call-by-need this evaluation (and hence its cost) will be shared.

One solution is to work with an operational model that takes into account the sharing of
expressions and evaluations [5]. Unfortunately this may overly complicate the calculus, and
is likely to be impractical—although there are some promising (less general) approaches to
modelling sharing and storage, [3, 25], which may be prove usable.

Another solution is to move towards the compositional approaches mentioned in the introduc-
tion. A suitable interface between the compositional approach in [37] (which differs from that
of [42] in its use of genuine strictness rather than absence information) from and the operational
approach of this paper is via Burn’s notion of an evaluator [10]. An evaluator is an operational
concept which provides a link from information provided by (list-based extensions of) strictness
analysis, to the operational semantics. In particular, strictness analysis [11] will tell us that when
an application of average is being evaluated, it is safe to evaluate the argument to normal-form
(since this evaluation will occur anyway). In terms of our calculus, by taking into account (in
advance) the amount of evaluation that must be performed on the argument, we obtain a more
compositional analysis, and a better approximation to call-by-need, using:

(average(e)) ™ = ()™ + (average(v))” , where € — v .

In this section we describe a new formalization of evaluators appropriate for providing a
smooth interface between compositional and non-compositional (call-by-need and call-by-name)
approaches to time analysis. The development is for the first-order language, although it can be
used within higher-order programs.

10.1 Demands

Burn’s formalization of evaluators is couched in terms of reduction strategies in a typed lambda
calculus with constants. An evaluator is defined, relative to a particular (Scott) closed set of
denotations, as any reduction strategy which fails to terminate exactly when the denotation of the
term is in the set. For example, the leftmost outermost reduction strategy fails to terminate if and
only if the denotation of the term is in the Scott-closed set { L }.

However, the definition of an evaluator is not constructive. Given a Scott-closed set, Burn does
not provide an operational definition of an evaluator for that set.

In the approach we have taken to the operational semantics of the language, issues of reduction
strategy are internalized by the evaluation relations. In order to use the evaluator concept in
reasoning about evaluation cost we need a constructive definition of evaluators. We will define a
family of evaluators, and show how the relations —, and — can be viewed as instances. The
starting point of this definition is a language of demands.

We interpret a demand as a specification of a degree of evaluation, and define a demand-
parameterized evaluation relation which realises these demands. Bjerner and Holmstrom [8]
use a particularly simple language of demands in the context of compositional time analysis.
Their interpretation of a demand only makes sense relative to a particular expression: a demand
on an expression is a representation of an approximation to its denotation. Their language of
demands is too ‘precise’ for our purposes. The language of demands which we use will be
closer to that of, for example, Lindstrom’s lattice of demands [23] or Dybjer’s formal opens
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[14], and our interpretation of demand, as in [14], will be closely related to strictness. The
operational interpretation of demand as an evaluator is, in turn, reminiscent of Bjerner’s definition
of computing an expression to one of its proper evaluation degrees [7].

DEFINITION 10.1
The language of demands, d € D is given by

D=¢c|k|Di::Ds| k4 D1::Dsy | pa.(D) | .

The demand ¢ is the zero-demand which is satisfied by any expression. The demand « is satisfied
by any expression which evaluates to a constant, including nil (we could easily extend the demands
to include demands for each individual constant). The cons-demand )4 :: D is satisfied by any
expression which evaluates to a cons, and whose head and tail satisfy D; and D5 respectively.
We have a restricted form of disjunctive demand for either a constant or a cons, and finally we
add a recursive demand useful for specifying demands over lists.

This informal reading of a demand can easily be formalized, and the set of expressions which
satisfy a demand can be shown to be open with respect to the usual operational preorder (c.f.[14]).
We do not pursue this formalization here, but just focus on the operational interpretation of
demands as evaluators.

