
On Flow-Sensitive Security Types

Sebastian Hunt
Department of Computing

School of Informatics, City University
London EC1V OHB, UK

seb@soi.city.ac.uk

David Sands
Department of Computer Science and Engineering,

Chalmers University of Technology
Göteborg, Sweden
dave@chalmers.se

Abstract
This article investigates formal properties of a family of seman-
tically sound flow-sensitive type systems for tracking information
flow in simple While programs. The family is indexed by the choice
of flow lattice.

By choosing the flow lattice to be the powerset of program vari-
ables, we obtain a system which, in a very strong sense, subsumes
all other systems in the family (in particular, for each program, it
provides a principal typing from which all others may be inferred).
This distinguished system is shown to be equivalent to, though
more simply described than, Amtoft and Banerjee’s Hoare-style in-
dependence logic (SAS’04).

In general, some lattices are more expressive than others. De-
spite this, we show that no type system in the family can give better
results for a given choice of lattice than the type system for that
lattice itself.

Finally, for any program typeable in one of these systems, we
show how to construct an equivalent program which is typeable in a
simple flow-insensitive system. We argue that this general approach
could be useful in a proof-carrying-code setting.

Categories and Subject Descriptors D.3 [PROGRAMMING LAN-
GUAGES]; F.3.1 [LOGICS AND MEANINGS OF PROGRAMS]:
Specifying and Verifying and Reasoning about Programs; F.3.2
[LOGICS AND MEANINGS OF PROGRAMS]: Semantics of Pro-
gramming Languages—Program analysis

General Terms Languages, Security, Theory

Keywords flow-sensitivity, information flow, non-interference,
static analysis, type systems

1. Introduction
This article investigates formal properties of a family of flow-
sensitive type systems for tracking information flow.

The analysis of information flow in programs has received con-
siderable attention in recent years due to its connection to the prob-
lem of secure information flow [SM03]. The classic end-to-end
confidentiality policy says that if certain data in a system is consid-
ered secret from the perspective of a certain observer of the system,
then during computation there should be no information flow from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

that data to that observer. Denning and Denning [DD77] pioneered
the use of program analysis to statically determine if the informa-
tion flow properties of a program satisfy a certain confidentiality
policy.

Most of the more recent work in this area (see [SM03] for an
overview) has been based upon the use of security type systems to
formulate the analysis of secure information flow, and to aid in a
rigorous proof of its correctness.

We will focus, like many works in the area, on systems in which
secrets are stored in variables. Security levels are associated with
variables, and this describes the intended secrecy of the contents.
The simplest instance of the problem involves two security levels:
high (h) which denotes secrets, and low (l) which denotes public
data. A partial ordering, l v h, denotes that the only permitted
information flow is from l to h. The security problem is to verify
that there is no dependency between the initial value of the high
variables (the secret to which the program has access), and the
final value of the low variables (the outputs which are visible to
the public).

With respect to the treatment of variables, one feature of almost
all recent type based systems is that they are flow-insensitive. This
means that the order of execution is not taken into account in the
analysis. One simple intuition for the notion of flow-insensitivity
[NRH99] is that an analysis is flow-insensitive if the results for
analysing C1 ; C2 are the same as that for C2 ; C1. In this respect
the analysis of [VSI96] (which can be viewed as a reformulation
of Denning and Denning’s original analysis) is flow-insensitive.
In particular flow-insensitivity of this style of type system means
that if a program is to be typed as “secure” then every subprogram
must also be typed as “secure”. So for example the trivial program
l := h ; l := 0 where h contains a secret, and the final value of
l is low (publicly observable) is considered insecure because the
subprogram l := h is insecure.

More generally, flow-insensitivity uses a single abstraction (in
this case a single security level) to represent each variable in the
program. Flow-sensitivity, on the other hand, increases accuracy
by providing a different abstraction at each program point.

Although there are a number of empirical/experimental analy-
ses of the relationship between flow-sensitive and flow-insensitive
program analyses (see e.g. [CH95]), there has been very little dis-
cussion of this dimension in connection to information flow analy-
sis.

In this article we investigate flow-sensitive typings for a sim-
ple While language. We present a family of semantically sound se-
curity type systems (parameterised by the choice of flow lattice)
which allow the type of a variable to “float”, assigning different
security types at different points in the program (Section 2).

Although this type system is extremely simple, it turns up some
surprises. Our main results are the following:

• Although we can freely choose an arbitrarily complex flow lat-
tice, there is a single “universal” lattice, and hence a single
type system, from which all other typings in all other instances
can be deduced. In fact, all possible typings in all possible lat-
tices can be obtained from one principal typing in the universal
lattice. From the principal typing, we can construct both the
strongest (smallest) output typing for a given input typing, and
the weakest (largest) input typing for a given output typing. The
universal lattice is the powerset of program variables.

• For the universal lattice, we show that the type system is equiv-
alent to Amtoft and Banerjee’s Hoare-like logic for program de-
pendence [AB04], which is expressed in terms of input-variable
output-variable independence pairs. Because our formulation is
based on dependence rather than independence, it is arguably
simpler and admits a more straightforward correctness proof,
without the need to resort to a non-standard trace semantics.

• In general, some lattices are more expressive than others. For
example, in contrast to the two-point lattice l v h, a single
derivation in the type system for the universal lattice can iden-
tify fine-grained inter-variable dependencies of the form “x may
depend on the initial value of y but not on z”. Despite this vari-
ation in expressiveness, we establish in Section 6 an “internal
completeness” result which shows that no type system in the
family can give better results for a given choice of lattice than
the type system for that lattice itself.

• Finally in Section 7 we show that for any program typeable
in an instance of the flow-sensitive system, we are able to con-
struct an equivalent program which is typeable in a simple flow-
insensitive system. The translation is given by a security-type-
directed translation, introducing extra variables. This general
approach could be useful in a proof-carrying-code setting where
the code consumer can have a simple type system, but the code
producer is free to work in a more permissive system and use
the translation to provide more easily checked code.

1.1 Related Work
A number of authors have presented flow-sensitive information
flow analyses e.g. [CHH02]. Those close in style to a type system
formulation include Banâtre et al [BBL94], who present a system
very similar to that of [AB04], except that all indirect flows are
handled in a pre-pass. Andrews and Reitman describe a similar
logic [AR80] but did not consider semantic soundness.

In the treatment of information flow analysis of low level code
(e.g., [GS05, HS05]), flow-sensitivity arises as an essential compo-
nent to handle single threaded structures such as stacks and regis-
ters, since obviously stacks and registers cannot be assigned a fixed
type throughout program execution.

The transformation we present in Section 7 is related to sin-
gle static assignment(SSA)[CFR+89], although the perspective is
quite different. We discuss this further in Section 7.6

2. A Family of Type Systems
We work with a simple While language with the usual seman-
tics. Program variables are drawn from a finite set Var. A flow-
insensitive type system, such as that in [VSI96], has the following
form: each variable is assigned a fixed security level. When assign-
ing an expression to a variable x := E, all variables in E must have
an equal or lower security level. When assignments take place in
loops or conditional branches, to avoid indirect information flows
the level of x must be at least as high as the level of any variable in
the branching expression.

To allow types to be flow-sensitive, we must allow the type of a
variable to “float”. For example, taking the two-point flow lattice,
when assigning an expression to a variable x := y+x, if x has type

Skip
p ` Γ {skip} Γ

Assign Γ ` E : t

p ` Γ {x := E} Γ[x 7→ p t t]

Seq
p ` Γ {C1} Γ′ p ` Γ′ {C2} Γ′′

p ` Γ {C1 ; C2} Γ′′

If
Γ ` E : t p t t ` Γ {Ci} Γ′ i = 1, 2

p ` Γ {if E C1 C2} Γ′

While
Γ ` E : t p t t ` Γ {C} Γ

p ` Γ {while E C} Γ

Sub
p1 ` Γ1 {C} Γ′

1

p2 ` Γ2 {C} Γ′
2

p2 v p1, Γ2 v Γ1, Γ
′
1 v Γ′

2

Table 1. Flow-Sensitive Type Rules

l before the assignment and y has type h, then after the assignment
x must be considered to have type h.

