
Just Forget It
The Semantics and Enforcement of Information Erasure

Sebastian Hunt1 and David Sands2

1 City University, London
2 Chalmers university of Technology, Sweden

Abstract. There are many settings in which sensitive information is made avail-
able to a system or organisation for a specific purpose, on the understanding that
it will be erased once that purpose has been fulfilled. A familiar example isthat of
online credit card transactions: a customer typically provides credit card details
to a payment system on the understanding that the following promises are kept:
(i) Noninterference (NI): the card details may flow to the bank (in order that the
payment can be authorised) but not to other users of the system; (ii) Erasure: the
payment system will not retain any record of the card details once the transaction
is complete. This example shows that we need to reason about NI and erasure in
combination, and that we need to consider interactive systems: the card details
are used in the interaction between the principals, and then erased; withoutthe
interaction, the card details could be dispensed with altogether and erasurewould
be unnecessary. The contributions of this paper are as follows. (i) We show that
an end-to-end erasure property can be encoded as a “flow sensitive” noninterfer-
ence property. (ii) By a judicious choice of language construct to support erasure
policies, we successfully adapt this result to an interactive setting. (iii) We use
this result to design a type system which guarantees that well typed programs are
properly erasing. Although erasure policies have been discussed in earlier papers,
this appears to be the first static analysis to enforce erasure.

1 Information Erasure

There are many settings in which sensitive information is made available to a system
or organisation for a specific purpose, on the understandingthat it will be erased once
that purpose has been fulfilled. Common examples involve erasure of some authentica-
tion token, such as voter identity in e-voting, or biometricdata in fingerprint-activated
left-luggage lockers. A more everyday example is an online credit card transaction. A
customer typically provides credit card details to a payment system on the understand-
ing that the following promises are kept:

Noninterference (NI): the card details may flow to the bank (in order that the payement
can be authorised) but not to other users of the system;

Erasure: the payment system willnot retain any record of the card details once the
transaction is complete.

In this case, erasure ensures that the transaction does not make the customer or bank
vulnerable to breaches of security in the payment system which occur after the transac-
tion is complete. Two aspects of erasure are illustrated by this example:

Draft of April 29, 2008. Extended version of an article in: Proceedings of ESOP’08, 17th European Symposium on Program-
ming, Budapest, 29 March - 6 April, 2008. Springer-Verlag (LNCS)

2 Hunt & Sands, ESOP’08

1. We need to be able to reason about NI and erasure in combination: we show that
flow sensitive NI combined with erasure is equivalent to a re-classification of the
erased input.

2. To give a satisfactory account of erasure, we need to consider interactivesystems:
the card details are used in the interaction between the customer, the payment sys-
tem and the bank, andthenerased; without the interaction, the card details could
be dispensed with altogether and erasure would be unnecessary.

Background The idea and motivations for studying erasure properties ofprograms
come from recent work of Chong and Myers [CM05], and we borrowsome notation
from that paper. Their paper deals with expressive temporalinformation flow policies
for program variables which include combinations of erasure and declassification. In
their simplest form, erasure policies are written in the form a cր b, and are used to
describe a variable whose security level is initiallya, but which is erased to levelb as
soon as conditionc (in principle an arbitrary property of the computation) is satisfied.
Policies as described in [CM05] are quite complex (expressive), and their semantics is
necessarily quite involved. It is perhaps not surprising that they have not described an
enforcement mechanism (e.g. a type system) for their policylanguage.

In this paper we take a fresh look at the erasure problem with amuch less ambi-
tious policy language. We focus on just erasure, independently from declassification
concerns. We show how, together with a judicious choice of language construct to sup-
port erasure policies, we can take advantage of the close relationship between erasure
semantics and noninterference to provide, to our knowledge, the first static analysis to
enforce erasure policies.

Summary We begin (Section 2) by considering what we callend-to-enderasure for
non interactive programs. Consider the following trivial program:y := y + 1 ; cc := 0.
This program erases (the initial value of)cc. On the other hand,(if isVisa(cc) y :=
y + 1) ; cc := 0 does not erasecc, since some information aboutcc is retained by
y. More generally (following [CM05]) we talk about erasure ofa variableto a higher
security level. In this very simple setting we show that:

– an end-to-end erasure property can be encoded as a “flow sensitive” noninterference
property (Proposition 1), and

– if we also require that the program is noninterfering, then this is a necessary and
sufficient condition for erasure (Proposition 2).

while serverUp {
input cc from user

input details from user

payment := process(cc)
output payment to bank

custInfo := custInfo ⊕ details

cc := 0
} . . .

End-to-end erasure is too simple to be useful in
itself. In Section 3 we move on to the study of era-
sure in the presence of fresh inputs and program out-
puts. Consider for example the program to the right.
Here the erasure property we might want is that no
information about the inputcc in the first line of the
loop body can be observed after the transaction (the
loop body) is complete. In this case the input isnot
erased because it is still present inpayment , so if the

Just Forget It 3

server goes down the credit card information of the last transaction could be retrieved
from this variable and output by the system.

Defining what it means for a program to erase data in the general case is poten-
tially complex and, we suspect, correspondingly difficult to enforce. The key idea that
we introduce in Section 3 is a simple language mechanism to specify a well behaved
class of erasure policies. We introduce a block structured input command of the form
input x from a erased in C (the exact syntactic form accommodates a more general
notion than this and is writteninput x : aր b in C) thereby tying the semantic
lifetime of the input (from the point of view of certain observers) to code blockC. This
facilitates the subsequent development as follows:

– the definition of when a program correctly enforces such erasure policies (we call
such a programinput erasing) becomes easy to state (Definition 4)

– because of the block structured nature of the erasure policy, we can apply ideas
from Section 2 to determine a local end-to-end style erasurecondition (Defini-
tion 6) which, as for end-to-end erasure, can also be expressed as a reclassified
noninterference property (Theorem 1)

– we can then show that the local erasure condition together with a suitable nonin-
terference property is sufficient to guarantee that a program is input erasing (Theo-
rem 2).

Our final contribution (Section 4) is to use this local characterisation of erasure to de-
sign a type system which guarantees that well typed programsare input erasing. The
type system is a direct adaptation (extension) of a flow sensitive type system for nonin-
terference described in [HS06].

Section 5 discusses some of the subtleties of erasure and thecomputation model.
Section 6 concludes, revisiting related work and sketchingsome ideas for further work.

2 End-to-End Erasure

We start by considering erasure in its “purest” form. Consider programs which just
transform some initial memory state to a final memory state. Concretely, we can con-
sider a simplewhile language with no input or output commands (essentially the lan-
guage described in Figure 2 with all the input-output machinery removed). The se-
mantics of this language can be given as a small-step deterministic transition relation
on configurations, where terminating computations have theform 〈C, s〉 ։ 〈skip, t〉
(hereC is a program ands, t are memorystates: finite mappings from the setVar of
variable names to values).

2.1 Flow sensitive End-to-End Noninterference

As in [HS06] we consider a flow sensitive form of noninterference. LetΓ, Γ ′ be finite
mappings from variable names to elements of〈L,⊑,⊔,⊓〉 a lattice of security levels.
We will call thesesecurity type assignments. We writes =X t to mean that statess and
t agree on all variables in the setX. Fora ∈ L we writeΓ ⊢ s =a t to mean thats and
t are equal to all observers at or below security levela, with respect to the security type
assignmentΓ . That is:Γ ⊢ s =a t iff s =X t whereX = {x|Γ (x) ⊑ a}.

4 Hunt & Sands, ESOP’08

Definition 1 (Noninterference (NI)). A commandC is noninterfering fromΓ to Γ ′,
written Γ {C} Γ ′, iff, for all a ∈ L, if Γ ⊢ s =a t and 〈C, s〉 ։ 〈skip, s′〉 then
〈C, t〉 ։ 〈skip, t′〉 for somet′ such thatΓ ′ ⊢ s′ =a t′.