DEFINITION 10.2
For each closed demand d we define an associated evaluator =—>4. The family of evaluators is
defined by inductively as the least relations between closed expressions that satisfy the following

rules: 6o
H

e — € e =, C

. ’ /
€ —y €1 1 €2 €] =>4, €1 €2 ==>q, €5

I
€ ==d,::d, €1 : €9

e —>x e € ==4d,::d, e’

/ 7
€ =k 4d;:dy € € =—k4dy:ds €

€ =a{pa.(d)/c} €

€ —ux.(d) e

Note that the evaluators are defined using the basic reduction engine, —. It is not difficult
to show that evaluators are deterministic (i.e., each =4 is a partial function) and that proofs of

. . . t .
evaluation judgements are unique. As for —,, we write e =>4 €/ when e =4 €’ and its proof
uses ¢ > 0 instances of rule Fun.

Now we can show that the previous evaluation relations can be viewed as instances of evaluators:

PROPOSITION 10.3

i / t /
l.e —ktec € — € =g €

t ’ t ’
2.¢e :>,u:c.(n+x:::c) € < €e—ye€

PROOF. 1. The first part is simple. (=) follows from the definition of evaluators, (<) by
considering the two cases for €’.
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2. (=) Induction on the size of the proof of t:>u:c.(n+:c:::c) e'. Abbreviate demand pz.(k + z::x)
by A. Clearly either ¢’ = ¢, and hence e —t>H ¢, in which case e —t>N c follows from Proposi-

tion 6.7, 0r ¢/ = €1 : €3, and the proof has the form

t! I ;1 ; 12
€ —g €] 1€y €] =24 €1 €5 =4 €3

1
€ —=A:A €1 1 €2

1
€ ==kt A4 €1 €2

[
€ —=>4 €1 @ €3

where t = ¢/ + t; + t5. By the induction hypothesis, €/ t—1>N €1 and €}, t—2>N es. By the
rules for evaluation to normal-form, €} : ¢/, tliffj e1 : ez and so by Proposition 6.7, since
t =t 4+ t; + t2 we can conclude e —t>N €1 : es, as required.

(<) follows by a routine induction on the structure of normal form e’, appealing again to
Proposition 6.7. The details are omitted.

Now we can give a definition of time rules (_)d which extend the definitions for (_)H (and

subsume the definitions for (_}N). The rules are obvious, but we include them for completeness in
Fig. 9. It is also possible to show, (although we do not provide details here) that cost equivalence

(€ =0
(@) = ()" if e—ne
(™% = ()T +(e)™ +(e2)® if e —yerien
) 0 if e —pc
Ktdindy H "
(€) = (g + { <61>d1 + (62)d2 if e =perten

FIG. 9. Demand time rules
is congruence with respect to the demanded time rules,

e<e =VC. (Cle])! = (C[e'])d , whenever C'e]] .

10.2 Demand use

The weakness in the model with respect to call-by-need computation is that the substitution
operation duplicates expressions, and consequently does not ‘share’ any evaluations of that
expression to head-normal-form (and subsequent evaluations of sub-expressions).

Let (e)d 4 informally denote the call-by-need cost of evaluating expression € up to demand
d

Suppose we know that the following condition (A) holds:

nee
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Whenever an application of some function f is to be evaluated up to demand d, then its
argument must satisfy some demand d’.

In other words, for all arguments e, if f(e) =4 €’ for some €', then there exists a u such that
e =>4 u. When this is the case, we can refine our call by name model as follows.

) > (% + W) > (fw)i .,

To attempt arigorous justification of the second inequality, we would naturally need to formalize
what we mean by call-by-need evaluation. This nontrivial task is beyond the scope of this paper,
and we leave it as an open problem.

Here is an informal explanation of the first inequality. First, it is not too difficult to show that
when condition (A) holds for f that there exists an expression u such that e =>4 u, and that
f(u) =>4 €’.® Now, since e must satisfy d’ whenever f(¢) satisfies d, it must be the case that each
sub-proof of a judgement of the form ¢ — b in the proof of e =>4 wu must also occur at least
once in the proof of f(e) =4 €’. This is because no backtracking is needed in proof construction,
and so the condition implies that =>4 must perform as much computation on e as =—>4/. Now
consider the proof of f(u) =4 €’. This proof will have essentially the same structure as the
proof of the evaluation of f(e) up to d, except that each of the aforementioned sub-proofs will be
replaced by (zero-cost) sub-proofs of the form b —; b. The inequality arises because the costs of
some multiply-occurring sub-proofs for an evaluation @ — b in the proof of e =4 u, arising
through expression duplication, may be counted only once in (e) @

We have not found a satisfactory proof based on this sketch (or otherwise). It would be nice
to have an ‘algebraic’ proof which does not mention proof-trees explicitly. Cost equivalence and
related tools such as improvement preorderings [38] may be useful here.