The flow-sensitive system we define is a family of inference
systems, one for each choice of flow lattice L (where L may be any
finite lattice). For a command C, judgements have the form

p `L Γ {C} Γ′

where p ∈ L, and Γ, Γ′ are type environments of type Var → L.
The inference rules are shown in Table 1. The idea is that if Γ de-
scribes the security levels of variables which hold before execution
of C, then Γ′ will describe the security levels of those variables
after execution of C. The type p represents the usual “program
counter” level and serves to eliminate indirect information flows;
the derivation rules ensure that only variables which end up (in Γ′)
with types greater than or equal to p may be changed by C. We
write `L Γ {C} Γ′ to mean ⊥L `L Γ {C} Γ′. We drop the L
subscript from judgements where the identity of the lattice is clear
from the context or is not relevant to the discussion.

In some of the derivation rules we write Γ ` E : t to mean that
expression E has type t assuming type environment Γ. Throughout
this paper the type of an expression is defined simply by taking the
lub of the types of its free variables:

Γ ` E : t iff t =
G

x∈fv(E)

Γ(x).

This is consistent with the typings used in many systems, though
more sophisticated typing rules for expressions would be possible
in principle.

3. Semantic Soundness
The type systems satisfy a straightforward non-interference condi-
tion: only changes to inputs with types v t should be visible to out-
puts with type t. More precisely, given a derivation ` Γ {C} Γ′,
the final value of a variable x with final type t = Γ′(x), should
depend at most on the initial values of those variables y with initial
types Γ(y) v t. Following [HS91, SS01, HR98] we formalise this
using equivalence relations.

Definition 3.1. Let R and S be equivalence relations on stores. We
say that program C maps R into S, written C : R ⇒ S, iff, for all
σ, ρ, if 〈C, σ〉 ⇓ σ′ and 〈C, ρ〉 ⇓ ρ′ then σ R ρ ⇒ σ′ S ρ′.

We note that this is a partial correctness condition: it allows
C to terminate on σ but diverge on ρ, even when σ R ρ. This
reflects the fact that the type systems take no account of the ways
in which the values of variables may affect a program’s termination
behaviour. Given Γ : Var → L and t ∈ L, we write =Γ,t for the
equivalence relation on stores which relates stores which are equal
on all variables having type v t in environment Γ, thus: σ =Γ,t ρ
iff ∀x.Γ(x) v t ⇒ σ(x) = ρ(x).

The formal statement of correctness for a derivation p ` Γ {C}
Γ′ has two parts, one asserting a simple safety property relating
to p (as described in Section 2) and the other asserting the non-
interference property.

Definition 3.2. The semantic security relation p |=L Γ {C} Γ′

holds iff both the following conditions are satisfied:

1. For all σ, σ′, x, if 〈C, σ〉 ⇓ σ′ and Γ′(x) 6w p, then σ′(x) =
σ(x).

2. For all t ∈ L, C : (=Γ,t) ⇒ (=Γ′,t).

As with `L, we suppress the L subscript where possible. We
write |=L Γ {C} Γ′ to mean ⊥L |=L Γ {C} Γ′ (note that
condition 1 is vacuous for p =⊥).

Theorem 3.3 (Semantic Soundness). p `L Γ {C} Γ′ ⇒ p |=L

Γ {C} Γ′.

The proof for condition 2 of the semantic security relation
depends on condition 1, but not vice versa. Proof of condition 1
is by an easy argument that Γ′(x) 6w p implies that C contains
no assignments to x. Proof of condition 2 is by induction on the
derivation.

The reverse implication, semantic completeness, does not hold,
as shown by the following:

Example 3.4. Consider the program C
def

= if (h == 0) (l :=
h) (l := 0). This is semantically equivalent to l := 0 so it is
clear that |= Γ {C} Γ holds for arbitrary Γ. However, for
Γ(h) = h, Γ(l) = l, with l @ h, 6 ` Γ {C} Γ, because
Γ ` (h == 0) : h and the assignments to l force Γ′(l) w h.

4. The Algorithmic Type System
In this section we introduce a variant of the typing rules in which
the weakening rule (Sub) is removed and folded into the If and
While rules. The result is a system which calculates the smallest
Γ′ such that p `L Γ {C} Γ′. The Skip, Assign and Seq rules are
unchanged. The replacement If and While rules are shown in Ta-
ble 2. The rules are deterministic: given an input type environment
exactly one derivation is possible for any given C. (Well, almost.
The While rule allows the chain Γ′

0, Γ
′
1, · · · , Γ′

n to be extended ar-
bitrarily by appending unnecessary repetitions of the limit. We may
assume that n is chosen minimally.)

Theorem 4.1 (Algorithmic Correctness). For all L and for all C:

1. For all p, Γ, there exists a unique Γ′ such that p `a

L Γ {C} Γ′

and furthermore, the corresponding function AC
L (p,Γ) 7→ Γ′

is monotone.
2. If p `L Γ {C} Γ′ then AC

L (p, Γ) v Γ′.
3. If p `a

L Γ {C} Γ′ then p `L Γ {C} Γ′.

Corollary 4.2. AC
L (p, Γ) is the least Γ′ such that p `L Γ {C} Γ′.

Proof of Algorithmic Correctness. Proof of part 1 of the theorem
is by induction on the structure of the command. The interest-
ing case is while E C. By induction hypothesis, AC

L is well-
defined and monotone. It follows that the sequences Γ, Γ′

1, Γ
′
2, . . .

and ⊥, Γ′′
0 , Γ′′

1 , . . . may be constructed as Γ, F (Γ), F 2(Γ), . . . and

Γ
′

n+1

Γ
′

n

w

w

w

w

Γ
′′

n

Γ
′′

n−1

Γ
′

1

......................
Γ
′′

1

.......

Γ ======== Γ
′

0 Γ
′′

0

⊥

Figure 1. Construction of a Minimal While Typing

⊥, G(⊥),G2(⊥), . . ., with F and G being monotone functions de-
rived from AC

L ; thus these sequences form the ascending chains
shown in Figure 1. The chains have finite height because the lat-
tices are finite, thus n is guaranteed to exist such that Γ′

n+1 = Γ′
n

and it is then immediate that Γ′
m = Γ′

n for all m > n. Put more
succinctly, the While rule specifies Γ′

n as an iterative construction
of the least fixed point of a monotone function on a finite lattice.

The proofs of parts 2 and 3 of the theorem are then by straight-
forward inductions on the p `L Γ {C} Γ′ derivation and the struc-
ture of C, respectively.

In Section 7 we adapt this version of the type system to define a
program transformation which allows the use of conventional fixed-
type systems in place of the flow-sensitive ones.

5. A Limiting Case: Dependency Analysis
Given the correctness condition, it is clear that the type systems de-
fined above are calculating dependency relationships between pro-
gram variables. Intuitively, we might expect to gain the most pre-
cise dependency information by choosing the flow lattice P(Var),
which allows us to consider arbitrary sets of variables (including
the singleton sets) as distinct types. In Section 6 we explore in de-
tail this question of precision, with some slightly surprising results.
Section 6 also formally establishes the special status of the type
system for P(Var); anticipating this, we introduce some terminol-
ogy:

Definition 5.1. The universal lattice is the flow lattice P(Var) of
sets of program variables. The universal system is the correspond-
ing type system.

In this section we show that the universal system is equivalent to
(is, in fact, the De Morgan dual of) Amtoft and Banerjee’s Hoare-
style independence logic [AB04].

For notational clarity when comparing the universal system with
other choices of L, we let ∆, ∆′ range over type environments just
in the universal system (thus ∆, ∆′ : Var → P(Var)).