(Note that, since programs are deterministic, ift′ exists - ie if the program terminates
- it is unique.) In other words, noninterference says that iftwo initial states are indis-
tinguishable to an observer ata (with respect toΓ) then the resulting states will also
be indistinguishable (with respect toΓ ′). Note that, unlike [HS06], this is a termination
sensitiveNI property, meaning that we donotallow information leaks through termina-
tion/nontermination behaviour. We chose this stronger variant because it is better suited
to a computational model with input-output (Section 3).

2.2 End-to-End Erasure

In what follows we have chosen to model erasure of the information stored in individual
variables. Our choice is essentially pragmatic: it allows us to express the key ideas in
a simple way while supporting reasonably expressive erasure policies. Other choices
are possible. For example we could model erasure of all information stored at a given
security level, or, conversely, partial erasure of the information stored in a variable. To
be more general still, one could model erasure of arbitrary projections on the program
state – and such things could be done in the PER model [SS01] orusing abstract non-
interference [GM04]).

We define end-to-end erasure as a simple information flow property. In its simplest
form, say that a programcompletely erasesthe information in variablex if varying (just)
the information inx prior to execution has no effect on the final program state. Infact
we want to be more general than this (following [CM05]). We will say thatx is erased
to some levelb, if varying x leaves the final state unchanged from the viewpoint of all
observers except those at levelb or above. In what follows we write¬x for Var −{x}.

Definition 2 (End-to-End Erasure). CommandC erasesx to b in Γ ′, written
C : xրb in Γ ′, iff, whenevers =¬x t and 〈C, s〉 ։ 〈skip, s′〉 then 〈C, t〉 ։

〈skip, t′〉, for somet′ such that∀c 6⊒ b, Γ ′ ⊢ s′ =c t′.

Note that we can recover complete erasure from the more general definition, in the form
C : xր⊤ in Γ , as long as we have some security level⊤ such that, for all variablesy,
Γ (y) 6⊒ ⊤.

Consider the example programs in Figure 1. We haveP1 : zLր H in Γ , but P2

doesnoterasezLրH because althoughzL itself is physically overwritten, information
about the initial value ofzL is still present inyM . The same goes forP3: it does not
erasezL to H, this time because of an indirect information flow toyM .

Typically, we will wish to enforce policies in which erasureis requiredin addition
to NI. The programs in Figure 1 satisfyΓ {Pi} Γ (i = 1, 2, 3). If we replacedzL :=
0 with zL := yM in P1 the program would still erasezL to H, but would not be
noninterfering fromΓ to Γ .

2.3 Relating End-to-End Erasure and NI

It is clear from the definitions that end-to-end erasure and noninterference are closely
related. In later sections we exploit this relationship in both the design of an erasure

Just Forget It 5

P1 : xH := xH + yM + zL

yM := yM + 2
zL := 0

P2 : xH := xH + yM + zL

yM := yM + zL

zL := 0

P3 : xH := xH + yM + zL

if (zL = 0) yM := yM + 1
zL := 0

Fig. 1. Example programs, assuming security type assignmentΓ =
[xH 7→H, yM 7→M, zL 7→L] with respect to the three point latticeL ⊑ M ⊑ H.

policy mechanism, and in the adaptation of the flow sensitivetype system from [HS06]
to produce a type system which also enforces erasure policies. The key observation is
that every erasure property can be enforced by requiring a related NI property.

Proposition 1. If Γ [x 7→ b] {C} Γ ′ thenC : xրb in Γ ′.

Proof. Assume lhs. Supposes =¬x t and c 6⊒ b. From the definitions and by assumption
of lhs, it suffices to show thatΓ [x 7→ b] ⊢ s =c t: this is immediate froms =¬x t and
Γ [x 7→ b](x) = b 6⊑ c. ⊓⊔

For example, the Proposition tells us that we can verifyP1 : zLր H (Figure 1) by
showing thatΓ [xL 7→H] {P1} Γ , and this can be done, for example, using the type
system from [HS06].

While useful, this leaves open the possibility that the reclassified NI condition of
Proposition 1 is too strong in general, requiring much more than is necessary to ensure
erasure. In practice, however, we wish to enforce erasureandnoninterference together.
The following result shows that, if we already require the NIpropertyΓ {C} Γ ′, then
the reclassified NI propertyΓ [x 7→ b] {C} Γ ′ is preciselywhat we need to ensure that
x is erased tob.

Proposition 2. If Γ {C} Γ ′ thenC : xրb in Γ ′ ⇐⇒ Γ [x 7→ b] {C} Γ ′.

Proof. Subsumed by Theorem 1.

3 Erasure in the Presence of Input-Output

The previous section showed how end-to-end erasure policies can be determined by
using reclassification and noninterference. But end-to-end erasure is not the kind of
policy we ultimately want to enforce. If all the attacker does is literally observe the
final values of a computation then Proposition 2 really tellsus that an erasure policy
is just a way to fix a noninterference policy for which some data was assigned a level
which is too low.

Our task now is to generalise the notion of erasure to make it more meaningful and
more expressive. To do this we consider a system with inputs and outputs, and a notion
of erasure at an intermediate program point. For simplicity, we will identify security
levels with channels, thus for eacha ∈ L, we assume exactly one channel, also named
a, which carries data at levela (c.f. [OCC06]).

It is tempting (and potentially expressive) to introduce separate constructs for input

6 Hunt & Sands, ESOP’08

input x from a

if (x = 0)(x := −1; erased x to b)
output x on a

and erasure. But consider the example to the
right. Clearly,x is literally overwritten with a
constant in every run which passes the era-
sure assertion. Intuitively though, this pro-
gram should be rejected, since an observer of outputs ona can still deduce something
about the erased data. This is an example of one particular problem; there are poten-
tially many such problems compounded by the interaction between different erasure
operations and the deductions an observer can make though inputs and outputs.

Our key idea is to avoid these problems by combining input anderasure into a single
block structured command:

input x : aրb in C

which can be read as the policy “inputx on channela then computeC, after whichx

will have been erased to levelb”. By associating the lifetime of the data with the erasure
policy in a block-structured way we avoid some of the subtle problems of indirect in-
formation flow interacting with the erasure policy. More importantly, we will show that
we can apply the end-to-end erasure definition locally to thecommandC to achieve a
meaningful global erasure.

To show that this is really the case we must first extend our definitions of noninter-
ference and erasure to take into account the fact that the language now has IO.

3.1 A Language with Input and Output

To be concrete let us take the simplewhile language and add input as an erasure dec-
laration as above, and a simple output statement. For the operational semantics of this
language we assume the existence of an infinite input stream for each security level.
We letI denote the set of input streams and, for any levela, Ia denotes the stream of
a-inputs, andIa(m), m > 0 denotes themth input on channela.

We assume a small-step operational semantics with configurations of the form〈C, s, i〉,
whereC ands are as before andi ∈ L → N is the input stream pointer which records
how much of the input streams have been consumed so far.

Transitions are written in the formI ⊢ 〈C, s, i〉
ℓ
→ 〈C ′, t, i′〉 where the labelℓ is

either an input eventa?v, a silent transitionτ , or an output eventa!v. We will often
omit the labelτ . The syntax and semantics are given in Figure 2. The input streamsI
are left implicit in the rules. We assume an expression evaluator [[E]]s which produces
a value from an expression and an environment. We implicitlyassume well-typedness
for expressions.

A “vanilla” input commandinput x from a, i.e. one which is not associated with
an erasure property, can be defined as a shorthand for the trivial erasureinput x :
aր a in skip (it is trivially erasing because “after executingskip the value input on
channela will only be visible at levela or above”).