10.3  Demand propagation

In order to use this method for refining the call-by-name model we need to establish for some
context C ], the demand an expression placed in its hole satisfy must satisfy, given some demand
which must be satisfied by the composite expression. Of course, such demands on the hole are
not unique. For example, any expression placed in the hole must satisfy the trivial demand e.
However this trivial demand does not allow us to refine the call-by-name cost model. In general
we want to determine as ‘large’ a demand on the hole as possible.

In this paper we shall not pursue the problem of demand propagation, but mention some of the
connections with the much-studied strictness analysis problem.

As mentioned earlier, demand propagation can be formalized by modelling a demand as the
set of expressions which satisfy it. These sets can be shown to be open (right-closed) under an
operational preordering on expressions, and so the problem can be viewed as an inverse-image
analysis problem [14], albeit expressed in terms of an operational model rather than a denotational
one. The corresponding problem in a higher-order language is more easily tackled by a forwards
analysis in which information about the complement of a demand (all the elements which do not
satisfy it) are propagated forwards from sub-expressions to their context. This corresponds to the
higher-order strictness analysis described in [11]. So in principle the approach described here can
be extended to a higher-order language, but it is not obvious how a higher-order demand (other
than simple strictness) can be given an operational interpretation, so there remains an inherently
non-compositional aspect (c.f.. the higher-order approach described in [36], Ch. 5).

8 This is a constructive version of Burn’s evaluation transformer theorem—furtherinvestigations will be presented elsewhere.
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10.4 Comparison with earlier compositional approaches

Here we place the approach outlined in this section in comparison with the compositional methods
for time analysis overviewed in Section 2. The use of demands to refine call-by-name evaluation
time to give a better approximation to call-by-need is consistent with the use of strictness infor-
mation in necessary-time analysis [35]. The key difference is that strictness information is used
by necessary-time analysis to give a lower bound to call-by-need computation cost, whereas it is
used here to give an upper-bound (which in turn is bounded above by call-by-name cost). In both
cases the quality of demand information determines the tightness of the bound. We would argue
that the method here is more useful.

The time analysis described by Wadler [42] (which is the first order instance of sufficient-time
analysis in [35]) also gives an upper-bound to call-by-need time, but in a rather different manner:
it uses information about ‘absence’ (constancy) which describes what parts of an expression will
not be evaluated. Unfortunately in this case although the quality of this upper bound is determined
by the quality of this ‘absence’ information,® this upper-bound may not be well defined even when
the program is.

The approach described by Bjerner and Holmstrom [8] is a fully compositional method for
reasoning about first-order functional programs with lazy lists. This approach is harder to compare
because the ‘demand’ information is exact; the call-by-need time analysis is therefore exact as
well (although, as here, the treatment of call-by-need is not formalized). This precision, as the
authors note, is also a serious drawback in reasoning about programs, since as a first step one must
decide what ‘demand’ to make on the output. Since the language of demands is so precise, in
order to reason about computation of a program to normal form one must begin with the demand
that exactly describes that normal form—in other words (a representation of) the normal form
itself. It is not immediately obvious how to introduce ‘approximate’ demands in this approach
without running into the definedness problems of Wadler’s method.

To summarize, the approach sketched in this section has the following advantages:

e it provides a safe (well-defined) time bound lying between call-by-need and call-by-name
costs;

o it allows flexibility in the use of demand information so it can be targeted to where either
1. more compositionality is needed to decompose the time analysis of a large program, or

2. where (it is suspected that) the call-by-name model is too crude.

Although our method and exposition were inspired by formulating a constructive (operational)
version of Burn’s evaluators, in retrospect the approach is much closer to Bjerner’s original work
on time analysis of programs of type theory, because of it’s operational basis. The connec-
tion to evaluators does not occur in Bjerner’s work because of the absence of non-terminating
computations in that language.

11 Related work

Here we review work related to the theory of cost simulation.