If
Γ ` E : t p t t `a Γ {Ci} Γ′

i i = 1, 2

p `a Γ {if E C1 C2} Γ′
Γ′ = Γ′

1 t Γ′
2

While
Γ′

i ` E : ti p t ti `
a Γ′

i {C} Γ′′
i 0 ≤ i ≤ n

p `a Γ {while E C} Γ′
n

Γ′
0 = Γ, Γ′

i+1 = Γ′′
i t Γ, Γ′

n+1 = Γ′
n

Table 2. Flow-Sensitive Type Rules: Algorithmic Version

5.1 Comparison with Amtoft-Banerjee Hoare Logic
In [AB04], Amtoft and Banerjee define a Hoare-style logic for
deducing independence relationships between variables in While
programs. Judgements in the logic have the form

G ` T {C} T
′

where G ∈ P(Var) and T, T ′ ∈ P(Var × Var). The idea is
roughly as follows. Suppose that C is preceded by some previous
computation on the store. We will refer to the value of a variable
before this preceding computation as its original value. Then a
pair [x#y] in T ′ represents an assertion that the value of x after
C is independent of the original value of y, assuming that all the
independence pairs in T are valid for the preceding computation.
For ease of comparison, rather than sets of independence pairs
T , we present the logic in terms of mappings ∇,∇′ : Var →
P(Var) (this depends simply on the set isomorphism A × B ∼=
A → P(B)). Thus Amtoft-Banerjee (AB) judgements in our
presentation have the form

G ` ∇ {C} ∇′

The AB derivation rules are shown in Table 3. The ordering � is
pointwise reverse subset inclusion, thus:

∇1 � ∇2 iff ∀x ∈ Var.∇1(x) ⊇ ∇2(x)

Note that the ordering used on G is just ⊆, not �.
The relationship between the AB logic and the universal sys-

tem is straightforward: for each ∆ there is a corresponding ∇ such
that ∇(x) is the complement of ∆(x). Where the universal sys-
tem derives sets of dependencies, the AB logic simply derives the
complementary set of independencies. (An AB context set G, on
the other hand, corresponds directly to the same set p in a P(Var)-
derivation.) We use the following notation:

∆
def

= ∇, where ∇(x) = Var − ∆(x)

∇
def

= ∆, where ∆(x) = Var −∇(x)

Clearly this is an order isomorphism: ∆ = ∆ and ∆1 v ∆2 iff
∆1 � ∆2, etc.

Theorem 5.2. The AB logic and the universal system are De
Morgan duals. That is, G ` ∆ {C} ∆′ is derivable in the
universal system iff G ` ∆ {C} ∆′ is derivable in the AB logic.

The proof amounts, essentially, to showing that each AB rule
is the dual of the universal system counterpart. This is not quite
literally true, since the way some AB rules are formulated builds in
the potential for implicit weakening, which must be made explicit
using Sub in the corresponding P(Var)-derivation. For example,
consider the second side condition on the rule IfAB. If we re-state
this in its contrapositive form

(∃x ∈ fv(E).w 6∈ ∇(x)) ⇒ w ∈ G
′

it is easily seen that the two side-conditions together amount to

G
′ ⊇ G ∪

[

x∈fv(E)

∇(x) (1)

Note that any subderivation concluding at a premise to IfAB with
G′ strictly greater than required by (1), can have an instance of
SubAB added at the end to make G′ = G ∪

S

x∈fv(E) ∇(x).
With this caveat, the side condition for IfAB is equivalent to the
If premise in the universal system. Similar observations apply to
the side conditions for AssignAB and WhileAB.

6. Internal Completeness
In this section we explore a fundamental relationship between dif-
ferent members of our family of flow-sensitive type systems. For
simplicity of presentation, we consider only “top-level” typing
judgements, ie, those of the form ` Γ {C} Γ′ (see Section 6.3
for further remarks on this point). We start by formalising a key
notion: the sense in which one typing can be viewed as subsuming
another (possibly in a different lattice). Given Γ, Γ′ : Var → L,
we refer to a pair Γ {·} Γ′ as an L-typing. If ` Γ {C} Γ′ we say
that typing Γ {·} Γ′ is derivable for C.

Definition 6.1. An L1-typing Γ1 {·} Γ′
1 is said to subsume an

L2-typing Γ2 {·} Γ′
2 iff, for all commands C

|=L1
Γ1 {C} Γ′

1 ⇒ |=L2
Γ2 {C} Γ′

2

Note that this is a semantic notion of subsumption: one typing
subsumes another precisely when the non-interference property
specified by the former is stronger - satisfied by fewer programs -
than that specified by the latter. As we shall see (Theorem 6.3), the
type systems actually faithfully reflect this semantic relationship.

As defined, subsumption appears difficult to verify, since it
quantifies over all possible programs. In fact, it suffices to compare
the order relationships between the two pairs of type environments:

Theorem 6.2. L1-typing Γ1 {·} Γ′
1 subsumes L2-typing Γ2 {·}

Γ′
2 iff, for all x, y ∈ Var:

Γ1(x) v Γ′
1(y) ⇒ Γ2(x) v Γ′

2(y)

Proof. For the only if direction we show the contrapositive. As-
sume Γ1(x) v Γ′

1(y) and Γ2(x) 6v Γ′
2(y). We must find some

command C such that |=L1
Γ1 {C} Γ′

1 but 6 |=L2
Γ2 {C} Γ′

2. Let
{z1, . . . , zn} = Var − {y} and let C be the program

y := x; z1 := 0; · · · ; zn := 0

(the use of 0 here is arbitrary, any constant will do). It is then
easy to verify that C : (=Γ1,t) ⇒ (=Γ′

1
,t) holds for all t but

C : (=Γ2,s) ⇒ (=Γ′

2
,s) fails for s = Γ′

2(y).
For the if direction, Assume

(A1) Γ1(x) v Γ′
1(y) ⇒ Γ2(x) v Γ′

2(y)
(A2) |=L1

Γ1 {C} Γ′
1

We have to show, for all s ∈ L2, C : (=Γ2,s) ⇒ (=Γ′

2
,s).

Suppose σ =Γ2,s ρ and 〈C, σ〉 ⇓ σ′ and 〈C, ρ〉 ⇓ ρ′ and
Γ′

2(y) v s. We must show σ′(y) = ρ′(y). Now, for any x,
Γ2(x) v Γ′

2(y) ⇒ Γ2(x) v s ⇒ σ(x) = ρ(x). Hence, by
(A1), Γ1(x) v Γ′

1(y) ⇒ σ(x) = ρ(x), thus σ =Γ1,t ρ, where
t = Γ′

1(y). Hence, by (A2), σ′ =Γ′

1
,t ρ′, hence σ′(y) = ρ′(y) as

required.

AssignAB
G ` ∇ {x := E} ∇′

if ∀y.∀w ∈ ∇′(y).
x 6= y ⇒ w ∈ ∇(y)
x = y ⇒ w 6∈ G ∧ ∀z ∈ fv(E).w ∈ ∇(y)

SeqAB
G ` ∇ {C1} ∇′ G ` ∇′ {C2} ∇′′

G ` ∇ {C1 ; C2} ∇′′

IfAB
G′ ` ∇ {Ci} ∇′ i = 1, 2

G ` ∇ {if E C1 C2} ∇′

if G ⊆ G′

and w 6∈ G′ ⇒ ∀x ∈ fv(E).w ∈ ∇(x)

WhileAB
G′ ` ∇ {C} ∇

G ` ∇ {while E C} ∇

if G ⊆ G′

and w 6∈ G′ ⇒ ∀x ∈ fv(E).w ∈ ∇(x)

SubAB
G1 ` ∇1 {C} ∇′

1

G2 ` ∇2 {C} ∇′
2

G2 ⊆ G1,∇2 � ∇1,∇
′
1 � ∇′

2

Table 3. Amtoft-Banerjee Hoare Logic

This result shows that the semantic content of a judgement `
Γ {C} Γ′ is uniquely determined by the set of pairs {(x, y)|Γ(x) v
Γ′(y)}: the smaller this set, the stronger the non-interference prop-
erty. In fact, these pairs are precisely the dependencies allowed by
the typing: if Γ(x) v Γ′(y) then the final value of y after execut-
ing C may depend on the initial value of x. Alternatively, we may
consider the contrapositive form of Theorem 6.2, which says that
Γ1 {·} Γ′

1 subsumes Γ2 {·} Γ′
2 iff

Γ2(x) 6v Γ′

2(y) ⇒ Γ1(x) 6v Γ′

1(y)

This allows us to understand a typing in terms of independence
relations (as used by Amtoft and Banerjee). The larger the set
{(x, y)|Γ(x) 6v Γ′(y)}, the stronger the non-interference property:
if Γ(x) 6v Γ′(y) then the final value of y after executing C must be
independent of the initial value of x.

