
A Semantic Hierarchy for Erasure Policies

Filippo Del Tedesco1, Sebastian Hunt2, and David Sands1

1 Chalmers University of Technology, Sweden
2 City University London

Abstract. We consider the problem of logical data erasure, contrasting
with physical erasure in the same way that end-to-end information flow
control contrasts with access control. We present a semantic hierarchy
for erasure policies, using a possibilistic knowledge-based semantics to
define policy satisfaction such that there is an intuitively clear upper
bound on what information an erasure policy permits to be retained.
Our hierarchy allows a rich class of erasure policies to be expressed,
taking account of the power of the attacker, how much information may
be retained, and under what conditions it may be retained. While our
main aim is to specify erasure policies, the semantic framework allows
quite general information-flow policies to be formulated for a variety of
semantic notions of secrecy.

1 Introduction

Erasing data can be difficult for many reasons. As an example, recent research
on SSD-drives has shown that the low-level routines for erasing data often in-
advertently leave data behind [30]. This is due to the fact that information on
an SSD (in contrast to a more conventional magnetic hard drive) gets copied to
various parts of memory in order to even out wear. The naive firmware sanitisa-
tion routines do not have access to the movement-history of data, and so leave
potentially large amounts of data behind.

This paper is not focused on low-level erasure per se. The requirement that
data is used but not retained is commonplace in many non hardware-specific
scenarios. As an everyday example consider the credit card details provided by
a user to a payment system. The expectation is that card details will be used to
authorise payment, but will not be retained by the system once the transaction
is complete.

An erasure policy describes such a limited use of a piece of data. But what
does it mean for a system to correctly erase some piece of data? One natural
approach taken here is to view erasure as an information-flow concept – follow-
ing [7]. To erase something means that after the point of erasure there is no
information flowing from the original data to observers of the system. This gives
a natural generalisation of the low-level concept of physical erasure to what one
might call logical erasure. Logical erasure specifies that a system behaves as if
it has physically erased some data from the viewpoint of a particular observer.
The observer viewpoint is more than just a way to model erasure in a multi-level

security context (as in [7]). To understand the importance of the attacker view-
point, consider a system which receives some data subject to an erasure policy.
The system then receives a random key from a one-time pad and XORs it with
the secret. The key is then overwritten with a constant. Does such a system erase
the data? The answer, from an information-flow perspective, depends on what
the observer (a.k.a. the attacker) can see/remember about the execution. An
attacker who can see the exact final state of the system (including the encrypted
data) and nothing more, cannot deduce anything about the subject data, and
so we can conclude that it is erased for that attacker. But if the attacker could
also observe the key that was provided, then the system is not erasing. Different
situations may need to model different attacker powers.

In practice the concept of erasure is a subtle one in which many dimensions
play a role. This is analogous to the various “dimensions” of declassification
[28]. In this paper we develop a semantic model for erasure which can account
for different amounts of erasure, covering the situation where some but not
necessarily all information about the subject is removed, and different varieties
of conditional erasure, which describes both what is erased, and under what
conditions.

The contribution of this work is to identify (Section 2) and formalise (Sec-
tion 4) a hierarchy of increasingly expressive erasure policies which captures vari-
ous dimensions of erasure. To do this we build on a new possibilistic information-
flow model (Section 3) which is parameterised by (i) the subject of the informa-
tion flow policy (e.g. the data to be erased), (ii) the attacker’s observational
power. This is done taking into account the facts that an attacker might be
interested to learn, and the queries which he can or will be able to answer about
the subject.

Proofs of main results can be found in the extended version of the paper [13].

2 Erasure Case Studies

We consider a series of examples of erasing systems which differ according to the
way they answer the following questions:

1. How much of the erasure subject is erased?
2. Under which conditions is erasure performed?

The examples are presented via simple imperative psudocode. We emphasise
that the examples themselves are not intended to be realistic programs – they
serve to motivate simply and intuitively various types of erasure policy that we
will formalise in a more abstract setting in Section 4.

2.1 Total erasure

Consider a ticket vending machine using credit cards as the payment method. A
partial implementation, in simplified form, is shown in Listing 1.1.

1 get (cc number) ;
2 cha rge (t i c k e t c o s t , cc number) ;
3 l o g (c u r r e n t t im e ()) ;
4 cc number=n u l l ;

Listing 1.1. Ticket vending machine,
total and unconditional erasure

Line 1 inputs the card number;
line 2 executes the payment transac-
tion; line 3 writes the transaction time
to a log for audit purposes; line 4 deletes
the card number.

This is an example of an erasing pro-
gram: once line 4 is executed, the card

number has been erased from the system. This statement can be refined further
with respect to our original questions: 1) the system is totally erasing (no infor-
mation about the card number is retained) and 2) erasure occurs unconditionally,
since control flow always reaches line 4.

2.2 Partial erasure

Consider a variant of the vending machine (Listing 1.2) which logs the last four
digits of the card number of each transaction, enabling future confirmation of
transactions in response to user queries. The difference to Listing 1.1 is in line 3,
where additional data is written to the log.

1 get (cc number) ;
2 cha rge (t i c k e t c o s t , cc number) ;
3 l o g (c u r r e n t t im e () , l a s t 4 (cc number)) ;
4 cc number=n u l l ;

Listing 1.2. Ticket vending machine, partial and
unconditional erasure

With this change, line 4 no
longer results in total erasure
since, even after cc number is
overwritten, the last four dig-
its of the card number are re-
tained in the log.