9 Quality should not be confused with safety—we assume that the informationis always safe in the sense that whenever it predicts a property of a program, the
property does indeed hold.
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11.1 Other non-standard theories of equivalence

Talcott [41] introduced a broad semantic theory of side-effect-free Lisp-like languages, notable
for its treatment of both extensional and intensional aspects of computation. In particular a class
of preorderings called comparison relations were introduced for a side-effect-free Lisp derivative.
The method of their definition is similar to the definition of operational approximation as a Park-
style simulation, although the cost aspects are not built into this definition directly as they are
here. Nonetheless, the class of comparison relations could be said to contain relations analogous
to the cost-equivalence relation considered here (this is just the observation that cost simulation
can be viewed as a refinement of a pure simulation not involving time properties), and indeed it
is suggested (as a topic for further work) that certain comparison relations could be developed
to provide soundness and improvement proofs for program transformation laws. However,
only the ‘maximal’ comparison relations (essentially, the more usual operational approximation
and equivalence relations) and their application are considered in detail. Following on from
other aspects of this work, Mason [24] sketches the definition a family of equivalence relations
involving a variety of operation execution counts. However, as this is for a pure language with
neither higher-order functions nor lazy data structures, the relations have a relatively uninteresting
structure.

Moggi’s categorical semantics of computation [28] is intended to be suitable for capturing
broader descriptions of computation than just input—output behaviour. Gurr [16] has studied
extensions of denotational semantics to take account of resource use, and has shown how Moggi’s
approach can be used to model computation in such a way that program equivalence also captures
equivalence of resource requirements. Gurr extends Moggi’s A -calculus (a formal system for
reasoning about equivalence) with sequents for reasoning about the resource properties directly
(although the ability to do this depends on certain ‘representability’ issues, not least of all that the
resource itself should correspond to a type in the metalanguage). The resulting calculus is dubbed
‘Acom’- We can compare this to the approach taken here, where cost equivalence (a ‘resource’
equivalence) is used in conjunction with a set of time rules which are used to reason about the
cost property directly. There are further analogies in the details of Gurr’s approach: he defines
rules for sequents of the form

TFa,, (e,v,t): 7

com

which says that expression e has value v (of type 7) and consumes resource {. He goes on to
show that these rules are redundant since their information can be expressed in the A, calculus
(with the addition of some specific axioms). In particular the above entailment would imply

FEy letz=%tinv:r

where ¢ is the canonical term (of unit type) which consumes time ‘t’. Notice the similarity with
our axiomatization of cost equivalence, which uses the identity function in much the same manner
as the computational let is used in the A, calculus.

An important difference is that in our approach these concepts are derived from (and hence
correct with respect to) the operational model, so we may argue, at least, that an operational ap-
proach provides a more appropriate starting point for a semantic study of efficiency—although the
deeper connections between these approaches deserves some further study.'® Another important
difference is that we consider a lazy recursive data structure. One possible method for dealing
with this in the context of Moggi’s framework would be to combine it with Pitts” co-induction

10 Interestingly, Gurr gives an operational semantics (call-by-value) to terms of the A ¢y, calculus, but leaves the property corresponding to our Theorem 7.5
as a conjecture.
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principal for recursively defined domains [32]. Other aspects of Gurr’s work are concerned with
giving a semantic framework for some aspects of (asymptotic) complexity, which is outside the
scope of this work.

Another, perhaps more abstract category-theoretic approach to intensional semantics is pre-
sented by Brookes and Geva [9]. This work places a heavy emphasis on the relationship between
the intensional semantics and its underlying extensional one. The key structure is the use of a
co-monad, in contrast to Gurr’s use of Moggi’s monadic style, and it’s suitability for formulating
the kind of intensional semantics described here is perhaps less obvious.

11.2  Program improvement and generalizations

The theory of cost simulation is significant in its own right since there are many potentially
interesting relations (preorders and equivalences) involving time, that can be investigated in a
similar manner. For example, consider a program refinement relation, >, which is the largest
relation such that whenever e; > es

€1 By h = ey Loy h', for some h, h’ such that ¢ > t'
and (h >° h').
Using the same approach to that of cost simulation, it can be shown that > is a (pre)congruence, ' *
and consequently that for all contexts C',
e ¢ = (C[)* > (Cl)°,
which can be restated as ‘e’ is at least as efficient as e in any context’. Using the same proof
technique as illustrated in Section 7, we have a systematic means of verifying refinement laws,
such as
append(append(e1,e2),€3) > append(e1.append(ez, €3)).