Now suppose we have an L1-typing which subsumes an L2-
typing, and suppose we find that the L2-typing is not derivable
for C in the L2-type system. Will it ever be possible to verify
the soundness of the L2-typing for C indirectly, by deriving the
subsuming L1-typing in the L1-system instead? We might expect
this to happen in the case that L1 has more points, and is therefore
able to make more refined dependency distinctions, than L2. Con-
sider the examples shown in Figure 2, where L is the four point
lattice depicted. It can readily be verified that the P(Var)-typing
subsumes the L-typing and both judgements are derivable. How-
ever, the L judgement simply assigns y the most conservative typ-
ing in L, whereas the P(Var) judgement captures the fact that the
final value of y may depend on both x and z, but not on the initial
value of y. Could it be, that as part of a derivation for some larger
program, this fine-grained derivation for y enables us to derive a
P(Var)-typing subsuming an L-typing which cannot be derived in
the simpler L-system? Surprisingly, the answer is No, as confirmed
by the following theorem.

Theorem 6.3 (Internal Completeness). If L1-typing Γ1 {·} Γ′
1

subsumes L2-typing Γ2 {·} Γ′
2 and `L1

Γ1 {C} Γ′
1, then

`L2
Γ2 {C} Γ′

2.

Before we can prove the theorem, we need to develop some
further machinery. As an additional benefit of this development,
we find that, for each command C, there is a principal typing from
which all others can be obtained.

6.1 Monotone Renaming of Types
This section establishes a key technical result used in the proof of
the Internal Completeness theorem. Roughly speaking, the result
says that we can take any derivation and, by consistently renaming
the security types, obtain a new one. The notion of renaming is
very general and allows us to translate a derivation for one choice
of lattice into a derivation for a different lattice; we require only
that the renaming function be monotone. Given Γ : Var → L1 and
a renaming function f : L1 → L2, we write f∗(Γ) : Var → L2

for the pointwise extension of f to Γ, thus f∗(Γ)(x)
def

= f(Γ(x)).

Lemma 6.4 (Monotone Renaming). Let f : L1 → L2 be
monotone. Then p `L1

Γ {C} Γ′ ⇒ f(p) `L2
f∗(Γ) {C}

f∗(Γ′).

Proof. By induction on the height of the L1-derivation. We present
the Assign and While cases by way of illustration.

Case: Assign. We have an L1- derivation of the form:

Γ `L1
E : t

p `L1
Γ {x := E} Γ′

where Γ′ = Γ[x 7→ p t t]. We can construct an L2- derivation:

f∗(Γ) `L2
E : t′

f(p) `L2
f∗(Γ) {x := E} f∗(Γ)[x 7→ f(p) t t′]

It suffices to show that f∗(Γ)[x 7→ f(p) t t′] v f∗(Γ′) (since we
can then use Sub). By the definitions, f∗(Γ)[x 7→ f(p) t t′](y) =
f∗(Γ′)(y) for all y 6= x and it remains to show f(p)tt′ v f(ptt).
Now by monotonicity of f we have

t
′ def

=
G

y∈fv(E)

f(Γ(y)) v f

0

@

G

y∈fv(E)

Γ(y)

1

A = f(t) (2)

Finally, using this and monotonicity of f again, we have f(p)tt′ v
f(p) t f(t) v f(p t t).

Case: While. We have an L1- derivation of the form:

Γ `L1
E : t p t t `L1

Γ {C} Γ

p `L1
Γ {while E C} Γ

By induction hypothesis we have f(p t t) `L2
f∗(Γ) {C} f∗(Γ).

As in the Assign case, we have f∗(Γ) `L2
E : t′ and f(p) t t′ v

H

L

NM

`P(Var) [x : {x}, y : {y}, z : {z}] if x (y := z) (y := 0) [x : {x}, y : {x, z}, z : {z}]

`L [x : m, y : l, z : n] if x (y := z) (y := 0) [x : m, y : h, z : n]

Figure 2. Example Derivations

f(p t t), allowing us to construct:

f∗(Γ) `L2
E : t′

Sub
f(p t t) `L2

f∗(Γ) {C} f∗(Γ)

f(p) t t′ `L2
f∗(Γ) {C} f∗(Γ)

f(p) `L2
f∗(Γ) {while E C} f∗(Γ)

6.2 Canonical Derivations
Given the Monotone Renaming lemma, we might hope to prove
the Internal Completeness theorem by a construction for a suitable
monotone renaming function to translate the L1-derivation into an
L2-derivation for the subsumed typing. However, since an appro-
priate construction is not immediately obvious1, we go via an in-
direct route. We begin our detour by showing how to produce any
given derivation `L Γ {C} Γ′ from a particular form of derivation
in the universal system. To do this we construct, for each choice of
Γ, an abstract interpretation [CC77] which is given by a pair of
monotone renaming maps:

Definition 6.5. Given Γ : Var → L, we define the maps αΓ :
P(Var) → L and γΓ : L → P(Var) by:

αΓ(X)
def

=
G

x∈X

Γ(x) (3)

γΓ(t)
def

= {x | Γ(x) v t} (4)

These maps enjoy a special status. Recall [DP90] that a Galois
Connection (GC) between L1 and L2 is a pair of maps 〈α, γ〉 with
α : L1 → L2, γ : L2 → L1 and such that α(s) v t ⇐⇒
s v γ(t). Key properties of a GC are that α, γ are both monotone,
α ◦ γ v id, γ ◦ α w id, α preserves joins and γ preserves meets.
Furthermore, the two component maps uniquely determine each
other, thus:

α(s) =
l

{t | s v γ(t)} (5)

γ(t) =
G

{s | α(s) v t} (6)

Lemma 6.6. For any Γ : Var → L, the pair 〈αΓ, γΓ〉 is a Galois
Connection between P(Var) and L.

Our first use of these renaming functions is, given an L-typing
Γ {·} Γ′, to construct a typing in the universal system which
subsumes it. A central rôle is played by the particular P(Var) type
environment which maps each x to the singleton {x}. We denote
this environment by ∆0. Thus, for all x ∈ Var, ∆0(x)

def

= {x}.

Lemma 6.7. ∆0 {·} γ∗
Γ(Γ′) subsumes Γ {·} Γ′.

Proof. Assume ∆0(x) ⊆ γΓ(Γ′(y)). We must show that Γ(x) v
Γ′(y). Since ∆0(x) = {x}, the assumption is just x ∈ γΓ(Γ′(y)),
hence Γ(x) v Γ′(y) by definition of γΓ.

It turns out that the two related typings stand or fall together: for
any C, the one is derivable if and only if the other is.

1 Though we can read it off easily enough once we have the proof. It is:
f(s) =

F

{Γ2(x)|Γ1(x) v s}.

Lemma 6.8 (Canonical Derivations).
`L Γ {C} Γ′ ⇐⇒ ` ∆0 {C} γ∗

Γ(Γ′)

Proof. The proof makes essential use of the Monotone Renam-
ing lemma. For the ⇒ direction, Monotone Renaming gives `
γ∗
Γ(Γ) {C} γ∗

Γ(Γ′). It then suffices to show that ∆0 ⊆ γ∗
Γ(Γ),

since appending a single use of Sub then gives the required deriva-
tion. To show ∆0 ⊆ γ∗

Γ(Γ) we must show x ∈ γΓ(Γ(x)) for all x,
and this is just Γ(x) v Γ(x).

For the ⇐ direction, Monotone Renaming gives ` α∗
Γ(∆0) {C}

α∗
Γ(γ∗

Γ(Γ′)). Now, by (5), αΓ({x})) =
d
{t | x ∈ γΓ(t)} =d

{t | Γ(x) v t} = Γ(x), thus α∗
Γ(∆0) = Γ. By standard prop-

erties of a GC, α∗
Γ(γ∗

Γ(Γ′)) v Γ′. Thus the required derivation
follows by appending a single use of Sub.

Now we can prove the theorem stated at the start of Section 6.

Proof of Internal Completeness. Assume L1-typing Γ1 {·} Γ′
1

subsumes L2-typing Γ2 {·} Γ′
2 and `L1

Γ1 {C} Γ′
1. We

must show `L2
Γ2 {C} Γ′

2 which, by the Canonical Derivations
lemma, is equivalent to

` ∆0 {C} γ
∗

Γ2
(Γ′

2) (7)

Furthermore, again by the Canonical Derivations lemma, the exis-
tence of our assumed derivation is equivalent to

` ∆0 {C} γ
∗
Γ1

(Γ′
1) (8)

It thus suffices to show

γ
∗
Γ1

(Γ′
1) v γ

∗
Γ2

(Γ′
2) (9)

and append a single use of Sub to derive (7) from (8). To show (9)
we must show Γ1(y) v Γ′

1(x) ⇒ Γ2(y) v Γ′
2(x), and this is just

the assumed type subsumption, so we are done.