2.3 Low dependent erasure

Consider a further elaboration of the vending machine example (Listing 1.3)
which allows the user to choose whether the last four digits are retained.

1get (cc number) ;
2cha rge (t i c k e t c o s t , cc number) ;
3get (c ho i c e) ;
4i f c ho i c e=”Al low ”
5then l o g (c u r r e n t t im e () , l a s t 4 (cc number)) ;
6e l s e l o g (c u r r e n t t im e ()) ;
7cc number=n u l l ;

Listing 1.3. Ticket vending machine, low dependent erasure

In line 3 the program
acquires the user choice,
then it either pro-
ceeds as Listing 1.2 or
as Listing 1.1, accord-
ing to the choice. Now
the question about
how much informa-
tion is erased has two
different answers, depending on the second user input. Since this dependency is
not related to the erasure subject itself, we call this low dependent erasure.

2.4 High dependent erasure

Suppose there is a brand of credit card, StealthCard, which only allows termi-
nals enforcing a strict confidentiality policy to be connected to their network.

1get (cc number) ;
2cha rge (t i c k e t c o s t , cc number) ;
3i f (cc number i s i n S t e a l t hCa rd)
4then l o g (c u r r e n t t im e ()) ;
5e l s e get (c ho i c e) ;
6i f c ho i c e=”Al low ”
7then l o g (c u r r e n t t im e () ,
8l a s t 4 (cc number)) ;
9e l s e l o g (c u r r e n t t im e ())
10cc number=n u l l ;

Listing 1.4. Ticket vending machine, high
dependent erasure

This requires a further refinement
of the program (Listing 1.4), since
StealthCard users are not permit-
ted a choice for the logging option.
At line 3 the credit card number is
inspected and, if it is a StealthCard,
the system proceeds like 1.1.

Compared to the previous case,
this example has an additional layer
of dependency, since the amount of
data to be erased is itself dependent
on the erasure subject. We refer to
this as high dependent erasure.

3 An abstract model of information flow

We formalise erasure policies as a particular class of information flow policies. In
this section we define the basic building blocks for describing such policies. We
consider trace-based (possibilistic) models of system behaviour and we interpret
information flow policies over these models. We make the standard conservative
assumption that the attacker has perfect knowledge of the system model.

Our definitions are based directly on what an attacker can deduce about
an erasure subject from observations of system behaviour. In this respect our
model is close in spirit to Sutherland’s multi-level security property of nonde-
ducibilty [29]. However, we are not directly concerned with multi-level security
and, in a number of ways, our model is more abstract than non-deducibility.
For example, McLean’s criticism [22] of nondeducibility (that it fails to incorpo-
rate an appropriate notion of causality) does not apply, since our notion of the
“subject” of a policy is general enough to incorporate temporal dependency if
required. On the other hand, our model is open to the criticism of nondeducibilty
made by Wittbold and Johnson [31] with regard to interactive environment be-
haviours. Adapting our work using the approach of [31] (explicit modelling of
user strategies) remains a subject for future work. A more radical departure from
the current work, though still possibilistic, would be to take a process-calculus
approach [16].

3.1 Trace models

The behavioural “atom” in our framework is the event (in our examples this will
typically be an input (?v) or output (!v) but internal computation steps can be
modelled in the same way). Traces, ranged over by s, t, s1, t1, etc, are finite or
countably infinite sequences of events. We write t.e for the trace t extended with
event e and we write s.t for the concatenation of traces s and t. In what follows
we assume given some set T of traces.

A system is considered to be a set S ⊆ T (the assumption is that S is the
set of maximal traces of the system being modeled). Certain parts of system
behaviour will be identified as the subject of our policies and we define these
parts by a function Φ : T → D, for some set D (typically, Φ will be a projection
on traces). For a confidentiality property the subject might represent the secret
that we are trying to protect (an input or a behaviour of a classified agent). For
erasure the subject will be the input which is to be erased.

Given a system S, we denote by Φ(S) the subset of D relevant for S:

Φ(S) = {Φ(t)|t ∈ S}

We call this the subject domain of S. Let Sys(V) be the set of all systems with
subject domain V . Our flow policies will be specific to systems with a given
subject domain.

3.2 Equivalence relations and partitions

The essential component of a flow policy is a visibility policy which specifies
how much an attacker should be allowed to learn about the subject of a system
by observing its behaviour. Following a standard approach in the information
flow literature – see, for example [20, 27] – we use equivalence relations for this
purpose. A flow policy for systems in Sys(V) is R ∈ ER(V), where ER(V)
denotes the set of all equivalence relations on V . The intention is that attackers
should not be able to distinguish between subjects which are equivalent according
to R. An example is the “have the same last four digits” relation, specifying that
the most an attacker should be allowed to learn is the last four digits of the credit
card number (put another way, all cards with the same last four digits should
look the same to the attacker).

In what follows we make extensive use of two key, well known facts about
equivalence relations:

– The set of equivalence relations on V , ordered by inclusion of their defining
sets of pairs, forms a complete lattice, with the identity relation (which we
denote IdV) as the bottom element, and the total relation (which we denote
AllV) as the top.

– The set of equivalence relations on V is in one-one correspondence with the
set of partitions of V , where each of the disjoint subsets making up a partition
is an equivalence class of the corresponding equivalence relation. We write
PT(V) for the set of all partitions of V . Given P ∈ PT(V), we write E(P)
for the corresponding equivalence relation: v1E(P)v2 iff ∃X ∈ P.v1, v2 ∈ X.
In the other direction, given R ∈ ER(V) and v ∈ V we write [v]R for the R-
equivalence class of v: [v]R = {v′ ∈ V |v′ R v}. We write [R] for the partition
corresponding to R: [R] = {[v]R|v ∈ V }.