From the single step evaluation relation we define the zero-or-more-step relationα։,
labelled with a sequence of non-silent events, in the obvious way. We writec1 ։ c2 to
mean thatc1

α
։ c2 for some (possibly empty)α andc1

α
։ to mean∃c2.c1

α
։ c2.

Just Forget It 7

Expressions E ::= n | x | E op E
′

Commands C ::= skip| x := E | C1 ; C2| if E C1 C2| while E C

| input x : aրb in C | output E on a

Reduction Contexts R ::= [·] | (R[·] ; C)

Ia(n) = v n = i(a) + 1

〈input x : aրb in C, s, i〉
a?v
→ 〈C, s[x 7→ v], i[a 7→ n]〉

[[E]]s = v

〈x := E, s, i〉
τ
→ 〈skip, s[x 7→ v], i〉

[[E]]s = v

〈output E on a, s, i〉
a!v
→ 〈skip, s, i〉

[[E]]s = v ∈ {true, false}

〈if E Ctrue Cfalse, s, i〉
τ
→ 〈Cv, s, i〉

〈while E C, s, i〉
τ
→ 〈if E (C ; while E C) skip, s, i〉

〈(skip ; C), s, i〉
τ
→ 〈C, s, i〉

〈C, s, i〉
ℓ
→ 〈C′, s′, i′〉

〈R[C], s, i〉
ℓ
→ 〈R[C′], s′, i′〉

Fig. 2.Syntax and Semantics

3.2 Noninterference and Input Erasure

We extend the equality relation=a to input streams (and input stream pointers) by
sayingI =a I ′ (i =a j) wheneverIc = I ′c (i(c) = j(c)) for all c ⊑ a. We writeα =a β

to mean equality of the projections ofα andβ to all labels on channela or lower.

Definition 3 (Input-Output Noninterference). We define a commandC to be input-
output noninterferingif for all a ∈ L, and all input streamsI and I ′, if I =a I ′ and

I ⊢ 〈C, s, i〉 α
։ thenI ⊢ 〈C, s, i〉 β

։ for someβ such thatα =a β.

Let us now turn to the definition of the erasure property that we want. It says that in
any execution, once control has reached the end of the input block input x : aրb in C

– i.e. once we have finished executingC – then no information aboutx should be visible
through subsequent input or output events except at levelb or higher.

Definition 4 (Input Erasure). We say that a commandC0 is input erasingif for all
input streamsI the following property holds. Suppose we have a computationof the
following form:

I ⊢ 〈C0, s0, i0〉 ։ 〈R[input x : aրb in C], s, i〉 ։ 〈R[skip], s1, i1〉
α
։

where the computationR[input x : aր b in C] ։ R[skip] is independent ofR[·].
Let I ′ be an input stream which only differs fromI on channela at input position
i(a) + 1. Then the input erasing condition requires that there exists a computation of
the following form:

I ′ ⊢ 〈C0, s0, i0〉 ։ 〈R[input x : aրb in C], s, i〉 ։ 〈R[skip], t1, j1〉
β
։

8 Hunt & Sands, ESOP’08

such that∀c 6⊒ b we havesi =c ti, ii =c ji (i = 1, 2) andα =c β.

Note that the requirement thatI ′ ⊢ 〈C0, s0, i0〉 ։ 〈R[input x : aր b in C], s, i〉
is actually vacuous since the computation has not yet reached the point at whichI and
I ′ differ. The start states0 andi0 in the above are universally quantified, but could be
fixed. A natural choice for an initial input pointer would of course beλa.0.

The following proposition formalises the sense in which the“vanilla” input is al-
ways erasing:

Proposition 3. If C is input-output noninterfering and if each input command inC has
the forminput x : aրa in skip for somex anda thenC is input erasing.

Proof. Let C be ain input-output noninterferring command with input commands re-
stricted as above. LetC = 〈C, s0, i0〉. Any computation involving an input command
with an input streamI has the form:

I ⊢ C
α0
։ 〈R[input x : aրa in skip], s, i〉

a?v
→ 〈R[skip], s[x 7→ v], i1〉

α
։

SupposeI ′ differs only fromI at the position corresponding to the inputv above. Then
we have a computation of the form:

I ′ ⊢ C
α0
։ 〈R[input x : aրa in skip], s, i〉

a?w
→ 〈R[skip], s[x 7→ w], i1〉

SinceC is assumed to be input noninterfering then if we take anyc 6⊒ a we have
I =c I ′, and henceI ′ ⊢ C

β0

։ for someβ0 such thatα0(a?v)α =c β0. Since the
language is deterministic, it follows thatβ0 must have the formα0(a?w)β for someβ

such thatα =c β, and where〈R[skip], s[x 7→ w], i1〉
β
։ as required. ⊓⊔

3.3 Characterising Input Erasure with a Local Erasure Condition

In this section we develop a local characterisation of erasure – a generalisation of end-
to-end erasure which we can apply locally to the commandinput x : aր b in C –
which will help us establish the “global” input erasure condition.

To do this we will need to work with a stronger notion of noninterference than input-
output noninterference. Although the definition of input-output noninterference is a rea-
sonable top level definition (for more discussion on this point see section 5) it is difficult
to work with since it says nothing about the state. For example it is not compositional
with respect to sequential composition:C1 = input x on H ; if x then y := 1 is
IO-noninterfering, and so isC2 = output y on L, butC1 ; C2 is not. It is convenient
therefore to work with a stronger definition which also looksat the initial and terminal
state (in the case that the program terminates).

Definition 5 (Stateful Input-Output Noninterference). A commandC is noninterfer-
ing fromΓ to Γ ′, written Γ {C} Γ ′, iff, for all a ∈ L, and all input streamsI, I ′, if
Γ ⊢ s =a t, I =a I ′, i =a j then

1. if I ⊢ 〈C, s, i〉 α
։ thenI ′ ⊢ 〈C, t, j〉 β

։ for someβ such thatα =a β, and

Just Forget It 9

2. if I ⊢ 〈C, s, i〉 ։ 〈skip, s′, i′〉 thenI ′ ⊢ 〈C, t, j〉 ։ 〈skip, t′, j′〉 such thati′ =a j′

andΓ ′ ⊢ s′ =a t′.

Now we will define an extension of the end-to-end erasure property. The idea is that,
when enforced locally on the erasing input command, the property will be sufficient to
ensure the global erasure property.

The definition ensures that if a specific variablex is erased froma to b then it is
neither “visible” in the state except at or aboveb (precisely as before)nor via the input
pointer:

Definition 6 (Local Erasure). CommandC erasesx to b in Γ ′, written C : xրb in
Γ ′, iff, whenevers =¬x t and I ⊢ 〈C, s, i0〉 ։ 〈skip, s′, i〉 thenI ⊢ 〈C, t, i0〉 ։

〈skip, t′, j〉, for somet′ andj such that∀c 6⊒ b, Γ ′ ⊢ s′ =c t′ andi =c j.

Note that we have overloaded some definitions defined in Section 2. It is reasonable
to do this because they are conservative extensions of the earlier definitions. Stated more
precisely:

Proposition 4. For any commandC free from input-output statements, define the IO-
free semantics ofC to be〈C, s〉 → 〈C ′, t〉 iff I ⊢ 〈C, s, i〉

τ
→ 〈C ′, t, i〉. For any suchC

we have that

1. The statement thatC is noninterfering fromΓ to Γ ′ is identical for Definition 1
and Definition 5.

2. The statement thatC erasesx to b in Γ ′ is identical for Definition 2 and Definition
6.

Proof. Observing that input-output-free commands compute independently from the
input streams, and to not modify the input stream pointers, then the result is immediate
by specialisising definitions 5 and Definition 6. ⊓⊔

The local erasure condition ignores the input and outputs that take place before the
computation is complete, but the condition nevertheless demands thati =c j. This is
motivated by the fact that the state of the input pointer can be used as a covert store to
save information about the erased secret. Consider the commandC defined as

if (x 6= 0) (input y on M);
x := 0; y := 0

(whereL ⊑ M ⊑ H)

If we ignored the final value of the input pointers, then this command would be con-
sidered to erasex. This would be too weak for our purposes because after the erasure,
information aboutx will be known to an observer at levelM . To see this, consider
using the command (C) in the program to the right. So for example if theM input
stream has the value0, 1 . . . then the value ofy output onM will be 0 if x was0 and1
otherwise.