As we noted above, the use of Galois Connections above is
a form of abstract interpretation, and is reminiscent of the study
of complete abstract interpretations [CC79, GRS00]. We have not
explored these connections deeply, but a key difference would
appear to be in our use of a different GC for each choice of Γ,
rather than a single GC relating all L-derivations to counterpart
derivations in the universal system.

6.3 Principal Typings
As an additional corollary of the Canonical Derivations lemma, we
find that, for each command C, there is a typing derivable for C
from which all others can be inferred, namely

` ∆0 {C} ∆C

where ∆C is the smallest ∆′ such that ` ∆0 {C} ∆′ (recall that,
by Corollary 4.2, this exists and is given by AC

P(Var)(∅, ∆0)). The
Canonical Derivations lemma shows that derivability of any given
`L Γ {C} Γ′ is equivalent to ∀x.∆C(x) ⊆ γ∗

Γ(Γ′(x)), which
unpacks to:

y ∈ ∆C(x) ⇒ Γ(y) v Γ′(x) (10)

In fact, we can show that ∆0 {·} ∆C is a principal typing for C,
in the sense defined by Wells [Wel02]. Transposed to our setting2,
Wells makes the following definitions:

• A pre-order on typings: Γ1 {·} Γ′
1 ≤ Γ2 {·} Γ′

2 iff ∀C. `
Γ1 {C} Γ′

1 ⇒ ` Γ2 {C} Γ′
2.

• Principal typings: typing Γ1 {·} Γ′
1 is principal for C iff

` Γ1 {C} Γ′
1, and ` Γ2 {C} Γ′

2 ⇒ Γ1 {·} Γ′
1 ≤ Γ2 {·} Γ′

2.

Theorem 6.9 (Principal Typing). ∆0 {·} ∆C is principal for C.

Before proving the theorem we state an easy lemma about sub-
sumption:

Lemma 6.10. If Γ1 {·} Γ′
1 subsumes Γ2 {·} Γ′

2 and Γ′ v Γ′
1,

then Γ1 {·} Γ′ subsumes Γ2 {·} Γ′
2.

Proof of Principal Typing. By definition of ∆C , ` ∆0 {C} ∆C .
Suppose ` Γ {C} Γ′. We must show, for all C ′, ` ∆0 {C′}
∆C ⇒ ` Γ {C′} Γ′. So suppose ` ∆0 {C′} ∆C . By Internal
Completeness, it suffices to show that ∆0 {·} ∆C subsumes
Γ {·} Γ′. By Lemma 6.7, ∆0 {·} γ∗

Γ(Γ′) subsumes Γ {·} Γ′ so, by
Lemma 6.10, it suffices to show ∆C v γ∗

Γ(Γ′). By the Canonical
Derivations lemma (using ` Γ {C} Γ′), ` ∆0 {C} γ∗

Γ(Γ′), so
by definition of ∆C , ∆C v γ∗

Γ(Γ′).

As noted earlier, we have restricted attention to typing judge-
ments p ` Γ {C} Γ′ with p =⊥. While this is appropriate when
we wish to consider whole programs, it does not allow us to apply
our principal typings result compositionally. We believe the results
above extend straightforwardly to the general case, the key step be-
ing to adjoin a “program counter variable” to Var, so the universal
lattice becomes P(Var + {pc}).

6.3.1 Polymorphism
The principal typing result above suggests that we should be able
to view typings in the universal system as polymorphic, in some
sense. In fact, this can be done quite directly: we may take an
isomorphic view of P(Var) which shows typings in the universal
system to be polymorphic in the standard sense of types involving
type variables. Assume given a set of type variables TVar ∼= Var,
ranged over by β. Assume also some particular 1-1 mapping be-
tween the two sets: we write βx for the type variable associated to
program variable x. In this view, ∆0 is a type environment which
assigns a unique polymorphic variable βx to each x. The applica-
tion of αΓ to ∆0 in the proof (⇐) of the Canonical Derivations
lemma amounts to an instantiation of the type variables to produce
Γ. In general, αΓ interprets a set T of type variables as the lub of
the interpretations of its elements. Thus, in this view, types in the
P(TVar) lattice can be thought of as formal lubs, which can be
interpreted as elements in any lattice L by fixing an interpretation
I for each β.

As above, let ∆C be the smallest ∆′ such that ` ∆0 {C} ∆′.
It can be shown that fixing Γ and calculating α∗

Γ(∆C) gives us
AC

L (⊥, Γ), ie the smallest Γ′ such that ` Γ {C} Γ′. More
interestingly, ∆C may also be used in the reverse direction, to
calculate the greatest Γ such that ` Γ {C} Γ′ for a given Γ′.
The idea is to construct an interpretation I : TVar → L which
“unifies” ∆C and Γ′, in the sense that

αI(∆C(x)) v Γ′(x) (11)

for all x, where αI (T)
def

=
F

β∈T
I(β). The greatest I satisfying

this equation for all x is given by

I(β)
def

=
l

{Γ′(x) | β ∈ ∆C(x)} (12)

2 For this purpose, we view our family as a single type system consisting of
the disjoint union of all its members.

The hope is that taking Γ(x)
def

= I(βx) should then give us the
greatest Γ such that ` Γ {C} Γ′. This is borne out by the
following:

Proposition 6.11. Given Γ′ : Var → L, let I be defined as in (12).
Then Γ(x)

def

= I(βx) is the greatest Γ such that ` Γ {C} Γ′.

Proof. By the Canonical Derivations lemma, it suffices to show that
the Γ defined is the greatest such that

` ∆0 {C} γ
∗
Γ(Γ′) (13)

Firstly, we show that (13) holds by showing that γΓ(Γ′(x)) ⊇
∆C(x) for all x. Suppose βy ∈ ∆C(x), then we must show that
Γ(y) = I(βy) v Γ′(x). This holds because βy ∈ ∆C(x) implies
Γ′(x) belongs to the set over which the meet is taken in (12).

It remains to show that γ∗

Γ′′ (Γ′) w ∆C ⇒ Γ′′ v Γ. We
show the contrapositive, so suppose Γ′′ 6v Γ. Thus, by (12), for
some z, βx ∈ ∆C(z) and Γ′′(x) 6v Γ′(z), thus βx ∈ ∆C(z) but
βx 6∈ γΓ′′(Γ′(z)).

7. Transformation to Fixed-Types
We have seen that floating types enable more programs to be typed
than a standard fixed-type approach. In this section we show that
if a program is typeable in the floating type system, then there is
an equivalent program which is typeable in a traditional fixed-type
system. We show this by construction: we extend the type system
so that it also generates such a program. Take as an example the
following valid judgement for the flow lattice l v h, and the type
environment Γ = [l : l, h : h]:

l ` Γ {l := h; l := 0; h := 0; l := h} Γ

A traditional security type system would not be able to handle
this example because the level of l becomes temporarily high, and
then the level of h becomes low. To systematically transform the
program to make it typeable by a fixed-type system, we represent
each variable by a family of variables, one for each element of
the flow lattice. The idea is that at any point in the computation
we will be working with one particular member of the family.
Whenever we need to raise the type of a variable from s to t in
the original program we represent this in the transformed program
by performing an assignment to move information from xs to xt,
and by henceforth working with xt.

Using this idea, the above program can be represented by the
following:

lh := hh; ll := 0; hl := 0; ll := hl

where hh and hl, for example, are distinct variables. The initial
inputs l and h are here represented by ll and hh respectively. In a
flow-insensitive security type system the program is deemed secure
because ll (and hl) only ever contain “low” information.

7.1 Fixed Variables
To discuss fixed types more precisely it is convenient to introduce
a new class of such type-indexed variables into the language:

Definition 7.1. For any given lattice of types L, define the set of
fixed variables, FVar, to be the set of type-indexed variables

FVar
def

= {xt | x ∈ Var, t ∈ L.}

To distinguish the fixed variables from the “ordinary” variables we
will henceforth refer to the variables in Var as floating variables.