In the current context, the significance of R1 ⊆ R2 is that R1 is more discriminat-
ing - i.e., has smaller equivalence classes - than R2. Hence, as visibility policies,
R1 is more permissive than R2. The lattice operation of interest on ER(V) is

meet, which is given by set intersection. Given a family of equivalence relations
{Ri}i∈I , we write their meet as

∧
i∈I Ri (the least permissive equivalence relation

which is nonetheless more permissive than each Ri).
The order relation on partitions corresponding to subset inclusion on equiv-

alence relations will be written �ER, thus [R1] �ER [R2] iff R1 ⊆ R2. We
overload the above notation for meets of partitions in this isomorphic lattice:∧

i∈I Pi = [
∧

i∈I E(Pi)].

3.3 Attacker models and K-spaces

As discussed in the introduction, whether or not a system satisfies a policy will
depend on what is observable to the attacker. We specify an attacker model as
an equivalence relation on traces, A ∈ ER(T). Note that this is a passive notion
of attacker - attackers can observe but not interact with the system.

To compare what the attacker actually learns about the subject with what
the visibility policy permits, we define, for each attacker observation O ∈ [A],
the corresponding knowledge set KS(O) ⊆ V , which is the set of possible sub-
ject values which the attacker can deduce from making a given observation3:
KS(O) = {Φ(t)|t ∈ O ∩ S}.

The K-space of A for S, denoted KS(A), is the collection of all the attacker’s
possible (ie non-empty) knowledge sets when observing S:

KS(A) = {KS(O)|O ∈ [A], O ∩ S 6= ∅}

Lemma 1. Let S ∈ Sys(V) and A ∈ ER(V). Then the K-space of A for S
covers V , by which we mean that every member of KS(A) is non-empty and⋃
KS(A) = V .

From now on, for a given V , we use the term K-space to mean any collection of
sets which covers V .

In the special case that a system’s behaviour is a function of the subject,
each K-space will actually define an equivalence relation on V :

Proposition 1. Say that S ∈ Sys(V) is functional just when, for all t, t′ ∈ S,
t 6= t′ ⇒ Φ(t) 6= Φ(t′). In this case, for all A ∈ ER(T), KS(A) partitions V .

When S is functional, the K-space KS(A), being a partition, can be inter-
preted as the equivalence relation E(KS(A)). So, in the functional case there is
a straightforward way to compare a visibility policy with an attacker’s K-space:
we say that the policy R is satisfied just when R is more discriminating than
this induced equivalence relation. Formally, when S is functional, S satisfies R
for attacker A, written S `A R, just when R ⊆ E(KS(A)) or, equivalently:

S `A R iff [R] �ER KS(A) (1)

We now consider how to extend this definition to the general case, in which a
system has other inputs apart from the policy subject.

3 A more reasonable but less conventional terminology would be to call this an uncer-
tainty set.

3.4 Comparing K-Spaces: facts and queries

In general, a system’s behaviour may depend on events which are neither part of
the policy subject nor visible to the attacker. In this case, the attacker’s knowl-
edge of the subject need not be deterministic, resulting in a K-space which is not
a partition. This raises the question: when is one K-space “more discriminating”
than another?

Here we motivate a variety of orderings by considering some basic modes in
which an attacker can use observations to make deductions about the subject of
a system:

Facts A fact F is just a set of values. A given knowledge set X confirms fact F
just when X ⊆ F . Dually, X has uncertainty F when F ⊆ X. For example a
fact of interest (to an attacker) might be the set of “Platinum” card numbers.
In this case an observation might confirm to the attacker that a card is a
Platinum card by also revealing exactly which platinum card it is. For a
given K-space K we then say that

– K can confirm F if there exists some X ∈ K such that X confirms F .
– K can have uncertainty F if there exists some X ∈ K such that X has

uncertainty F .

Queries A query Q is also just a set of values. We say that a given knowledge
set X answers query Q just when either X ⊆ Q or X ⊆ V \Q. For a given
K-space K we then say that

– K will answer Q if for all X ∈ K, X answers Q, and
– K can answer Q if there exists some X ∈ K such that X answers Q.

In a possibilistic setting it is natural to focus on those “secrets” which it is
impossible for a given system to reveal, where revealing a secret could mean
either confirming a fact or answering a query. Two of the four K-space properties
defined above have an immediate significance for this notion of secrecy:

– Say that S keeps fact F secret from attacker A iff there are no runs of S for
which A’s observation confirms F , i.e., iff: ¬(KS(A) can confirm F).

– Say that S keeps query Q secret from attacker A iff there are no runs of S
for which A’s observation answers Q, i.e., iff: ¬(KS(A) can answer Q).

The possibilistic secrecy significance of “has uncertainty” and “will answer” is
not so clear. However, as we will show, we are able to define flow policies and a
parameterized notion of policy satisfaction which behaves well with respect to
all four properties.

Using the ability of a K-space to confirm facts and answer queries, we can
order systems in different ways, where a “smaller” K-space (ie one lower down
in the ordering) allows the attacker to make more deductions (and so the system
may be regarded as less secure). Define the following orderings between K-spaces:

Upper: K1 �U K2 iff ∀F.K2 can confirm F ⇒ K1 can confirm F . Note that
K1 �U K2 iff K2 keeps more facts secret than K1.

Lower: K1 �L K2 iff ∀F.K1 can have uncertainty F ⇒ K2 can have uncertainty
F .