10 Hunt & Sands, ESOP’08

y := 0 ;
input x : LրH in C;
input y on M ;
output y on M

Reclassification In the manner of Proposition 1, we
will show that the local erasure property can be char-
acterised in terms of noninterference. But since non-
interference cares about the input output events that
occur during a computation, and local erasure does not, we need a way to “turn a blind
eye” to input output events. Towards this end it is useful – for specification purposes
only – to introduce a language construct which “hides” inputs and outputs:

Definition 7. We extend the language with commands of the formĈ with semantics

〈C, s, i〉
α
→ 〈C ′, s′, i′〉

〈Ĉ, s, i〉
τ
→ 〈Ĉ ′, s′, i′〉 〈ŝkip, s, i〉

τ
→ 〈skip, s, i〉

This is essentially just like the hiding operation of CSP, and is commonly used in pro-
cess calculi to specify noninterference properties (see e.g. [Ros95,FG95]), except that
here we are hidingall events, sôC behaves likeC but with every input or output label
of C replaced by the silent actionτ .

Theorem 1 (Local Erasure as Reclassification).If Γ {C} Γ ′ then

C : xրb in Γ ′ ⇐⇒ Γ [x 7→ b] {Ĉ} Γ ′

The theorem says that to check noninterference and erasure for a command it is neces-
sary and sufficient to check noninterference and a reclassified noninterference property
but where input and output labels are ignored.

Proof. First we note that we can easily specialise the definition of noninterference to the
case where programs perform no visible IO. In this way we can see thatΓ [x 7→ b] {Ĉ}
Γ ′ if and only if for all a,

I =a I ′ ∧ Γ [x 7→ b] ⊢ s =a t ∧ i =a j ∧ I ⊢ 〈Ĉ, s, i〉 ։ 〈skip, s′, i′〉

⇒ ∃t′, j′. Γ ′ ⊢ s′ =a t′ ∧ i′ =a j′ ∧ I ′ ⊢ 〈Ĉ, t, j〉 ։ 〈skip, t′, j′〉

The following properties are easy consequences of the definitions and semantics of
hiding, and will be used freely in what follows: (i)Γ {C} Γ ′ ⇒ Γ {Ĉ} Γ ′ and (ii)
C : xրb in Γ ′ ⇐⇒ Ĉ : xրb in Γ ′.

For the (⇐)-direction of the theorem it is sufficient to prove thatΓ [x 7→ b] {Ĉ}

Γ ′ implies Ĉ : xրb in Γ ′. Assume the rhs, thats =¬x t, and I ⊢ 〈Ĉ, s, i〉 ։

〈skip, s′, i′〉. Sinces and t only differ at x, and inΓ [x 7→ b] we have thatx is not
visible at levelc 6⊒ b we have∀c 6⊒ b.Γ [x 7→ b] ⊢ s =c t. From the specialised
noninterference property above we have that∃t′, j′. Γ ′ ⊢ s′ =c t′ ∧ i′ =c j′ ∧ I ⊢
〈Ĉ, t, j〉 ։ 〈skip, t′, j′〉.

For the (⇒)-direction of the theorem, assume the premise and thatI =a I ′∧Γ [x 7→

b] ⊢ s =a t ∧ i =a j ∧ I ⊢ 〈Ĉ, s, i〉 ։ 〈skip, s′, i′〉.
If a ⊒ b, consider whether or notΓ (x) ⊑ a. In either case,{y|Γ (y) ⊑ a} ⊆

{y|Γ [x 7→ b](y) ⊑ a}. Hence, whena ⊒ b, Γ [x 7→ b] ⊢ s =a t impliesΓ ⊢ s =a t

and the requiredt′, j′ exist by assumption of noninterference.

Just Forget It 11

Assume then thata 6⊒ b. Let s1 = s[x 7→ t(x)]. Then we haves =¬x s1, and
Γ [x 7→ b] ⊢ s1 =a t. Sinces1 andt agree onx then we also haveΓ ⊢ s1 =a t. Since
C : xրb in Γ ′ we have thatI ⊢ 〈Ĉ, s1, i〉 ։ 〈skip, s′1, i1〉 where∀c 6⊒ b.i′ =c i1 ∧
Γ ′ ⊢ s′ =c s′1. Since in particulara 6⊒ b theni′ =a i1∧Γ ′ ⊢ s′ =a s′1. FromΓ {C} Γ ′

we haveΓ {Ĉ} Γ ′, and sinceΓ ⊢ s1 =a t, we getI ′ ⊢ 〈Ĉ, t, j〉 ։ 〈skip, t′, j′〉 where
i′1 =a j andΓ ′ ⊢ s′1 =a t′. From transitivity of=a we conclude thati =a j and
Γ ′ ⊢ s′ =a t′ as required. ⊓⊔

3.4 From Local to Global Erasure

We have defined a local erasure condition for commands with IO. The purpose of the
local condition is to provide sufficient conditions for input erasure. But in order to com-
plete this picture we need some noninterference conditions: the local erasure property
can only give input erasure if the rest of the program does notallow the erased infor-
mation to flow back down to a lower level, i.e. it must have a noninterference property.

Annotations To state the noninterference assumptions we need, we will use program
annotations. Annotations will provide the link to compositional program analyses such
as type systems. An annotation here is just a security type assignment. The operational
semantics of an annotation is transparent (otherwise it would not be an annotation!): we
extend the grammar of reduction contexts with the annotatedcontext(R[·])Γ , and spec-
ify the rule 〈skipΓ , s, i〉 → 〈skip, s, i〉. In an annotated subtermCΓ , the annotation
Γ is intended to describe the security levels of the state at the point in execution after
C has been evaluated. This intuition is made concrete in the following definition which
connects annotations to the noninterference property.

Definition 8 (Well-annotated Commands).CommandC0 is well annotatediff:

1. every annotated input command(input x : aր b in C)Γ in C0 has the local
erasure propertyC : xրb in Γ ;

2. whenever a command of the formR[skipΓ] is reached from any computation be-
ginning withC0, thenΓ {R[skip]} Γ ′ for someΓ ′.

Theorem 2. If C0 is a well-annotated command such that every input command inC0

is annotated, thenC0 is input erasing.