So, for example, if we are working in the two-level flow lattice,
then for each floating variable x, we have in addition two fixed
variables xl and xh.

We will now extend the language with fixed-type variables.
Their dynamic semantics is just as for floating variables. We are
going to present a transformation by adapting the algorithmic ver-
sion of the type system, but first we must extend it to cover fixed-
type variables: we extend the rule for expressions and add a rule for
fixed-type assignment. We do not extend the type environments to
cover fixed variables since their type is given by their index.

Let fv(E) denote the free floating variables (as before), and
define ffv(E) to denote the free fixed variables of expression E
(and similarly for commands). Then the typing of expressions in
the extended language is given by

Γ ` E : t iff t =
G

x∈fv(E)

Γ(x) t
G

xt∈ffv(E)

t

The fixed type rule is simply:

Fixed-Assign
Γ ` E : s s v t, p v t

p `a Γ {xt := E} Γ

It is straightforward to extend the soundness arguments to encom-
pass fixed variables.

Note that if we restrict our attention to programs with no free
floating variables (fv(C) = ∅), then type environments are re-
dundant. We will use metavariable D to range over commands
with no free floating variables. We will write p ` D to denote
p `a Γ {D} Γ for arbitrary Γ. It should be straightforward
to see that derivations of this form correspond exactly to deriva-
tions in e.g. Volpano, Smith and Irvine’s system [VSI96], and other
Denning-style analyses, although we will not prove this formally.

7.2 Translation
Now we present the translation as an extension of the type system
(algorithmic version) to judgements of the form

p `L Γ {C ; D} Γ′

(we do not decorate ` for this system since the form of the judge-
ments readily distinguish them from the previously defined sys-
tems). First we need some basic constructions and notations.

Definition 7.2.

1. For any type environments Γ and Γ′, let Γ := Γ′ denote the set

{xs := xt | Γ(x) = s, Γ′(x) = t, s 6= t}

2. Let S be a set of variable to variable assignment statements. We
say that S is independent if for any distinct pair w := x and
y := z in S, the variables w, x, y and z are all distinct. For in-
dependent S, all sequentialisations are semantically equivalent
and we let S represent the command obtained by some canoni-
cal (but unspecified) sequentialisation.

Lemma 7.3. Γ := Γ′ is an independent set of assignments

Thus we will write Γ := Γ′ to denote the command obtained by
some canonical sequentialisation of the assignments.

Definition 7.4. For any type environment Γ, let EΓ denote the
expression obtained by replacing each floating variable x in E with
the fixed variable xs where s = Γ(x).

With these definitions we are ready to introduce the translation.
The rules are presented in Table 4.

The basic idea of the translation p `L Γ {C ; D} Γ′ is that
for any program point in D corresponding to a point in C, for
each variable x, only one member of the family {xt}t∈L will be
“in play”. The type variables in play at any given program point
are given by the type environment at that program point. So for
example if Γ(x) = s then xs will be the x-variable in play at the
beginning of the execution of D.

Example 7.5. Since a type derivation is structural in the syntax,
for any derivation we can associate a type environment with each
program point. Consider the example derivation shown in Figure 3:
in the central column we write the environment update (rather than
the whole environment) yielding the environment after that program
point in the corresponding sub-derivation, and on the right-hand
side we write the translated program. The example uses the four
point lattice introduced previously (Figure 2).

It remains to establish two properties of the translated terms:

• Correctness: they should be semantically equivalent to the orig-
inal terms, and

• Static Soundness: they should still be typeable.

7.3 Correctness
Correctness means that the input-output behaviour of the program
and its translation should be the same. We refer to this as semantic
equivalence. Since the original programs operate on floating vari-
ables, and the translation operates on fixed variables, we must con-
struct a suitable relation between them.

Definition 7.6. Let σ range over floating variable stores and let ρ
range over fixed variable stores. Then for each type environment Γ
we define the compatibility relation as

σ ∼Γ ρ ⇐⇒ ∀x ∈ Var.σ(x) = ρ(xΓ(x))

Theorem 7.7 (Translation Correctness).
If p ` Γ {C ; D} Γ′ then for all σ and ρ such that σ ∼Γ ρ,

• 〈C, σ〉 ⇓ σ′ ⇒ ∃ρ′.〈D, ρ〉 ⇓ ρ′ and σ′ ∼Γ′ ρ′

• 〈D, ρ〉 ⇓ ρ′ ⇒ ∃σ′.〈C, σ〉 ⇓ σ′ and σ′ ∼Γ′ ρ′

Proof. See Appendix A.1.

7.4 Static Soundness
The fact that the translated programs are equivalent to the originals
ensures that they have the same security properties, since nonin-
terference is an extensional property. Here we show, more signif-
icantly, that the translated program is also typeable – and since it
only contains fixed variables this means that it is typeable in a con-
ventional fixed type system.

Lemma 7.8 (Expression Soundness). If Γ ` E : t then ` EΓ : t

Follows directly from the definitions.

Theorem 7.9 (Static Soundness). If p ` Γ {C ; D} Γ′ then
p ` D

Proof. See Appendix A.2.

7.5 Complexity
The transformation increases program size by adding assignments
of the form Γ′ := Γ. These assignments arise whenever, in the
flow-sensitive system, a variable changes its level. Since the only
way that a variable can change its level is through an assignment,
the size of Γ′ := Γ is bounded by the number (a) of assignment
statements in the original program. The number of such assign-
ments that are added to the program is proportional to the number
(b) of conditional and while statements. This gives us a bound of
O(ab), i.e., quadratic in the program size. This upper bound is tight,
as shown by the following program, where we use the two-point
lattice, and initially h is the only variable assigned type h:

if y1then
if y2 then

· · ·
if yn then

if h then x1 := 0; · · · ; xn := 0

Skip-t
p ` Γ {skip ; skip} Γ

Assign-t
Γ ` E : t s = p t t

p ` Γ {x := E ; xs := EΓ} Γ[x 7→ s]

Seq-t
p ` Γ {C1 ; D1} Γ′ p ` Γ′ {C2 ; D2} Γ′′

p ` Γ {C1 ; C2 ; D1 ; D2} Γ′′

If-t
Γ ` E : t p t t ` Γ {Ci ; Di} Γ′

i i = 1, 2

p ` Γ {if E C1 C2 ; if EΓ (D1 ; Γ′ := Γ1) (D2 ; Γ′ := Γ2)} Γ′
Γ′ = Γ′

1 t Γ′
2

While-t
Γ′

i ` E : ti p t ti ` Γ′
i {C ; Di} Γ′′

i 0 ≤ i ≤ n

p ` Γ {while E C ; Γ′
n := Γ ; while EΓ′

n (Dn ; Γ′
n := Γ′′

n)} Γ′
n

Γ′
0 = Γ, Γ′

i+1 = Γ′′
i t Γ, Γ′

n+1 = Γ′
n

Table 4. Translation to fixed types

Initial typing: {[w : l; x : m; y : n; z : h]}

Code Environment change Translated code

if x = 0 then y := y + 1; w := z [y 7→ h; w 7→ h] if xm = 0 then yh := ym + 1; wh := zh

else yh := yl; wh := wl

while x > 0 while xm > 0
z := z + w zh := zh + wh

x := x − 1 xm := xm − 1
z := x [z 7→ m] zm := xm

zh := zm

Figure 3. Example translation derivation

where the one-armed conditional is just shorthand for a conditional
with skip in the else branch. The above program is typeable, where
in the final environment, x1 . . . xn have type h. Writing Xh := Xl

for the sequence of assignments x1h := x1l; · · · ; xnh := xnl, the
transformed program is:

if y1l then
if y2l then

· · ·
if ynl then

if hh then x1h := 0; · · · ; xnh := 0
else Xh := XL

else Xh := XL

· · ·
else Xh := XL

It seems likely that there is a more precise bound based on the
depth of nesting of loops and conditions, and that such blow ups
are unlikely in practice.

7.6 Relation to Single Static Assignment
Our transformation introduces additional variables, and this addi-
tion is performed in such a way that a flow-insensitive analysis
on the transformed program achieves the same effect as a flow-
sensitive analysis on the original. Viewed in this way, our trans-
formation has a similar effect to transformation to single static as-
signment form (SSA) (see e.g. [App98]). Single static assignment
is used in the compilation chain to improve and simplify dataflow
analyses. It works by the introduction of additional variables in
such a way that every variable is assigned-to exactly once. Since
there is only one assignment per variable, it follows by construc-

tion that there is no need for a flow-sensitive analysis on a program
in SSA form, since there is only one program point that can influ-
ence the type of a variable.