Convex (Egli-Milner): K1 �EM K2 iff K1 �U K2 ∧ K1 �L K2.

Can-Answer: K1 �CA K2 iff ∀Q.K2 can answer Q ⇒ K1 can answer Q. Note
that K1 �CA K2 iff K2 keeps more queries secret than K1.

Will-Answer: K1 �WA K2 iff ∀Q.K2 will answer Q⇒ K1 will answer Q.

It is straightforward to verify that these orders are reflexive and transitive, but
not anti-symmetric. The choice of names for the upper and lower orders is due
to their correspondence with the powerdomain orderings [25]:

Proposition 2.

K1 �U K2 iff ∀X2 ∈ K2.∃X1 ∈ K1.X1 ⊆ X2

K1 �L K2 iff ∀X1 ∈ K1.∃X2 ∈ K2.X1 ⊆ X2

We can compare the K-space orders 1) unconditionally, 2) as in the case of
policy satisfaction, when we are comparing a partition with a K-space, and, 3)
when the K-spaces are both partitions, yielding the following results:

Proposition 3. 1. �EM (�L (�WA and �EM (�U (�CA.

2. Additionally, when P is a partition: P �CA K ⇒ P �WA K (the reverse
implication does not hold in general).

3. �ER, �EM, �L, and �WA all coincide on partitions. Furthermore, when P1

and P2 are partitions: P1 �ER P2 ⇒ P1 �U P2 ⇒ P1 �CA P2 (the reverse
implications do not hold in general).

These orderings give us a variety of ways to extend the definition of policy satis-
faction from functional systems (Equation 1) to the general case. The choice will
depend on the type of security condition (eg protection of facts versus protection
of queries) which we wish to impose.

4 The policy hierarchy

We specify a three-level hierarchy of erasure policy types. All three types of
policy use a structured collection of equivalence relations on the subject domain
to define what information should be erased. A key design principle is that,
whenever a policy permits part of the erasure subject to be retained, this should
be explicit, by which we mean that it should be captured by the conjunction of
the component equivalence relations.

For each type of policy, we define a satisfaction relation, parameterized by a
choice of K-space ordering o ∈ {U ,L,EM ,CA,WA}.

Assume a fixed policy subject function Φ : T → D. Given a subset V ⊆ D,
let TV = {t ∈ T |Φ(t) ∈ V }. Note that if S belongs to Sys(V) then S ⊆ TV .

Type 0 policies

Type 0 policies allow us to specify unconditional erasure, corresponding to the
two examples shown in Section 2 in Listings 1.1 and 1.2.

A Type 0 erasure policy is just a visibility policy. We write Type-0(V) for the
set of all Type 0 policies for systems in Sys(V) (thus Type-0(V) = ER(V)). The
definition of satisfaction for a given attacker model A and system S uses a K-
space ordering (specified by parameter o) to generalise the satisfaction relation
of Equation 1 to arbitrary (i.e., not-necessarily functional) systems:

S `oA R iff [R] �o KS(A)

For functional systems note that, by Proposition 3, choosing o to be any one of
EM , L or WA yields a notion of satisfaction equivalent to Equation 1, while U
and CA yield strictly weaker notions.
Example. Consider the example in Listing 1.2. The subject domain is CC, the
set of all credit card numbers, and (since the erasure subject is the initial input)
the subject function is the first projection on traces. The policy we have in mind
for this system is that it should erase all but the last four digits of the credit
card number. We extend this example so that it uses a method call erased() to
generate an explicit output event η (signalling that erasure should have taken
place) followed by a dump of the program memory (thus revealing all retained
information to a sufficiently strong attacker).

1 get (cc number) ;
2 cha rge (t i c k e t c o s t , cc number) ;
3 l o g (c u r r e n t t im e () , l a s t 4 (cc number)) ;
4 cc number=n u l l ;
5 e r a s ed () ;
6 dump () ;

Listing 1.5. Ticket vending machine, partial and
unconditional erasure: extended

If we restrict attention to
systems (such as this one)
where each run starts by in-
putting a credit card number
and eventually outputs the
erasure signal exactly once,
we can assume a universe of
traces T such that all t ∈ T
have the form t =?cc.s.η.s′,

where s, s′ are sequences not including η. Let S be the trace model for the above
system. The required visibility policy is the equivalence relation L4 ∈ ER(CC)
which equates any two credit card numbers sharing the same last four digits. An
appropriate attacker model is the attacker who sees nothing before the erasure
event and everything afterwards. Call this the simple erasure attacker, denoted
AS:

AS = {(t1, t2) ∈ T × T |∃s1, s2, s3. t1 = s1.η.s3 ∧ t2 = s2.η.s3}

Informally, it should be clear that, for each run of the system, AS will learn the
last four digits of the credit card which was input, together with some other log
data (the transaction time) which is independent of the card number. Thus the
knowledge set on a run, for example, where the card number ends 7016, would
be the set of all card numbers ending 7016. The K-space in this example will
actually be exactly the partition [L4], hence S does indeed satisfy the specified
policy: S `oAS L4 for all choices of o. From now on, we write just S `A R to

mean that it holds for all choices of ordering (or, equivalently, we can consider
`A to be shorthand for `EM

A , since EM is the strongest ordering).

Type 1 policies

Type 1 policies allow us to specify “low dependent” erasure (Section 2, List-
ing 1.3), where different amounts may be erased on different runs, but where the
erasure condition is independent of the erasure subject itself.