Proof. Suppose thatC0 satisfies the premise of the claim, and that

I ⊢ 〈C0, s0, i0〉 ։ 〈R[input x : aրb in C], s, i〉

։ 〈R[skip], s1, i1〉 (independent ofR[·]).
α
։

Since each input command is annotated we know thatR[·] = R′[·Γ] for someR′[·] and Γ .
Suppose further thati(a) = k and thatIa(k + 1) = v. Given this, we know that the above
computation has the form

I ⊢ 〈C0, s0, i0〉 ։ 〈R′[(input x : aրb in C)Γ], s, i〉

a?v
→ 〈R′[CΓ], s[x 7→ v], i[a 7→ k + 1]〉

։ 〈R′[skip
Γ], s1, i1〉

α
։

12 Hunt & Sands, ESOP’08

SupposeI ′ is like I except thatI ′

a(k + 1) = v′. Now we have that

I
′ ⊢ 〈C0, s0, i0〉

։ 〈R′[(input x : aրb in C)Γ], s, i〉 (i)
a?v
→ 〈R′[CΓ], s[x 7→ v

′], i[a 7→ k + 1]〉 (ii)

։ 〈R′[skip
Γ], t1, j1〉 → 〈R′[skip], t1, j1〉 (iii)

β
։ (iv)

Step (i) holds because the input on whichI andI ′ differ has not yet been reached; (ii) follows
from the semantics of input. From the operational semantics it is easily seenthat the command
(input x : aր b in C)Γ must have been present in the original program: sinceC0 is well
annotated we have thatC : xրb in Γ , hence computation (iii) exists and∀c 6⊒ b, Γ ⊢ s1 =c t1
and ii =c ji. Then, sinceC0 is well annotated, we haveΓ {R′[skip]} Γ ′ for someΓ ′, and
hence we have for computation (iv) that there exists such aβ satisfying∀c 6⊒ b, α =c β, as
required. ⊓⊔

4 Erasure by Typing

In this section we use the results of the previous section to design a type system for
erasure (and noninterference). The idea is that we use Theorem 1 to guide us in the
treatment of the input erasure command, standard subject reduction and noninterference
properties of the type system to establish a well-annotatedversion of the program, and
Theorem 2 to prove that the type system guarantees input erasure.

Our type system is a simple extension of the flow sensitive system of [HS06] (al-
ternative flow sensitive base systems, such as [AB04], couldalso be considered). We
modify the system of [HS06] to betermination sensitive: the rules only allow while
loops to be performed over the lowest security level (⊥), and these can only occur in
the context⊥. This is of course a rather restrictive notion. A more liberal system would
allow high loops when they can be shown to be terminating.

The type rules are shown in Figure 3. For a commandC, judgements have the form
p ⊢ Γ {C} Γ ′ wherep ∈ L, andΓ, Γ ′ are security type assignments. The idea is that
if Γ gives the security levels of variables before execution ofC, thenΓ ′ will give their
security levels afterwards. The typep represents the usual “program counter” level and
serves to eliminate indirect information flows: the rules ensure that only variables with
final types (inΓ ′) greater than or equal top may be changed byC. Similarly, input and
output is only permitted on channels greater than or equal top.

The purpose of the type system is to guarantee noninterference and input erasure.
Here we provide explanation of the rules for input and output, since they are the new
ones. The rule for input commands follows Theorem 1 rather directly, making use of a
command transformer deleteOutput(C) which simply replaces every output command
in its argument withskip. This is the means by which we ignore outputs when checking
the local erasure requirement. We cannot however ignore inputs, since we still need
to ensure that there are no covert channels via the input pointers. Output is simply
treated like an assignment to a variable of a fixed security type. One can note that if we
specialise the typing rules to “vanilla” inputs, as represented by commands of the form

Just Forget It 13

input x : aր a in skip, then we get what appears to be a flow sensitive version of
the deterministic part of the type system from [OCC06].

Skip
p ⊢ Γ {skip} Γ

Assign Γ ⊢ E : t

p ⊢ Γ {x := E} Γ [x 7→ p ⊔ t]

Erase
p ⊢ Γ [x 7→ a] {C} Γ ′ p ⊢ Γ [x 7→ b] {C′} Γ ′ p ⊑ a C′ = deleteOutput(C)

p ⊢ Γ {input x : aրb in C} Γ ′

Output
Γ ⊢ E : b p ⊔ b ⊑ a

p ⊢ Γ {output E on a} Γ
Annotate

p ⊢ Γ {C} Γ ′

p ⊢ Γ {CΓ ′

} Γ ′

Seq
p ⊢ Γ {C1} Γ ′ p ⊢ Γ ′ {C2} Γ ′′

p ⊢ Γ {C1 ; C2} Γ ′′
If

Γ ⊢ E : t p ⊔ t ⊢ Γ {Ci} Γ ′ i = 1, 2

p ⊢ Γ {if E C1 C2} Γ ′

While
Γ ⊢ E : ⊥ ⊥ ⊢ Γ {C} Γ

⊥ ⊢ Γ {while E C} Γ
Sub

p1 ⊢ Γ1 {C} Γ ′

1

p2 ⊢ Γ2 {C} Γ ′

2

p2 ⊑ p1, Γ2 ⊑ Γ1, Γ
′

1 ⊑ Γ ′

2

Fig. 3.Type System

Example Let us reconsider the credit-card transaction server loop from the introduc-
tion. Let us suppose that⊥ ⊑ user ⊑ bank ⊑ ⊤. To represent the intention that the
credit card data is erased by the end of each loop iteration, the code can be rewritten as

while serverUp {
input cc : userր⊤ in {

input details from user

payment := process(cc)
output payment to bank

custInfo := custInfo ⊕ details

cc := 0

9

>

>

>

>

=

>

>

>

>

;

C

}
} . . .

shown to the right. For the purpose of typ-
ing we assume thatprocess(cc) is just some
expression involvingcc. Since⊤ is used to
model the level of data that is no longer phys-
ically present, no variables should be given a
final type of ⊤. With this restriction there is
(thankfully) no typing for this program. The
body of the erasure statementC is, in fact,
suitably noninterfering, as shown by the typing
⊥ ⊢ Γ {C} Γ whereΓ (serverUp) = ⊥ and
Γ (x) = user for all other variablesx. But to type the enclosing erasure input we also
need the typing⊥ ⊢ Γ [cc 7→⊤] {deleteOutput(C)} Γ . This is not possible because
payment := process(cc) forcespayment to type⊤ instead ofuser . By appending
payment := 0 to the end ofC the program becomes typeable.

4.1 Type Correctness

In this section we prove correctness. In what follows, we saythatC is well-typedif, for
somep, Γ, Γ ′, there exists a derivation ofp ⊢ Γ {C} Γ ′.

Before verifying the motivating semantic properties of thetype system, we show
that it is well behaved with respect to reduction by establishing the obvious subject
reduction property.

14 Hunt & Sands, ESOP’08

Theorem 3 (Subject Reduction).If p ⊢ Γ {C} Γ ′ and I ⊢ 〈C, s, i〉 ։ 〈C ′, s′, i′〉,
thenp ⊢ Γ ′′ {C ′} Γ ′, for someΓ ′′.

Proof. We prove the property for single-step reductions. This extends immediately to
multi-step reductions by induction on the number of steps.

The proof is by induction on the height of the type derivationand by cases on the
last rule used.

Case Annotate: We haveC = DΓ ′

and the final derivation step is:

p ⊢ Γ {D} Γ ′

p ⊢ Γ {DΓ ′

} Γ ′

There are two sub-cases to consider:
1. D = skip. In this caseC ′ = skip and by Skip we havep ⊢ Γ ′ {skip} Γ ′,

hence we may takeΓ ′′ = Γ ′.
2. D = R[D0]. In this caseC ′ = R[D′

0]
Γ ′

and the reduction step is justified by:

〈D0, s, i〉
ℓ
→ 〈D′

0, s
′, i′〉

〈R[D0]
Γ ′

, s, i〉
ℓ
→ 〈R[D′

0]
Γ ′

, s′, i′〉

Thus:
〈D0, s, i〉

ℓ
→ 〈D′

0, s
′, i′〉

〈R[D0], s, i〉
ℓ
→ 〈R[D′

0], s
′, i′〉

By IH (applied to the Annotate premisep ⊢ Γ {R[D0]} Γ ′), we havep ⊢
Γ ′′ {R[D′

0]} Γ ′ for someΓ ′′. Hence, by Annotate,p ⊢ Γ ′′ {R[D′

0]
Γ ′

} Γ ′, as
required.