The notion of refinement is a possible semantic criterion (albeit a somewhat exacting one) for the
intensional correctness of ‘context-free’ program transformations.

The main foundation for such theories of improvement and equivalence is the definition of an
appropriate simulation relation, together with a proof that it satisfies the substitutivity property. So
for each variation in the language (such as the addition of new operators) and each new definition
of what improvement means, we require these constructions. This is somewhat tedious, so
in a separate study[38] the problem of finding a more general formulation of the theory of
improvement relations is addressed. For a general class of lazy languages, it is shown how a
preorder on computational properties (an ‘improvement’ ordering) induces a simulation-style
preordering on expressions (the definitions of cost simulation and program refinement are simple
instances). Borrowing some syntactic conventions and semantic techniques from [18], some
improvement extensionality conditions on the operators of the language are given which guarantee
that the improvement ordering is a precongruence. The conditions appear relatively easy to check.
Furthermore, the higher-order language given here is studied as a special case. In this context a
computational property is considered to be a function from the proof of an evaluation judgement
(the computation) to a preordered set (the set of properties, ordered by ‘improvement’). The
main result of this generalization is that the simulation preorder induced by any computational
property is guaranteed to be a congruence whenever the property satisfies a simple monotonicity

11 Note that if we consider a strict refinement relation where we replace > by > in the definition of [>, then it will not be a contextual congruence.
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requirement with respect to the rules of the operational semantics. This result can be generalized
to Howe’s class of structured computation systems [19].

12 Conclusions

This paper has presented a direct approach to reasoning about time cost under lazy evaluation.
The calculus takes the form of time rules extracted from a suitably simple operational semantics,
together with some equivalence laws which are substitutive with respect to these rules.

The aim of this calculus is to reveal enough of the ‘algorithmic structure’ of operationally
opaque lazy functional programs to permit the use of the more traditional techniques developed in
the context of the analysis of imperative programs [2], and initial experiments with this calculus
suggest that it is of both practical and pedagogical use.

A desire for substitutive equivalences for the time rules led to a theory of cost equivalence,
via a non-standard notion of operational approximation called cost simulation. Cost equivalence
provides useful extensions to the time rules (although, as we showed, from a technical point of
view it subsumes them). It is also interesting in it’s own right, since it suggests an operationally
based route to the study of intensional semantics. Initial investigations of this area are reported
in [38].

Finally, we proposed an interface of this calculus with a more compositional method which
also improves the accuracy of the analysis with respect to call-by-need evaluation, but is able
to retain the simplicity of the naive approach where appropriate. The compositionality is based
on an operational interpretation of evaluators to re-order computation on the basis of strictness-
like properties. This model can also be used to provide a more constructive formulation of
the evaluation transformer theorem [10], which formally connects information from strictness
analysis with its associated optimisations. Further work is needed to strengthen the relationship
between cost equivalence and the compositional approach. The idea of a context-dependent
bisimulation between processes, as studied by Larsen (originating with [21]), seems appropriate
here since it suggests the introduction of context (= demand)-dependent cost simulation.
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Appendices
A Proofs

This appendix contains some details of proofs not included in the main text; the corresponding theorems etc. are restated.

PROPOSITION A.1 (PROPOSITION 6.7)
For all closed e, e’
l.e—=snyc < e—gc.

t t
2. e—twv <~ ez handh —2>Nvandt1 + t5 = ¢ for some h.

PROOF. 1. Follows by routine inductions on the structure of the proofs of e —n ¢ and e —g ¢ .
2. (=) Induction on the structure of the proof of e —xn 7 . We give an illustrative case:

eifer/z1,. . en;/on,} = v
Fun
filer,-..,en;) =n v
t .