For systems in Sys(V) the erasure condition is specified as a partition P ∈
PT(TV). This is paired with a function f : P → Type-0(V), which associates
a Type 0 policy with each element of the partition. Since the domain of f is
determined by the choice of P , we use a dependent type notation to specify the
set of all Type 1 policies:

Type-1(V) = 〈P : PT(TV), P → ER(V)〉

Because we want to allow only low dependency – i.e., the erasure condition must
be independent of the erasure subject – we require that P is total for V , by
which we mean:

∀X ∈ P.Φ(X) = V

This means that knowing the value of the condition will not in itself rule out
any possible subject values. To define policy satisfaction we use the components
X ∈ P to partition a system S into disjoint sub-systems S ∩X and check both
that each sub-system is defined over the whole subject domain V (again, to
ensure low dependency) and that it satisfies the Type 0 policy for sub-domain
X. So, for a Type 1 policy 〈P, f〉 ∈ Type-1(V), an attacker model A, and system
S ∈ Sys(V), satisfaction is defined thus:

S `oA 〈P, f〉 iff ∀X ∈ P.SX ∈ Sys(V) ∧ SX `oA f X

where SX = S ∩X.

Example. Consider the example of Listing 1.3 extended with an erasure signal
followed by a memory dump (as in our discussion of Type 0 policies above).
Let S be the system model for the extended program. We specify a conditional
erasure policy where the condition depends solely on the user choice. The erasure
condition can be formalised as the partition Ch ∈ PT(T) with two parts, one
for traces where the user answers “Allow” (which we abbreviate to a) and one
for traces where he doesn’t: Ch = {Y, Y }, where Y = {t ∈ T |∃s, s1, s2. t =
s.?a.s1.η.s2} and Y = T \ Y . For runs falling in the Y component, the intended
visibility policy is L4, as in the Type 0 example above. For all other runs, the
intended policy is AllCC, specifying complete erasure. The Type 1 policy is thus
〈Ch, g〉 where g : Ch→ ER(CC) is given by:

g(X) =

{
L4 if X = Y
All if X = Y

Intersecting Y and Y , respectively, with the system model S gives disjoint sub-
systems SY (all the runs in which the user enters “Allow” to permit retention of
the last four digits) and SY (all the other runs). Since the user’s erasure choice is
input independently of the card number, it is easy to see that both sub-systems
are in Sys(CC), that SY `AS L4, and SY `AS All. Thus S `AS 〈Ch, g〉.

The following theorem establishes that our “explicitness” design principle is
realised by Type 1 policies:

Theorem 1. Let 〈P, f〉 ∈ Type-1(V) and S ∈ Sys(V) and A ∈ ER(T). Let
o ∈ {U ,L,EM ,CA,WA}. If S `oA 〈P, f〉 then:

[
∧

X∈P

(f X)] �o KS(A)

Example. Consider instantiating the theorem to the policy 〈Ch, g〉 described
above. Here the policy is built from the two equivalence relations All and L4;
the theorem tells us that the knowledge of the attacker is bounded by the meet of
these components (and hence nothing that is not an explicit part of the policy)
i.e., All ∧ L4, which is equivalent to just L4.

Type 2 policies

Type 2 policies are the most flexible policies we consider, allowing dependency
on both the erasure subject and other properties of a run.

Recall the motivating example from Section 2 (Listing 1.4) in which credit
card numbers in a particular set (the StealthCards) SC ⊆ CC are always erased,
while the user is given some choice for other card numbers. In this example, the
dependency of the policy on the erasure subject can be modelled by the partition
HC = {SC,SC}. For each of these two cases, we can specify sub-policies which
apply only to card numbers in the corresponding subsets. Since these sub-policies
do not involve any further dependence on the erasure subject, they can both be
formulated as Type 1 policies for their respective sub-domains. In general then,
we define the Type 2 policies as follows:

Type-2(V) = 〈Q : PT(V),W : Q→ Type-1(W)〉

To define satisfaction for Type 2 policies, we use the components W ∈ Q
to partition a system S into sub-systems (unlike the analogous situation with
Type 1 policies, we cannot intersect S directly with W ; instead, we intersect
with TW). To ensure that the only dependency on the erasure subject is that
described by Q, we require that each sub-system S ∩ TW is defined over the
whole of the subject sub-domain W . So, for a Type 2 policy 〈Q, g〉 ∈ Type-2(V),
an attacker model A, and system S ∈ Sys(V), satisfaction is defined thus:

S `oA 〈Q, g〉 iff ∀W ∈ Q.SW ∈ Sys(W) ∧ SW `oA g W

where SW = S ∩ TW .
To state the appropriate analogue of Theorem 1 we need to form a conjunc-

tion of all the component parts of a Type 2 policy:

– In the worst case, the attacker will be able to observe which of the era-
sure cases specified by Q contains the subject, hence we should conjoin the
corresponding equivalence relation E(Q).

– Each Type 1 sub-policy determines a worst case equivalence relation, as de-
fined in Theorem 1. To conjoin these relations, we must first extend each one
from its sub-domain to the whole domain, by appending a single additional
equivalence class comprising all the “missing” elements: given W ⊆ V and
R ∈ ER(W), define R† ∈ ER(V) by R† = R ∪AllV \W .