Our transformation is however rather different from SSA. The
transformation we have described uses a flow-sensitive analysis in
order to construct the transformed program, whereas SSA’s purpose
is to avoid the need to perform more complex analyses in the first
place. Thus our transformation approach is perhaps not interesting
when viewed from a classic compiler-construction perspective.

However, applications such as security are not directly rele-
vant to optimisation and compilation. In a mobile-code setting, a
code consumer may demand that the code can be verified to sat-
isfy some information-flow policy. Furthermore, in order to have
a small trusted computing base, a small and simple type system is
preferable. Transformations of the kind presented here are interest-
ing in this setting because they allow the code producer the benefits
of constructing well-typed code in a more expressive system, with-
out requiring the code consumer to verify code with respect to this
more complex system3.

8. Conclusions
We have presented and investigated the formal properties of a fam-
ily of semantically sound flow-sensitive type systems for tracking

3 The result of the SSA transformation is not an executable program, since
it contains the so-called φ-nodes at all join-points, so SSA would be un-
suitable for this purpose. However, [ADvRF01] proposes a mobile code
representation based on SSA.

information flow in simple While programs. The family is indexed
by the choice of flow lattice.

The key results we have shown are that:

• For a given program, all derivations in all members of the family
can be inferred from the derivation of a principal typing in
the universal system (ie, the type system for the flow lattice
P(Var)).

• The universal system is equivalent to Amtoft and Banerjee’s
Hoare-style independence logic.

• Each member of the family is “complete” with respect to the
whole family, in that no member can be used to validate more
L-typings than the L-system itself.

• Given a flow-sensitive type derivation for a program, we can
systematically transform it to produce a semantically equivalent
program which is typeable in a simple flow-insensitive system.

Possible avenues for future work include extending the flow-
sensitive systems and program transformation to richer program-
ming languages and deriving more precise complexity results for
the program transformation.

Acknowledgments
Many thanks to David Clark for participation in discussions on
this work, and for suggesting the worst-case complexity example.
Discussions with Sruthi Bandhakavi and Daniel Hedin on alterna-
tive formulations of Amtoft and Banerjee’s system were particu-
larly useful. Thanks to Josef Sveningsson for drawing our atten-
tion to the connection to SSA, and to Niklas Broberg for system
support. We also benefited from comments and suggestions from
Dennis Walter and the anonymous referees.

References
[AB04] Torben Amtoft and Anindya Banerjee. Information flow

analysis in logical form. In SAS 2004 (11th Static Analysis
Symposium), Verona, Italy, August 2004, volume 3148 of
LNCS, pages 100–115. Springer-Verlag, 2004.

[ADvRF01] Wolfram Amme, Niall Dalton, Jeffery von Ronne, and
Michael Franz. SafeTSA: A type safe and referentially
secure mobile-code representation based on static single
assignment form. In SIGPLAN ’01 Conference on Program-
ming Language Design and Implementation, pages 137–147,
2001.

[App98] Andrew W. Appel. Modern Compiler Implementation in
Java. Cambridge University Press, Cambridge, 1998.

[AR80] G. R. Andrews and R. P. Reitman. An axiomatic approach to
information flow in programs. ACM TOPLAS, 2(1):56–75,
January 1980.

[BBL94] J.-P. Banâtre, C. Bryce, and D. Le Métayer. Compile-time
detection of information flow in sequential programs. In
Proc. European Symp. on Research in Computer Security,
volume 875 of LNCS, pages 55–73. Springer-Verlag, 1994.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. ACM Symp. on
Principles of Programming Languages, pages 238–252,
January 1977.

[CC79] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Conference Record of the Sixth
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 269–282, San Antonio,
Texas, 1979. ACM Press, New York, NY.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark K.
Wegman, and F. Kenneth Zadeck. An efficient method of
computing static single assignment form. In 16th Annual
ACM Symposium on Principles of Programming Languages,
pages 25–35, 1989.

[CH95] Paul R. Carini and Michael Hind. Flow-sensitive interproce-
dural constant propagation. In PLDI ’95: Proceedings of the
ACM SIGPLAN 1995 conference on Programming language
design and implementation, pages 23–31. ACM Press, 1995.

[CHH02] D. Clark, C. Hankin, and S. Hunt. Information flow for
Algol-like languages. Journal of Computer Languages,
28(1):3–28, April 2002.

[DD77] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Comm. of the ACM, 20(7):504–
513, July 1977.

[DP90] B. Davey and H. Priestley. Introduction to Lattices and
Order. Cambridge University Press, 1990.

[GRS00] Roberto Giacobazzi, Francesco Ranzato, and Francesca
Scozzari. Making abstract interpretations complete. J. ACM,
47(2):361–416, 2000.

[GS05] S. Genaim and F. Spoto. Information Flow Analysis for
Java Bytecode. In R. Cousot, editor, Proc. of the Sixth
International Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI’05), volume 3385 of
Lecture Notes in Computer Science, pages 346–362, Paris,
France, January 2005. Springer-Verlag.

[HR98] N. Heintze and J. G. Riecke. The SLam calculus:
programming with secrecy and integrity. In Proc. ACM
Symp. on Principles of Programming Languages, pages
365–377, January 1998.

[HS91] S. Hunt and D. Sands. Binding Time Analysis: A New
PERspective. In Proceedings of the ACM Symposium
on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM’91), pages 154–164, September 1991.
ACM SIGPLAN Notices 26(9).

[HS05] D. Hedin and D. Sands. Timing aware information
flow security for a JavaCard-like bytecode. In First
Workshop on Bytecode Semantics, Verification, Analysis
and Transformation (BYTECODE ’05), 2005. To Appear,
ENTCS.

[NRH99] F. Nielson, H. Riis Nielson, and C. Hankin. Principles of
Program Analysis. Springer-Verlag, 1999.

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, January 2003.

[SS01] A. Sabelfeld and D. Sands. A per model of secure
information flow in sequential programs. Higher Order and
Symbolic Computation, 14(1):59–91, March 2001. Earlier
version in ESOP’99.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. J. Computer Security, 4(3):167–187,
1996.

[Wel02] J. B. Wells. The essence of principal typings. In Proc.
International Colloquium on Automata, Languages and
Programming, volume 2380 of LNCS, pages 913–925.
Springer-Verlag, 2002.

A. Proofs from Section 7
A.1 Translation Correctness
In proving the theorem we will make use of the following simple
lemmas:

Lemma A.1. If σ ∼Γ ρ then

1. 〈Γ′ := Γ, ρ〉 ⇓ ρ′ where σ ∼Γ ρ′

2. [[E]]σ = [[EΓ]]ρ

Proof. 1. From definition 7.2, the effect of Γ′ := Γ on state ρ can
be written as

ρ
′ = ρ[xΓ′(x) 7→ ρ(xΓ(x)) | x ∈ Var]

(note that we have ignored the condition Γ(x) 6= Γ′(x) in the
definition of Γ′ := Γ since these are just identity updates). So
we have for all x ∈ Var

σ(x) = ρ(xΓ(x))

= ρ[xΓ′(x) 7→ ρ(xΓ(x)) | x ∈ Var](xΓ′(x))

= ρ
′(xΓ′(x))

and hence σ ∼Γ′ ρ′ as required.
2. Straightforward from the definitions.

Proof of Translation Correctness. We argue by induction on the
derivation in a standard big-step semantics. For collections of in-
dependent assignments of the form Γ′ := Γ we somewhat improp-
erly treat them as if they are evaluated in a single atomic step. We
illustrate the first part of the theorem, although most steps are in
fact reversible, so the proof in the other direction is essentially the
same. We focus on the more interesting cases.

Suppose that p ` Γ {C ; D} Γ′, σ ∼Γ ρ and that 〈C, σ〉 ⇓
σ′. We prove that 〈D, ρ〉 ⇓ ρ′ where σ′ ∼Γ′ ρ′ by induction on
the derivation of 〈C, σ〉 ⇓ σ′ and cases according to the last rule
applied:

Case: Assign. We have a derivation of the form

Γ ` E : t s = p t t

p ` Γ {x := E ; xs := EΓ} Γ[x 7→ s]

Suppose that [[E]]σ = V , and hence that

〈x := E, σ〉 ⇓ σ[x 7→ V].