Suppose that f;(e1,...,€en;) —n v for some ¢. Then it follows that

t—1
ei{er...en; /T1...Tn;} =N v,

and so the induction hypothesis gives

t
ei{e1...en; /T1... T, } 2y h (A.1)

o8By v (A2)
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for some head-normal-form &, and 1, t2 such that¢; + t2 = ¢ — 1. We can conclude from A.1 by the semantics for

14t
application, f;(e1,...,€n;) in}; v which together with A.2 concludes this case.

The other cases follow in a similar manner. Proof in the <= direction is again a routine induction on the structure of
the inference e — A . [ |

LEMMA A.2 (LEMMA 6.8)
Ife < e’ then

. ! 1, H _ nH,
1. if e =& h then e’ —g B’ and (e)” = (/)7
2.if e =y v then €/ —y v and () = ().
PROOF. The first part is immediate from the definition of cost simulation. The second part proceeds by induction on the
structure of value v. . . .
e v =c Suppose e —x c. Then by Proposition 6.7 ¢ —z c. By definition of cost simulation, e’ — ¢, and again

.. ¢
from Proposition 6.7 ¢/ —n c.

o U =1 U2 Suppose e —t>N vy : vo. The induction hypothesis gives: for all ¢/ and for all eq, €p such that

1 1 1 1
t o t t - t ..
ea X €p, €a —n v1 implies e —n v1 and eq —n v implies e, —n v2. From Proposition 6.7 we know that,
7 1"
forsome ey, ez, € —pr €1 : eo and ey : ex —n vy : vp witht =t/ + ¢!/, This implies that

t t
€1 —1>N U1 and €2 —2>N v, where t/! = i1 + t2. (A3)

Since e < e’ we know that e’ —z ef : e forsome e/, e} such thate; < e] and e2 < e. Now we have, by an
instance of the induction hypothesis that
t; .
ef 2w v i=1,2 (A4)

. "’ . t ..
from which we have, by rule Cons that eg : 6'2 —n~ vy : vo. Finally e’ —x vy : va follows from Proposition 6.7

(). [ |
THEOREM A.3 (THEOREM 7.4)

For all closed expressions e, if e . hthen Fre=q I"(h).

PROOF. Routine induction on the structure of the proof of e e h. We argue by cases according to the last rule applied.
‘We sketch a couple of cases only.

Fun

Assume that e = f(ey ...en), where f is defined by f(y1...yn) = es. Then the last inference in the proof of

e 7—n>H h has the form:
ef{er/v1- en/yn} —u h

fler,...,en) = h

It follows that e g {e1/y1 -+ - en/yn} m—_>}1; h, and so by the induction hypothesis,

Frcepfer/yi - en/yn} =¢ 1" ().

By congruence it follows that Fx- I(ef{e10/y1 - - eno/yn}) =¢ 1”(h), and finally by (Fun.|) and transitivity we
have Fz f((il . en) =0 |n(h).

Case

‘We consider only one of the two possible last rules in the evaluation of the case expression: assume the last inference

has the form
e1 —m ep ter  esl{ep/T,ei/Tst —u h

case e of
nil= ez —u h
r.Irs=e3
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m m . .
It follows that e; —# ep, : e and es{en/z,et/zs} 22+ h for some mq, mo satisfying m1 + mg = m. The
induction hypothesis then gives

Fre  e1 = |1 (eh : (it)

case e of case "1 (ep, : et ) of
= Fx nil= ez = nil = ez
xr:Irs=e3 T :Ts=e3
case e of case ep : et of
= g nil= ex =g It nil = ez
xr:Irs=e3 T :TsS=e3
case ey of
= kg nil = eg = "™ (es{en/z, et/zs}).

r.rs=e3
The induction hypothesis applied to the second sub-proof gives
Fr es{en/z, ec/zs} = "2 (h)
and so by congruence (substituting the right-hand side for the left in the previous equation) we conclude that

case e1 of
Fre nil = eg =0 |m1(|m2(h))7
I . TSs=e3

and the desired result follows from the fact that 1”1 (™2 (b)) = "™ (k). |

THEOREM A.4 (THEOREM 8.3)
If € C &’ for some commonly indexed families of closed expressions €, &', then for all expressions e containing at most
variables &

e{&/#} C e{é'/7}.
PROOF. Define the relation
T= {(e{&/z},e{€'/#}) : e contains at most variables #,& C &'}.