Theorem 2. Let 〈Q, g〉 ∈ Type-2(V) and S ∈ Sys(V) and A ∈ ER(T). For any
Type 1 policy 〈P, f〉, let R〈P,f〉 =

∧
X∈P (f X). Let o ∈ {U ,L,EM ,CA,WA}. If

S `oA 〈Q, g〉 then:

[E(Q) ∧
∧

W∈Q

R†
(g W)] �o KS(A)

Example We consider a Type 2 policy satisfied by Listing 1.4, namely 〈HC, h〉
where HC is the partition into Stealth and non-Stealth cards (as above), and h
is defined as follows.

h(SC) = 〈{TSC}, λx.AllSC〉
h(SC) = 〈Ch, h1〉

h1(Y) = L4SC
h1(Y) = AllSC

The term TSC denotes the set of traces which input a Stealth card number as
first action. As in the example of Type 1 policy above, Y is the set of (non-
stealth) traces where the user gives permission (“Yes”) to retain the last digits,
Y is its complement (relative to the set of non-stealth traces), and Ch is the
partition {Y, Y }. The term L4SC denotes the restriction of L4 to elements in SC.
Instantiating Theorem 2 to this example tells us that the attacker knowledge is
bounded by E(HC) ∧ All†SC ∧ L4†

SC
∧ All†

SC
, which is just L4†

SC
.

4.1 Varying the attacker model

The hierarchy deals with erasure policies independently of any particular at-
tacker model. Here we make some brief remarks about modelling attackers. Let
us take the example of the erasure notion studied in [18] where the systems are
simple imperative programs involving IO on public and secret channels. Then
the implicit attacker model in that work is unable to observe any IO events prior
to the erasure point, and is able to observe just the public inputs and outputs
thereafter. (We note that [18] also considers a policy enforcement mechanism
which uses a stronger, state-based non-interference property.)

Now consider the example of the one-time pad described in the introduction,
codified in Listing 1.6. Let system S be the set of traces modelling the possible
runs of the program and let the subject be the first input in each trace. For the
simple erasure attacker AS (Section 4), unable to observe the key provided in
line 2, the K-space will be {V } = [All], hence S `AS All. This is because the
value of data in the output does not inform the attacker about the initial value.

1 get (data) ;
2 get (key) ;
3 data := data XOR key ;
4 key := n u l l ;
5 e r a s ed () ;
6 output (data) ;

Listing 1.6. Key Erasure

On the other hand, the attacker who can also ob-
serve the key learns everything about the data from
its encrypted value.4 So for this stronger attacker,
using encryption to achieve erasure does not work,
and indeed policy satisfaction fails for this partic-
ular system.

If the attacker is strengthened even further, we
arrive at a point where no system will be able to

satisfy the policy. Intuitively, if an attacker can see the erasure subject itself
(or, more specifically, more of the erasure subject than the policy permits to be
retained) no system will be able to satisfy the policy. In general, we say that a
policy p with subject domain V (where p may be of any of Types 0,1,2) is weakly
o-compatible with attacker model A iff there exists S ∈ Sys(V) such that S `oA p
(we call this weak compatibility because it assumes that all S ∈ Sys(V) are
of interest but in general there will be additional constraints on the admissible
systems). Clearly, to be helpful as a sanity check on policies we need something
a little more constructive than this. For the special case of Type 0 policies and
the upper ordering we have the following characterisation:

Lemma 2. R is weakly U -compatible with A iff ∀v ∈ V.∃O ∈ [A].[v]R ⊆ Φ(O).

Deriving analogues of this result (or at least sufficient conditions) of more general
applicability remains a subject for further work.

Finally, we note that, while our main aim has been to specify erasure poli-
cies, by varying the attacker model appropriately, we can specify quite general
information-flow properties, not just erasure policies. For example, by classifying
events into High and Low and defining the attacker who sees only Low events,
we can specify non-interference properties.

5 Related work

We consider related work both directly concerned with erasure and more gener-
ally with knowledge based approaches to information flow policies.

Erasure The information-flow perspective on erasure was introduced by Chong
and Myers [7] and was studied in combination with confidentiality and declassi-
fication. Their semantics is based on an adaptation of two-run noninterference
definitions, and does not have a clear attacker model. They describe conditional
erasure policies where the condition is independent of the data to be erased.
Although this appears similar to Type 1 policies (restricted to total erasure),
it is more accurately viewed as a form of Type 0 policy in which the condition
defines the point in the trace from which the attacker begins observation.

4 Note, however, that we cannot model the fact that certain functions are not (eas-
ily) invertible, so our attackers are always endowed with unbounded computational
power.

The present paper does not model the behaviour of the user who interacts
with an erasing system. This was studied in [15] for one particular system and
attacker model. We believe that it would be possible to extend the system model
with a user-strategy parameter (see [31, 24, 24] which consider explicit models of
user strategies). Neither do we consider here the verification or enforcement of
erasure policies; for specific systems and attacker models this has been studied
in a programming language context in [18, 8, 9, 14, 23].

Knowledge based approaches Our use of knowledge sets was inspired by
Askarov and Sabelfeld’s gradual release definitions [2]. This provides a clear
attacker-oriented perspective on information-flow properties based on what an
attacker can deduce about a secret after making observations. A number of
recent papers have followed this approach to provide semantics for richer infor-
mation flow properties, e.g. [4, 5]. Our use of knowledge sets to build a K-space,
thus generalising the use of equivalence relations/partitions, is new. The use of
partitions in expressing a variety of information flow properties was studied in
early work by Cohen [10]. The use of equivalence relations and more generally
partial equivalence relations as models for information and information flow was
studied in [20] and resp. [27].