Case While: We haveC = while E D andC ′ = if E (D ; while E D) and the
final derivation step is:

While
Γ ⊢ E : ⊥ ⊥ ⊢ Γ {D} Γ

⊥ ⊢ Γ {while E D} Γ

The required type derivation forC ′ is constructed as follows:

If
Γ ⊢ E : ⊥

Seq
⊥ ⊢ Γ {D} Γ ⊥ ⊢ Γ {C} Γ

⊥ ⊔⊥ = ⊥ ⊢ Γ {D ; C} Γ
Skip

⊥ ⊢ Γ {skip} Γ

⊥ ⊢ Γ {if E (D ; while E D)} Γ

Case Erase:We haveC = input x : aրb in D and the final derivation step is:

p ⊢ Γ [x 7→ a] {D} Γ ′ p ⊢ Γ [x 7→ b] {deleteOutput(C)} Γ ′ p ⊑ a

p ⊢ Γ {input x : aրb in D} Γ ′

In this caseC ′ = D and the result is immediate by the first premise to the final
derivation step.

Just Forget It 15

Case Assign:We haveC = x := E, Γ ′ = Γ [x 7→ p ⊔ t] and the final derivation step
is:

Γ ⊢ E : t

p ⊢ Γ {x := E} Γ [x 7→ p ⊔ t]

In this caseC ′ = skip and by Skip we havep ⊢ Γ ′ {skip} Γ ′, hence we may
takeΓ ′′ = Γ ′.

The remaining cases are similar. ⊓⊔

The two fundamental semantic properties we require of the type system are:

NI Type Correctness: that it guarantees the stateful input-output NI property, Defini-
tion 5 (and thus the top level input-output NI property, Definition 3).

Erasure Type Correctness: that it can be used to establish the premises of Theorem 2
(and thus to guarantee input erasure).

Theorem 4 (NI Type Correctness).If p ⊢ Γ {C} Γ ′ thenΓ {C} Γ ′.

Corollary 1. Well-typed programs are input-output noninterfering.

The proof of the theorem relies on the following three lemmas.

Lemma 1. If p 6= ⊥ andp ⊢ Γ {C} Γ ′, thenI ⊢ 〈C, s, i〉 α
։ 〈skip, s′, i′〉.

Proof. By inspection of the type system, ifp ⊢ Γ {C} Γ ′ then all sub-commands of
C are typeable, each for somep′ ≥ p. Sincewhile E C is only typeable forp′ = ⊥
it follows that C contains no loops. By inspection of the transition rules, itis clear
that evaluation ofC must terminate inskip. (We note that this relies on the fact that
expression evaluation is assumed total and that no “stuck” configurations exist for the
given semantics.)

Lemma 2. If p ⊢ Γ {C} Γ ′ andp 6⊑ c thenΓ ⊢ s =c t ⇒ Γ ′ ⊢ s =c t.

Proof. By induction on the height of the type derivation and by caseson the last rule
used, it is readily proved thatp 6⊑ Γ ′(x) ⇒ Γ (x) ⊑ Γ ′(x). The lemma follows since,
under assumptionp 6⊑ c, we then haveΓ ′(x) ⊑ c ⇒ p 6⊑ Γ ′(x) ⇒ Γ (x) ⊑ Γ ′(x) ⇒
Γ (x) ⊑ c; thusΓ ⊢ s =c t ⇒ Γ ′ ⊢ s =c t.

Lemma 3. If p ⊢ Γ {C} Γ ′ and I ⊢ 〈C, s, i〉 α
։ 〈C ′, s′, i′〉 thenc 6⊒ p ⇒ i′ =c

i ∧ α =c ǫ ∧ Γ ′ ⊢ s′ =c s.

Proof. We prove the property for single-step reductionsI ⊢ 〈C, s, i〉
ℓ
→ 〈C ′, s′, i′〉.

This extends to multi-step reductions by induction on the number of steps, using Subject
Reduction.

The proof is by induction on the height of the type derivationand by cases on the
last rule used. We show the case for Erase by way of illustration.

16 Hunt & Sands, ESOP’08

Case Erase:We haveC = input x : aրb in D and the final derivation step is:

p ⊢ Γ [x 7→ a] {D} Γ ′ p ⊢ Γ [x 7→ b] {deleteOutput(C)} Γ ′ p ⊑ a

p ⊢ Γ {input x : aրb in D} Γ ′

In this case:C ′ = D, ℓ = a?v, s′ = s[x 7→ v], i′ = i[a 7→ i(a) + 1].
Sincep ⊑ a andp 6⊑ c it follows thata 6⊑ c. Froma 6⊑ c we havea?v =c ǫ and
i′ =c i. Froma 6⊑ c we also haveΓ [x 7→ a] ⊢ s =c s′ and thus, applying Lemma 2
to the first premise of Erase,Γ ′ ⊢ s =c s′, as required. ⊓⊔

Proof (of Theorem 4).The proof is by induction on the height of the type derivation
and by cases on the last rule used.

Case If: We haveC = if E Ctrue Cfalse and the final derivation step is:

Γ ⊢ E : a p ⊔ a ⊢ Γ {Cv} Γ ′ v ∈ {true, false}

p ⊢ Γ {if E Ctrue Cfalse} Γ ′

AssumeI =c I ′, Γ ⊢ s =c t, i =c j. Now, assume

I ⊢ 〈C, s, i〉 α
։ 〈C ′, s′, i′〉

In this caseα = τα′ with

I ⊢ 〈C, s, i〉
τ
→ 〈Cv, s, i〉 α′

։ 〈C ′, s′, i′〉

wherev = [[E]]s, and
I ′ ⊢ 〈C, t, j〉

τ
→ 〈Cw, t, j〉

wherew = [[E]]t. We must show:
1. 〈Cw, t, j〉 β

։ 〈C ′′, t′, j′〉 with β =c α′.
2. If C ′ = skip then〈Cw, t, j〉 ։ 〈skip, t′, j′〉 with t′ =c s′ andj′ =c j.

There are two sub-cases to consider:
Casev = w: Both parts follow by IH applied top ⊔ a ⊢ Γ {Cv} Γ ′.
Casev 6= w: In this case,a 6⊑ c (since, otherwise,Γ ⊢ s =a t hence[[E]]s =

[[E]]t), thusp ⊔ a 6⊑ c. Applying Lemma 1 to the typing premise forCw gives

〈Cw, t, j〉 β′

։ 〈skip, t′, j′〉 and applying Lemma 3 to both premises givesα′ =c

ǫ =c β. Applying Lemma 2 to either premise (plus assumptionΓ ⊢ s =c t)
givesΓ ′ ⊢ s =c t. By assumption,i =c j. Applying Lemma 3 to both premises
gives i′ = i, j = j′, Γ ′ ⊢ s′ =c s andΓ ′ ⊢ t =c t′. Hencei′ =c j′ and
Γ ′ ⊢ s′ =c t′ follow by transitivity of=c.

Case Erase:We haveC = input x : aրb in D and the final derivation step is:

p ⊢ Γ [x 7→ a] {D} Γ ′ p ⊢ Γ [x 7→ b] {deleteOutput(C)} Γ ′ p ⊑ a

p ⊢ Γ {input x : aրb in D} Γ ′

AssumeI =c I ′, Γ ⊢ s =c t, i =c j. Now, assume

I ⊢ 〈C, s, i〉 α
։ 〈C ′, s′, i′〉

Just Forget It 17

In this caseα = a?vα′ with

I ⊢ 〈C, s, i〉
a?v
→ 〈D, s[x 7→ v], i[a 7→ n]〉 α′

։ 〈C ′, s′, i′〉

(wheren = i(a) + 1 andv = Ia(n)) and

I ′ ⊢ 〈C, t, j〉
a?v′

→ 〈D, t[x 7→ v′], j[a 7→ n′]〉

(wheren′ = j(a) + 1 andv′ = I ′a(n′)).
Now if a ⊑ c, then by the assumptionsn = n′ andv′ = v, hencea?v′ =c a?v and
Γ [x 7→ a] ⊢ s[x 7→ v] =c t[x 7→ v′] andi[a 7→ n] =c j[a 7→ n′]. On the other
hand, ifa 6⊑ c thena?v′ =c ǫ =c a?v andΓ [x 7→ a] ⊢ s[x 7→ v] =c t[x 7→ v′] and
i[a 7→ n] =c j[a 7→ n′], regardless of the valuesv, v′. Stateful NI then follows by
IH applied to the typing premisep ⊢ Γ [x 7→ a] {D} Γ ′.