It is sufficient to show that 7 C.A(Z). Abbreviate substitutions {€/Z} and {&’/Z} by o and o, respectively. Assume

t . .. t . . .

that ec —p h. It will be sufficient to prove that ea’ — h' for some h’ such that A(Z* U I")h’. We establish this by
induction on the structure of the proof of eoc — A , and by cases according to the structure of expression e. The cases
for all expressions other than lambda abstraction and application are identical to Lemma 6.10. The remaining cases are:

Assume that y is not in the domain of o (since if it is, we can just rename). By the axiom for lambda

expressions, together with its time rule, we have e = Ay.(bo) 2u Ay.(bo) and e’ = Ay.(bo') 2u Ay.(bo'). It
remains to show that Ay.(ba) Z* Ay.(bo’). This follows easily from the fact that for all closed a,

(My.(bo))a = ((My-b)a)e T ((Ay.b)a)s’ = (Ay.(bo'))a.

. By the rule for application it follows that e o t—1>H Ay.b and that

b{ezo/y} B

for some %1, t2 such that £ = 1 + ¢ + t2. From the former judgement the inductive hypothesis allows us to conclude

that e o’ QH Ay.b’ for some b’ such that Ay.b T Ay.b’.

So, for each closed expression a, we have substitutions 8, §’ (with a non-empty common domain, and C-related range)
such that (Ay.b)a = d& and (Ay.b")a = dé’ for some expression d containing at most the variables in the domain of
6. Since a is closed, we can without loss of generality assume that the structure of d satisfies one of the following three
cases:
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1. d = z, and hence (Ay.b)a C (Ay.b')a, or
2. d = za and hence A\y.b C Ay.b’, or
3. d = (Ay.c)a, and hence (Ay.b) T (Ay.b).
Now consider the judgement b{eza/y} t—2>H h. By the rule for application this is equivalent to the judgement
(Ay.b)ezo lifff h. By the case analysis above, taking a = ez o, either
1. (Ay.b)a € (Ay.b')a, and so by the definition of C, (Ay.b)ezo 2R with R(R* U RMA', and hence
ty o,
b{eac/y} = k', or
2. (Ay.b) E (Ay.b’) and so by definition (Ay.b)a C (Ay.b')a and we argue as above, or

3. (Ay.b) T (Ay.b') with (Ay.b)a = db and (Ay.b')a = d8’. Assume, without loss of generality, that the variables in
o, § and {y} are all distinct. Massaging substitutions (details omitted), it is easy to see that

b{eao/y} = dé{eac/y} = d{ea/y}60 T d{ea/y}6'c’ = dé{esc/y} = b'{eac/y}.

Since this shows that b{exo /y} T b'{ez0/y}, by the induction hypothesis in this case we can also conclude that
b {exo/y} 23, R for some A such that R(R* URMR.

Using rule for application we conclude that ec”’ s ' for some k' such that h(R* U R M)A, as required. |

B The largest cost precongruence

In this appendix we give the details of the technical development outlined in Section 6.5, which characterizes when cost
simulation is the largest cost congruence.

DEFINITION B.1

e1 <cex <= VC.Cle1) F(T) Clea].
THEOREM B.2
<=<c

Since < is the maximal fixed point of F, to prove the ‘difficult’ half of this equality it is sufficient to show that
<c CF(<Lc). However, we have been unable to prove this property by ‘co-induction’ (although the proof for pure
operational simulation is straightforward [18]). Instead, we will use an alternative definition of cost simulation as the
limit of a descending sequence of relations beginning with T:

PROPOSITION B.3

<=7
new

where F0 is the identity function, and F?1+1 = F7 o F

PROOE. It is sufficient to show that F is anti-continuous (see e.g. [13]). That is, for every decreasing sequence Ry 2
RyD---RpD---
ﬂ F(Rn) = f(ﬂ Rn).
n n

The D half follows directly from monotonicity. Now suppose that e(ﬂn F(Rn))e’. The only non-trivial case is when

e —t>H e1 : ez : for each n, we have that e (Ry)e’, so from the definition of F, we have that e’ —t>H e} : el with
ei(Rn)e}, and hence that e; (ﬂn(Rn))e; giving e(]—'(ﬂn Ry))e’ as required. |

Now we sketch the proof of theorem B.2.
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PROOE. < C <, follows from the fact that < is a precongruence, and that F is monotone. It remains to show that that
< D <. We show the contrapositive: that for all expressions eq, ez,

e1 A ez = e1 Le ea.