Recent work [3] uses an epistemic temporal logic as a specification language
for information flow policies. Formulae are interpreted over trace-based models of
programs in a simple sequential while language (without input actions), together
with an explicit observer defined via an observation function on traces. Our work
looks very similar in spirit to [3], though this requires further investigation, and
it appears that our modelling capabilities are comparable. The use of temporal
logic in [3] is attractive, for example because of the possibility of using off the
shelf model-checking tools. However, our policy language allows a more intuitive
reading and clear representation of the information leakage.

Alur et al [1], study preservation of secrecy under refinement. The informa-
tion flow model of that work bears a number of similarities with the present
work. Differences include a more concrete treatment of traces, and a more ab-
stract treatment of secrets. As here, equivalence relations are used to model an
attacker’s observational power, while knowledge models the ability of an attacker
to determine the value of trace predicates. Their core definition of secrecy co-
incides with what we call secrecy of queries (viz., negation of “can answer”),
although they do not consider counterparts to our other knowledge-based prop-
erties.

Abstract Non-Interference Abstract Non-Interference [17] has strong sim-
ilarities with our use of K-spaces. In abstract non-interference, upper closure
operators (uco’s) are used to specify non-interference properties. The similari-
ties with the current work become apparent when a uco is presented as a Moore
family, which may be seen as a K-space closed under intersection.

[17] starts by defining the intuitive notion of narrow abstract non-interference
(NANI) parameterized by two upper closure operators η (specifying what the
attacker can observe of low inputs) and ρ (ditto low outputs). A weakness of

NANI is that it suffers from “deceptive flows”, whereby a program failing to
satisfy NANI might still be non-interfering. From our perspective, the deceptive
flows problem arises because η fails to distinguish between what an attacker can
observe of low inputs and what he should be allowed to deduce about them (i.e.,
everything). Since we specify the attacker model independently from the flow
policy, the deceptive flows problem does not arise for us.

The deceptive flows problem is addressed in [17] by defining a more general
notion of abstract non-interference (ANI) which introduces a third uco parameter
φ. The definition of ANI adapts that of NANI by lifting the semantics of a
program to an abstract version in which low inputs are abstracted by η and high
inputs by φ. A potential criticism of this approach is that an intuitive reading is
not clear, since it is based on an abstraction of the original program semantics.
On the other hand, being based on Abstract Interpretation [12, 11], abstract non-
interference has the potential to leverage very well developed theory and static
analysis algorithms for policy checking and enforcement. It would therefore be
useful to explore the connections further and to attempt an analysis of the ANI
definitions (see also additional variants in [21]) relating them to more intuitive
properties based on knowledge sets. A starting point could be [19] which provides
an alternative characterisation of NANI using equivalence relations.

Provenance A recent abstract model of information provenance [6] is built
on an information-flow foundation and has a number of similarities with our
model, including a focus on an observer model as an equivalence relation, and a
knowledge-based approach described in terms of queries that an observer can an-
swer. Provenance is primarily concerned with a providing sufficient information
to answer provenance-related questions. In secrecy and erasure one is concerned
with not providing more than a certain amount.

6 Conclusions and further work

We have presented a rich, knowledge-based abstract framework for erasure pol-
icy specification, taking into account both quantitative and conditional aspects
of the problem. Our model includes an explicit representation of the attacker.
The knowledge-based approach guarantees an intuitive understanding of what
it means for an attacker to deduce some information about the secret, and for a
policy to provide an upper bound to these deductions.

Our work so far suggests a number of possible extensions. At this stage, the
most relevant ones on the theoretical side are:

– Develop a logic defined on traces, both to support policy definition and to
give the basis for an enforcement mechanism (as is done in [3]).

– Model multilevel erasure, based on the fact the attacker might perform obser-
vations up-to a certain level in the security lattice. It would be interesting to
investigate different classes of such attackers and to analyse their properties.

– Generalise policy specifications to use K-spaces in place of equivalence rela-
tions. This would allow specification of disjunctive policies such as “reveal

the key or the ciphertext, but not both”. Non-ER policies may also be more
appropriate for protection of facts, rather than queries, since ER’s are ef-
fectively closed under complementation and so cannot reveal a fact without
also revealing its negation (for example, we may be prepared to reveal “not
HIV positive” to an insurance company, but not the negation of this fact).

– Extend the scope of the approach along the following key dimensions (de-
fined in the same spirit as [28]):

What: Our model is possibilistic but it is well known that possibilistic se-
curity guarantees can be very weak when non-determinism is resolved
probabilistically (see the example in Section 5 of [26]). A probabilistic
approach would be more expressive and provide stronger guarantees.

When: Our policies support history-based erasure conditions but many
scenarios require reasoning about the future (“erase this account in 3
weeks”). This would require a richer semantic setting in which time is
modelled more explicitly.

Who: We do not explicitly model the user’s behaviour but it is implicit
in our possibilistic approach that the user behaves non-deterministically
and, in particular, that later inputs are chosen independently of the
erasure subject. Modelling user behaviour explicitly would allow us to
relax this assumption (which is not realistic in all scenarios) and also to
model active attackers.

– Understand the interplay between erasure and cryptographic concepts. To
make this possible some refinements of the theory are needed. Firstly, it
would be natural to move to a probabilistic system model. Secondly, the
present notion of knowledge assumes an attacker with computationally un-
limited deductive power; instead we would need a notion of feasibly com-
putable knowledge.

We have focussed on characterising expressive erasure policies, but not on
their verification for actual systems. As a step towards bridging this to more
practical experiments in information erasure, it would be instructive to explore
the connections to the rich policies expressible by the enforcement mechanism
for Python programs we describe in our earlier work [14].