Case Assign: In this caseC is x := E, Γ ′ = Γ [x 7→ p ⊔ a] and the final derivation
step is:

Γ ⊢ E : a

p ⊢ Γ {x := E} Γ [x 7→ p ⊔ a]

AssumeI =c I ′, Γ ⊢ s =c t, i =c j. We have

I ⊢ 〈C, s, i〉
τ
→ 〈skip, s[x 7→ v], i〉

wherev = [[E]]s, and

I ⊢ 〈C, t, j〉
τ
→ 〈skip, t[x 7→ w], j〉

wherew = [[E]]t. It suffices then to show

Γ [x 7→ p ⊔ a] ⊢ s[x 7→ v] =c t[x 7→ w] (∗)

Now if a ⊑ c, thenΓ ⊢ s =c t impliesΓ ⊢ s =a t, hencev = w, hence(∗) holds.
On the other hand, ifa 6⊑ c then(∗) follows from Γ ⊢ s =a t, regardless of the
valuesv, w.

Case Seq:In this caseC = C1 ; C2 and the final derivation step is:

p ⊢ Γ {C1} Γ ′ p ⊢ Γ ′ {C2} Γ ′′

p ⊢ Γ {C1 ; C2} Γ ′′

It is easily verified that any derivationI ⊢ 〈C, s, i〉 α
։ 〈C ′, s′, i′〉 has one of the

two following forms:
1. I ⊢ 〈C1 ; C2, s, i〉

α
։ 〈C ′

1 ; C2, s
′, i′〉 whereI ⊢ 〈C1, s, i〉

α
։ 〈C ′

1, s
′, i′〉

2. I ⊢ 〈C1 ; C2, s, i〉
α
։ 〈C ′

2, s
′, i′〉 whereI ⊢ 〈C1, s, i〉

α′

։ 〈skip, s′′, i′′〉 and

I ⊢ 〈C2, s
′′, i′′〉

α′′

։ 〈C ′

2, s
′, i′〉, with α = α′τα′′.

In either case the result follows straightforwardly by application of IH to the premises
of the type derivation.

The remaining cases are similar. ⊓⊔

18 Hunt & Sands, ESOP’08

Theorem 5 (Erasure Type Correctness).If C is well-typed thenC is well-annotated.

Corollary 2. Well-typed programs are input erasing.

Proof. By inspection of the type system, any derivation of a typing for a program must
include a sub-derivationp ⊢ Γ {input x : aրb in C} Γ ′ for every input command,
and we can use each suchΓ ′ to annotate the corresponding input command. By insert-
ing uses of Annotate into the original type derivation we canclearly recover a derivation
for the annotated program. By Theorem 5 the annotated program is well-annotated and
hence, by Theorem 2, is input erasing. Since the annotated program is semantically
equivalent to the original, it follows that the original is input erasing. ⊓⊔

Proof (of Theorem 5).The proof of the theorem is in two parts, corresponding to the
two parts of the definition of well-annotation. For the first part we rely on Theorem 1,
which shows that well-annotation of input commands is a corollary of the following
lemma:

Lemma 4. If p ⊢ Γ {(input x : aրb in C)Γ ′

} Γ ′′ thenΓ [x 7→ b] {Ĉ} Γ ′.

For the second part, we rely on the following lemma:

Lemma 5. If p ⊢ Γ0 {R[skipΓ]} Γ ′ thenΓ {R[skip]} Γ ′.

The second part of well-annotation then follows by subject reduction. ⊓⊔

The proofs of the lemmas follow.

Proof (of Lemma 4).Assume lhs. By inspection of the type system, we have a sub-
derivationp1 ⊢ Γ1[x 7→ b] {deleteOutput(C)} Γ ′

1, with p ⊑ p1, Γ ⊑ Γ1, Γ ′

1 ⊑ Γ ′. By
Theorem 4,Γ1[x 7→ b] {deleteOutput(C)} Γ ′

1. SinceΓ ⊑ Γ1, it follows thatΓ [x 7→
b] ⊑ Γ1[x 7→ b], henceΓ [x 7→ b] {deleteOutput(C)} Γ ′, by montonicity. It is clear
that the behaviours of deleteOutput(C) andĈ are identical except that any non-τ event
labels on the transitions of deleteOutput(C) are replaced byτ on the transitions of̂C.
It follows thatΓ [x 7→ b] {Ĉ} Γ ′, as required. ⊓⊔

Proof (of Lemma 5).By induction on the structure ofR[·].

CaseR[·] = [·]: We have a derivationp ⊢ Γ0 {skipΓ } Γ ′ and we must showΓ {skip}
Γ ′, which will follow if Γ ⊑ Γ ′. This latter is easily seen to hold because the given
derivation must end with a single use of Annotate followed byzero or more uses of
Sub.

CaseR[·] = R′[·] ; C ′: We have a derivationp ⊢ Γ0 {R′[skipΓ];C ′} Γ ′. This deriva-
tion must end with Seq followed by zero or more uses of Sub, hence we have
derivationsp′ ⊢ Γ ′

0 {R′[skipΓ]} Γ ′′ andp′ ⊢ Γ ′′ {C ′} Γ ′′′ with Γ ′′′ ⊑ Γ ′. By
IH Γ {R′[skip]} Γ ′′ and by Theorem 4Γ ′′ {C ′} Γ ′′′. Hence, by compositionality
and monotonicity,Γ {R′[skip];C ′} Γ ′, as required.

CaseR[·] = R′[·]Γ
′′

: We have a derivationp ⊢ Γ0 {R′[skipΓ]Γ
′′

} Γ ′. This derivation
must end with Annotate followed by zero or more uses of Sub, hence we have
derivationp ⊢ Γ1 {R′[skipΓ]} Γ ′′ with Γ0 ⊑ Γ1, Γ ′′ ⊑ Γ ′. By IH Γ {R′[skip]}
Γ ′′ hence, by monotonicity,Γ {R′[skip]} Γ ′. Since the operational semantics of
annotations are transparent, it follows thatΓ {R′[skip]Γ

′′

} Γ ′, as required. ⊓⊔

Just Forget It 19

5 On the Adequacy of the Input-Output Model

We have adopted a simple stream-based model of input-output. In a general nondeter-
ministic setting, such a model does not adequately model a “high” attacker who is trying
to pass information to “low” through the program, and it becomes necessary to quantify
over all possiblestrategiesadopted by the principals. This is a well known problem in
the noninterference literature [WJ90]. See [OCC06] for a recent language-based take
on the issue. Fortunately, since we deal with deterministicprograms, it turns out that
simple stream modelsare nevertheless adequate, as shown recently by Clark and Hunt
[CH07].

What about erasure? Are there potential problems that arise from not modelling an
active attacker’s strategy? In fact the problem here is thatwe cannotreasonably model
inputs as coming from an attacker with an arbitrary strategy, because it only makes
sense to promise to erase data if the supplier isnot an adversary. A payment system
typically promises, on completion of a transaction, to erase the credit card data but to
retain the shipping address. The system will not succeed in erasing the credit card data
if the user’s strategy is to re-input the credit card data as aresponse to a subsequent
request for the shipping address, but clearly we do not want to admit such strategies.