By Lemma A.1, [[EΓ]]σ = V and hence

〈xσ := E
Γ
, σ〉 ⇓ σ[x 7→ V].

Case: While. There are two cases according to the value of
the conditional. We just show the harder case where the last step of
the derivation has the form:

[[E]]σ = true 〈C, σ〉 ⇓ σ′ 〈while E C, σ′〉 ⇓ σ′′

〈while E C, σ〉 ⇓ σ′′

We have a translation derivation of the form
Γ′

i ` E : ti p t ti ` Γ′
i {C ; Di} Γ′′

i 0 ≤ i ≤ n

p ` Γ {while E C ; Γ′ := Γ ; while EΓ′

(D ; Γ′ := Γ′′)} Γ′

where Γ′
0 = Γ, Γ′

i+1 = Γ′′
i t Γ, Γ′

n+1 = Γ′
n and Γ′ =

Γ′
n, Γ′′ = Γ′′

n, D = Dn. Henceforth let WD denote the subterm
while EΓ′

(D ; Γ′ := Γ′′). Assume that σ ∼Γ ρ. We are required
to show that

〈Γ′ := Γ ; WD, ρ〉 ⇓ ρ
′′ where σ ∼Γ′ ρ

′′

We assemble the following facts in order to construct a derivation
for this claim. From Lemma A.1(1) we get

〈Γ′ := Γ, ρ〉 ⇓ ρ1 where σ ∼Γ′ ρ1 (14)

and from Lemma A.1(2)

〈EΓ′

, ρ1〉 ⇓ true. (15)

From the induction hypothesis for the subderivation for C we have

〈D, ρ1〉 ⇓ ρ2 where σ
′ ∼Γ′′ ρ2, (16)

and from Lemma A.1(1),

〈Γ′ := Γ′′
, ρ2〉 ⇓ ρ3 where σ

′ ∼Γ′ ρ3 (17)

Finally from the premises of the typing judgement, we also have
the weaker judgement:

p ` Γ′ {while E C ; Γ′ := Γ ; WD} Γ′

Now we apply the induction hypothesis for the second evaluation
premise, with respect to this judgement, to obtain

〈WD, ρ3〉 ⇓ ρ
′′ where σ

′′ ∼Γ′ ρ
′′ (18)

Finally from these facts we construct the required derivation, which
is given in Figure 4.

A.2 Static Soundness
The proof is by induction on the structure of the translation deriva-
tion, making use of the following simple weakening lemmas:

Lemma A.2.
• If p ` D and p′ v p then p′ ` D

• If p `a Γ {C} Γ′ then for all x, Γ(x) 6= Γ′(x) ⇒ p v Γ′(x)

Proof. The first item is a straightforward induction on the deriva-
tion, and we omit the details.

The second item is also by induction on the derivation. We
present the three key cases.

Case: Assign. The conclusion of the rule is:

p `a Γ {x := E} Γ[x 7→ p t t]

The initial and final type environment only differ (potentially) in x
and we see immediately that p v Γ′(x) = p t t.

Case: If. The rule provides a derivation of the form

p t t `a Γ {Ci} Γ′
i i = 1, 2 Γ′ = Γ′

1 t Γ′
2

p `a Γ {if E C1 C2} Γ′

The induction hypothesis gives, for i = 1, 2,

∀x.Γ(x) 6= Γ′
i(x) ⇒ p v Γ′

i(x)

So suppose that for some particular x we have Γ(x) 6= Γ′(x). Since
Γ′ = Γ′

1tΓ′
2 we must have Γ(x) 6= Γ′

i(x) for either i = 1 or i = 2
(or both). It follows from the induction hypothesis that p v Γ′

i(x)
for this i, and hence that p v Γ′

1(x) t Γ′
2(x) as required.

Case: While. The rule provides a derivation of the form

Γ′
i ` E : ti p t ti `

a Γ′
i {C} Γ′′

i 0 ≤ i ≤ n

p `a Γ {while E C} Γ′
n

where Γ′
0 = Γ, Γ′

i+1 = Γ′′
i t Γ, Γ′

n+1 = Γ′
n. The induction

hypothesis gives, for 0 ≤ i ≤ n, Γ′′
i (x) 6= Γ′

i(x) ⇒ p t ti v
Γ′′

i (x).
Assume Γ′

n(x) 6= Γ(x). Now suppose that Γ′′
i (x) = Γ′

i(x) for
all i with 0 ≤ i ≤ n: we show that this contradicts the assumption
(ie we show that it entails Γ′

n(x) = Γ(x)) by induction on n. The
base case is immediate since Γ′

0 = Γ, so consider n = k + 1.

(14)

〈Γ′ := Γ, ρ〉 ⇓ ρ1

(15)

〈EΓ′

, ρ1〉 ⇓ true

(16)

〈D, ρ1〉 ⇓ ρ2

(17)

〈Γ′ := Γ′′, ρ2〉 ⇓ ρ3

〈D ; Γ′ := Γ′′, ρ1〉 ⇓ ρ3

(18)

〈WD, ρ3〉 ⇓ ρ′′

〈WD, ρ1〉 ⇓ ρ′′

〈Γ′ := Γ ; while EΓ′

(D ; Γ′ := Γ′′), ρ〉 ⇓ ρ′′

Figure 4. Concluding derivation, While case, Theorem 7.7

By construction, Γ′
k+1(x) = Γ′′

k(x) t Γ(x) so, by supposition,
Γ′

k+1(x) = Γ′
k(x) t Γ(x). But by IH Γ′

k(x) = Γ(x), hence
Γ′

k+1(x) = Γ(x).
We have shown that Γ′

n(x) 6= Γ(x) implies the existence of
some i such that Γ′′

i (x) 6= Γ′
i(x) so, by the induction hypothesis,

p t ti v Γ′′
i (x), hence p v Γ′′

i (x). But, as illustrated in Figure 1,
Γ′′

i v Γ′
n holds for all i, so we are done.

Proof of Static Soundness. We give a couple of illustrative cases.

Case: Assign-t. The derivation is of the form
Γ ` E : t s = p t t

p ` Γ {x := E ; xs := EΓ} Γ[x 7→ s]

From Lemma 7.8 we have that ` EΓ : t, and thus p ` xs :=
EΓ follows directly from the Assign-fixed axiom.

Case: While-t. Assume the last rule in the inference has the
form:

Γ′
i ` E : ti p t ti ` Γ′

i {C ; Di} Γ′′
i 0 ≤ i ≤ n

p ` Γ {while E C ; Γ′ := Γ ; while EΓ′

(D ; Γ′ := Γ′′)} Γ′

where Γ′
0 = Γ, Γ′

i+1 = Γ′′
i t Γ, Γ′

n+1 = Γ′
n and Γ′ = Γ′

n, Γ′′ =
Γ′′

n, D = Dn.
Since the translation system is a conservative extension of the

type system, we have a derivation p `a Γ {while E C} Γ′, and
hence by Lemma A.2 that

∀x.Γ(x) 6= Γ′(x) ⇒ p v Γ′(x).

this, together with the fact that Γ v Γ′ means that every assignment
in Γ′ := Γ is typeable, and hence that

p ` Γ′ := Γ (19)

Similarly with the subderivation p t tn ` Γ′ {C ; D} Γ′′ we
get, using Lemma A.2 that

∀x.Γ′(x) 6= Γ′′(x) ⇒ p t tn v Γ′′(x).

and in the same manner as above we can conclude that

p t tn ` Γ′ := Γ′′
. (20)

Furthermore, Lemma 7.8 gives

` E
Γ′

: tn, (21)

and the inductive hypothesis gives us

p t tn ` D. (22)

Putting this together we obtain the concluding derivation

(19)

p ` Γ′ := Γ

(21)

` EΓ′

: tn

(22)

p t tn ` D

(20)

p t tn ` Γ′ := Γ′′

p t tn ` D ; Γ′ := Γ′′

p ` while EΓ′

(D ; Γ′ := Γ′′)

p ` Γ′ := Γ ; while EΓ′

(D ; Γ′ := Γ′′)