Acknowledgment Alejandro Russo provided valuable input throughout the
development of this work. Many thanks to the anonymous referees for useful
comments and observations. This work was partially financed by grants from
the Swedish research agencies VR and SSF, and the European Commission EC
FP7-ICT-STREP WebSand project.

References

1. Alur, R., Zdancewic, S.: Preserving secrecy under refinement. In: Proc. of the 33rd
Internat. Colloq. on Automata, Languages and Programming (ICALP 06), volume
4052 of Lecture Notes in Computer Science. pp. 107–118. Springer-Verlag (2006)

2. Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, encryption
and key release policies. In: Proceedings of the 2007 IEEE Symposium on Security
and Privacy. pp. 207–221. SP ’07, IEEE Computer Society, Washington, DC, USA
(2007)

3. Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic for information
flow security. In: ACM SIGPLAN Sixth Workshop on Programming Languages
and Analysis for Security (June 2011)

4. Banerjee, A.: Expressive declassification policies and modular static enforcement.
In: In Proc. IEEE Symp. on Security and Privacy. pp. 339–353 (2008)

5. Broberg, N., Sands, D.: Flow-sensitive semantics for dynamic information flow
policies. In: ACM SIGPLAN Fourth Workshop on Programming Languages and
Analysis for Security (PLAS 2009). ACM (June 15 2009)

6. Cheney, J.: A formal framework for provenance security. In: The 24th IEEE Com-
puter Security Foundations Symposium (June 2011)

7. Chong, S., Myers, A.: Language-based information erasure. Computer Security
Foundations, 2005. CSFW-18 2005. 18th IEEE Workshop pp. 241–254 (June 2005)

8. Chong, S.: Expressive and Enforceable Information Security Policies. Ph.D. thesis,
Cornell University (Aug 2008)

9. Chong, S., Myers, A.C.: End-to-end enforcement of erasure and declassification.
In: CSF. pp. 98–111. IEEE Computer Society (2008)

10. Cohen, E.S.: Information transmission in sequential programs. In: DeMillo, R.A.,
Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Foundations of Secure Computation,
pp. 297–335. Academic Press (1978)

11. Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N.
(eds.) Program Flow Analysis: Theory and Applications, chap. 10, pp. 303–342.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1981)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. ACM
Symp. on Principles of Programming Languages. pp. 238–252 (Jan 1977)

13. Del Tedesco, F., Hunt, S., Sands, D.: A semantic hierarchy for erasure policies
(extended version). In: International Conference on Information System Security
(2011), www.cse.chalmers.se/~tedesco/stuff/iciss2011Extended.pdf

14. Del Tedesco, F., Russo, A., Sands, D.: Implementing erasure policies using taint
analysis. In: Aura, T. (ed.) The 15th Nordic Conference in Secure IT Systems.
LNCS, Springer Verlag (October 2010)

15. Del Tedesco, F., Sands, D.: A user model for information erasure. In: 7th Interna-
tional Workshop on Security Issues in Concurrency (SECCO 09). pp. 16–30 (2009)

16. Focardi, R., Gorrieri, R.: A classification of security properties for process algebras.
J. Computer Security 3(1), 5–33 (1995)

17. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In: Proc. ACM Symp. on Principles of
Programming Languages. pp. 186–197 (Jan 2004)

18. Hunt, S., Sands, D.: Just forget it – the semantics and enforcement of information
erasure. In: Programming Languages and Systems. 17th European Symposium on
Programming, ESOP 2008. pp. 239–253. No. 4960 in LNCS, Springer Verlag (2008)

19. Hunt, S., Mastroeni, I.: The per model of abstract non-interference. In: Static
Analysis, 12th International Symposium, SAS 2005, London, UK, September 7-9,
2005, Proceedings. Lecture Notes in Computer Science, vol. 3672, pp. 171–185.
Springer (2005)

20. Landauer, J., Redmond, T.: A lattice of information. In: Proc. IEEE Computer
Security Foundations Workshop. pp. 65–70 (Jun 1993)

21. Mastroeni, I.: On the rôle of abstract non-interference in language-based security.
In: APLAS. Lecture Notes in Computer Science, vol. 3780, pp. 418–433. Springer
(2005)

22. McLean, J.: Security models and information flow. In: Proc. IEEE Symp. on Se-
curity and Privacy. pp. 180–187 (May 1990)

23. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access
control policies with dependent types. In: Proc. IEEE Symp. on Security and Pri-
vacy (2011)

24. O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interactive
programs. In: CSFW ’06: Proceedings of the 19th IEEE workshop on Computer Se-
curity Foundations. pp. 190–201. IEEE Computer Society, Washington, DC, USA
(2006)

25. Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. pp. 452–487 (1976)
26. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential

programs. In: Proc. European Symp. on Programming. LNCS, vol. 1576, pp. 40–
58. Springer-Verlag (Mar 1999)

27. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation 14(1), 59–91 (March 2001)

28. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. Journal of
Computer Security 15(5), 517–548 (2009)

29. Sutherland, D.: A model of information. In: Proc. National Computer Security
Conference. pp. 175–183 (Sep 1986)

30. Wei, M.Y.C., Grupp, L.M., Spada, F.E., Swanson, S.: Reliably erasing data from
flash-based solid state drives. In: 9th USENIX Conference on File and Storage
Technologies, San Jose, CA, USA, February 15-17, 2011. pp. 105–117. USENIX
(2011)

31. Wittbold, J.T., Johnson, D.M.: Information flow in nondeterministic systems. In:
IEEE Symposium on Security and Privacy. pp. 144–161 (1990)