For each n > 0, define <,= F" (T) Since the <, form a decreasing chain, by Proposition B.3 it follows that there
exists a smallest £ > O (and hence a largest <) such that e; Ay e2. Call such a <y, the maximum distinguisher for
(e1,e2). Negating the definition of <., we see that e7 L. eo if there exists a context C' such that Ce1] A1 Clez].
Call such a context C' a distinguishing context for (e1, e2).

We prove by induction on k that for all e, ez, if <j the maximum distinguisher for (el7 62) then there exists a
distinguishing context Ce, e, for (e1, e2).

Base: <1 Since e1 ZA1 e2, it immediately follows that the simple context [ ] distinguishes (e1, e2).

Induction: <j4q Since <g4q is maximum for (e1,e2), it follows that e —t>H up and eg —t>H us . Since
k 4+ 1 > 1, it follows, again by maximality, that w1 = p1 : g1 and up = pg : g2 for some p1, g1, p2, 92. Now <g
must be a maximum distinguisher for either (p1, p2) or (g1, g2), since if it were not, <x41 would not be maximal for
(e1,e2). Suppose that it is maximal for (p1, p2) (the other case is similar). By induction, there is a distinguishing
context C'p, 5, , SO We can easily construct a context

case [ ] of
nil = nil
z x5 = Cpy p,[2]

which distinguishes (e1, ez). |

DEFINITION B.4
Pure cost congruence, <y, is defined to be the least relation on closed expressions such that e; <pc ez if and only if

t . t
for all contexts C', whenever C[e1] —# u1 then there exists uz such that Clea] —#r ua.

We will say that a context C' cost distinguishes a pair of expressions €, e’ if C[e] €pe C[e’].

DEFINITION B.5
We say that the language satisfies the CD condition if for all constants ¢, if e =z cand e <pc e’ thene —g c.

PROPOSITION B.6
<e = <pe <= the CD condition is satisfied.

PROOF. (=) Straightforward from the definition of <. (=) Clearly e; <. ez => e1 <jpc €2, so itis sufficient to show
thate; € ea = e1 Lpc e2. Supposing e1 L ea, then there exists a distinguishing context C' for (e1,e2). Now

suppose that C' is not sufficient to cost distinguish (e1, e2 ). In this case we must have C'[e1 ] —t>H ug and Clez] —t>H U3
with either

l. w1 = c,ug # ¢, or

2. uy = u :u',us = cfor some constant c.

In the first case Ce1] €pe Clez] follows from the CD condition, and since <. is a precongruence, we must have
e1 Lpc 2. In the second case a context of the form case [ ] of ... can be used to cost distinguish (C[e1], C[e2]), and
hence e1 Lpc €2 by precongruence.

Remark The CD condition is not particularly strong since it is satisfied if a binary equality test over constants is included
as one of the primitive functions; for each constant c, consider the context if [ | = c then nil else fail, where fail is any
expression lacking a head normal form. On the other hand, the CD condition fails if we have two distinct constants in the
language, call them errorl and error2, over which all primitive functions are undefined (i.e. APPLY(p, ..., error;,...)
is undefined). So we could never distinguish between errorl and error2 on the basis of cost alone, but because they are
distinct they would not be cost equivalent.

Now we have that cost equivalence is the largest congruence with respect to the time rules for head-normal-form
(modulo the partial correctness of the rules, which is reflected by convergence conditions).

COROLLARY B.7
If the CD condition is satisfied, then

e=q ¢ = (VO.(Clea)lm &Cleallsr) = (Clea))™ = (Clea))™).
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Lemma 6.7, together with the fact that =) is a congruence allows us to extend the above corollary to include evaluation

to normal-form, and the { )N rules. In fact it is also possible to show that we can completely replace ‘H’ by ‘N in the
corollary, but this is left as an exercise.
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