There are more subtle cases which show that we must assume even more about the
data supplier’s behaviour. Suppose that, before the creditcard is erased, the program
sends back to the user a special offer code“zahojasf23” with the promise “present this
code when you next shop with us for a 10% discount”. What if thiscode is simply an
encryption of the credit card number? The program in this case may well have erased
the credit card number by the end of the transaction, but if the user re-inputs this code
then the program will have reconstructed the credit card number.

What assumptions are reasonable for the data supplier? We assume, from a nonin-
terference perspective, that attackers can make arbitrarily accurate semantic deductions
based on their observations and complete knowledge of the program. For a non attacker
it seems reasonable to assume the opposite – the honest user sees the program as a black
box. How then can we solve the problem from the example above if the user cannot be
relied upon toknowwhether“zahojasf23” contains their credit card information? Our
proposed solution is to:

– assume that the user is aware of the erasure “contract”; theyknow that they are
providing an input which is scheduled for erasure, and they are notified when the
erasure is complete, and

– assume that the user treats any outputs from the program (at their level) as poten-
tially tainted with data currently scheduled for erasure.

We believe that the stream model that we have used here correctly captures these as-
sumptions, but it is beyond the scope of this paper to explicitly model such user strate-
gies in order toprovethat the stream model is indeed correct in this sense.

6 Conclusions and Further Work

We have studied the semantics of erasure and shown its connection to noninterfer-
ence. We have introduced a particular idiom for expressing erasure policies in code,

20 Hunt & Sands, ESOP’08

and shown that a natural global erasure property can be enforced by a combination of
noninterference and a local erasure property, which in turncan also be established by
a noninterference property. This leads to a fairly direct definition of a type system for
which well typed programs correctly erase their data. We conclude here by returning to
the related work, before finishing with some remarks about further work.

Related work In addition to Chong and Myers work [CM05], Hansen and Probst
[HP06] describe what they callsimple erasure policieswhich correspond to a specific
instance of our end-to-end erasure policies, but stated in terms of the erasure of a whole
level rather than a single variable. Neither of these works describe an implementation
of erasure, either by encoding into standard noninterference or developing a specific
program analysis.

There are several fundamental differences between thedefinitionof erasure devel-
oped here and that of Chong and Myers. Ignoring the fact that [CM05] also deals with
declassification policies, we note the following differences. Firstly, [CM05] does not
consider a system with interaction, something that we feel is central to making notions
of erasure meaningful. Secondly, in the abstract system model in [CM05] the state of
the system isjust a store. The obvious way to encode an imperative program as such
a system would be to use aprogram countervariable, but there is no suitablepolicy
in their language which one could attach to such a program counter. Thus their model
might not be suitable for modelling imperative programs – atleast not with a straight-
forward encoding. Thirdly, they require a “physical erasure” condition which says that
at the point where a variable is erased it should contain a predefined constant. This is
stronger than necessary. Although we cansatisfyerasure properties in that way, there
is nothing to stop us from erasing data to levelb by e.g. overwriting it with something
else from a lower level. Lastly, since erasure can be thoughtof as a dual to declassi-
fication (since it is used to strengthen as opposed to weaken NI) we can see that their
erasure condition and ours tackle differentdimensionsof erasure: using the terminol-
ogy of [SS05], their erasure properties deal withwhenerasure takes place, whereas our
input-centric erasure determineswhere(in the code) erasure takes place.

Finally, we note that our use of a block structured erasure command is similar in
spirit to Almeida Matos and Boudol’s [AB05] block structured declassification con-
struct,flow F in C, which locally extends the global information flow policy with
flowsF for the duration ofC.

Further Work There are several obvious avenues for further work.
We can follow the “dimensions” and consider, for example, refinement ofwhat is

erased. For example, erasure of all except the first four digits of a credit card number.
Work on corresponding “what” declassification policies [SS05] can be applied directly.

The input erasure construct used here can be generalised in anumber of potentially
useful ways. One possibility is to introduce an erasure region – a code block in which
all subsequent inputs are erased.

A naive implementation of the type system as presented is potentially exponential
in the depth of nesting of erasure statements, because the body of the erasure statement
appears twice in the premise of the Erase rule. By building onresults from [HS06], we

Just Forget It 21

are hopeful that this behaviour can be avoided by obtaining the two typings for the body
of an erasure input as specialisations of a single principaltype.

On the theoretical side we noted at the end of the previous section the need for fur-
ther work on modelling attacker strategies and “honest” participants. A process calculus
setting may prove more suitable to conduct such an investigation.

AcknowledgementsThanks to various members of the ProSec group at Chalmers for
helpful comments, to Steve Chong and to the anonymous referees for numerous helpful
comments and suggestions. This work was partly supported byEPSRC research grant
EP/C009746/1 Quantitative Information Flow, the Swedish research agencies Vinnova,
SSF, VR and by the Information Society Technologies programme of the European
Commission under the IST-2005-015905 MOBIUS project.

References

AB04. Torben Amtoft and Anindya Banerjee. Information flow analysisin logical form. In
SAS 2004 (11th Static Analysis Symposium), Verona, Italy, August 2004, volume 3148
of LNCS, pages 100–115. Springer-Verlag, 2004.

AB05. A. Almeida Matos and G. Boudol. On declassification and the non-disclosure policy.
In Proc. IEEE Computer Security Foundations Workshop, June 2005.

CH07. D. Clark and S. Hunt. Observation, nondeterminism and nondeducability on strate-
gies. Workshop presentation at PLID’07, 3rd International Workshop on Programming
Language Dependence and Independence, August 2007.

CM05. S. Chong and A. C. Myers. Language-based information erasure. InProc. IEEE Com-
puter Security Foundations Workshop, June 2005.

FG95. R. Focardi and R. Gorrieri. A classification of security properties for process algebras.
J. Computer Security, 3(1):5–33, 1995.

GM04. R. Giacobazzi and I. Mastroeni. Abstract non-interference:parameterizing non-
interference by abstract interpretation. InProc. ACM Symp. on Principles of Program-
ming Languages, pages 186–197, 2004.

HP06. R. R. Hansen and C. W. Probst. Non-interference and erasure policies for java card
bytecode. In6th International Workshop on Issues in the Theory of Security (WITS
’06), 2006.

HS06. S. Hunt and D. Sands. On flow-sensitive security types. InPOPL’06, Proceedings of
the 33rd Annual. ACM SIGPLAN - SIGACT. Symposium. on Principles of Programming
Languages, January 2006.

OCC06. Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-flow security
for interactive programs. InProc. IEEE Computer Security Foundations Workshop,
pages 190–201. IEEE Computer Society, 2006.

Ros95. A. W. Roscoe. CSP and determinism in security modeling. InProc. IEEE Symp. on
Security and Privacy, pages 114–127, May 1995.

SS01. A. Sabelfeld and D. Sands. A per model of secure information flow in sequential pro-
grams.Higher-Order and Symbolic Computation, 14(1):59–91, March 2001.

SS05. Andrei Sabelfeld and David Sands. Dimensions and principles ofdeclassification. In
Proceedings of the 18th IEEE Computer Security Foundations Workshop, pages 255–
269. IEEE Computer Society Press, 2005.

WJ90. J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic systems.
In IEEE Symposium on Security and Privacy, pages 144–161, 1990.

	Information Erasure
	End-to-End Erasure
	Flow sensitive End-to-End Noninterference
	End-to-End Erasure
	Relating End-to-End Erasure and NI

	Erasure in the Presence of Input-Output
	A Language with Input and Output
	Noninterference and Input Erasure
	Characterising Input Erasure with a Local Erasure Condition
	From Local to Global Erasure

	Erasure by Typing
	Type Correctness

	On the Adequacy of the Input-Output Model
	Conclusions and Further Work

