Just Forget It
The Semantics and Enforcement of Information Erasure

Sebastian Hurtand David Sands

1 City University, London
2 Chalmers university of Technology, Sweden

Abstract. There are many settings in which sensitive information is made avail-
able to a system or organisation for a specific purpose, on the unaérgtdhat

it will be erased once that purpose has been fulfilled. A familiar examghetof
online credit card transactions: a customer typically provides creditaetails
to a payment system on the understanding that the following promisegpire k
(i) Noninterference (NI): the card details may flow to the bank (in ordat tie
payment can be authorised) but not to other users of the system;g&er the
payment system will not retain any record of the card details once thearhon

is complete. This example shows that we need to reason about NI andesia
combination, and that we need to consider interactive systems: the egitsd
are used in the interaction between the principals, and then erased; vitikrout
interaction, the card details could be dispensed with altogether and evasuce
be unnecessary. The contributions of this paper are as follows. (ihdve that
an end-to-end erasure property can be encoded as a “flow sehsdiviaterfer-
ence property. (ii) By a judicious choice of language construct to stippasure
policies, we successfully adapt this result to an interactive setting. (iii) e u
this result to design a type system which guarantees that well typed pregra
properly erasing. Although erasure policies have been discussedién papers,
this appears to be the first static analysis to enforce erasure.

1 Information Erasure

There are many settings in which sensitive information islenavailable to a system
or organisation for a specific purpose, on the understartiiagt will be erased once

that purpose has been fulfilled. Common examples involveueesof some authentica-
tion token, such as voter identity in e-voting, or biomettata in fingerprint-activated

left-luggage lockers. A more everyday example is an onlieglit card transaction. A

customer typically provides credit card details to a paynsgatem on the understand-
ing that the following promises are kept:

Noninterference (NI): the card details may flow to the bank (in order that the payémen
can be authorised) but not to other users of the system;

Erasure: the payment system witot retain any record of the card details once the
transaction is complete.

In this case, erasure ensures that the transaction doesaket ime customer or bank
vulnerable to breaches of security in the payment systerohwdgcur after the transac-
tion is complete. Two aspects of erasure are illustratednisyetxample:

Draft of April 29, 2008. Extended version of an article in: Proceedings of ES®)RTth European Symposium on Program-
ming, Budapest, 29 March - 6 April, 2008. Springer-Verlag (LNCS)

2 Hunt & Sands, ESOP’08

1. We need to be able to reason about NI and erasure in conaoinete show that
flow sensitive NI combined with erasure is equivalent to alessification of the
erased input.

2. To give a satisfactory account of erasure, we need to derisieractivesystems:
the card details are used in the interaction between themest the payment sys-
tem and the bank, anthenerased; without the interaction, the card details could
be dispensed with altogether and erasure would be unnegessa

Background The idea and motivations for studying erasure propertiegrorams
come from recent work of Chong and Myers [CMO05], and we borsmme notation
from that paper. Their paper deals with expressive tempofatmation flow policies
for program variables which include combinations of erasamd declassification. In
their simplest form, erasure policies are written in thenfar < b, and are used to
describe a variable whose security level is initiallybut which is erased to levélas
soon as conditior (in principle an arbitrary property of the computation) aisfied.
Policies as described in [CM05] are quite complex (expvegsand their semantics is
necessarily quite involved. It is perhaps not surprisireg they have not described an
enforcement mechanism (e.g. a type system) for their ptdicyuage.

In this paper we take a fresh look at the erasure problem witlueh less ambi-
tious policy language. We focus on just erasure, indepdhd&om declassification
concerns. We show how, together with a judicious choicermju@ge construct to sup-
port erasure policies, we can take advantage of the cloatamship between erasure
semantics and noninterference to provide, to our knowletthgefirst static analysis to
enforce erasure policies.

Summary We begin (Sectioh 2) by considering what we aaild-to-enderasure for
non interactive programs. Consider the following triviebgram:y := y + 1 ; cc := 0.
This program erases (the initial value @f). On the other handif isVisa(cc) y :=
y+ 1) ; cc := 0 does not erasec, since some information about is retained by
y. More generally (following [CMO5]) we talk about erasureafariableto a higher
security levelln this very simple setting we show that:

— an end-to-end erasure property can be encoded as a “flovtigghsoninterference
property (Proposition 1), and

— if we also require that the program is noninterfering, thieis ts a necessary and
sufficient condition for erasure (Proposition 2).

End-to-end erasure is too simple to be useful in, .
.) while serverUp {
itself. In Sectionn 3 we move on to the study of era- input cc from wser
sure in the presence of fresh inputs and program out-inpu ¢ details from user
puts. Consider for example the program to the right. P

) . payment := process(cc)
Here the erasure property we might want is that no output paument to bank
information about the inputc in the first line of the custrf)nfop-i/ custinfo & details
loop body can be observed after the transaction (thecc -0 '
loop body) is complete. In this case the inpuhist) '
erased because it is still presenpiryment, so if the

Just Forget It 3

server goes down the credit card information of the laststation could be retrieved
from this variable and output by the system.

Defining what it means for a program to erase data in the geonasa is poten-
tially complex and, we suspect, correspondingly difficalenforce. The key idea that
we introduce in Section/3 is a simple language mechanismeoifypa well behaved
class of erasure policies. We introduce a block structunpdticommand of the form
input z from a erased in C (the exact syntactic form accommodates a more general
notion than this and is writteinput z : a b in C) thereby tying the semantic
lifetime of the input (from the point of view of certain obsers) to code block’. This
facilitates the subsequent development as follows:

— the definition of when a program correctly enforces suchugeagolicies (we call
such a progrannput erasing becomes easy to state (Definition 4)

— because of the block structured nature of the erasure pelieycan apply ideas
from Section 2 to determine a local end-to-end style erasarglition (Defini-
tion[6) which, as for end-to-end erasure, can also be exguess a reclassified
noninterference property (Theorem 1)

— we can then show that the local erasure condition togethtbr avsuitable nonin-
terference property is sufficient to guarantee that a progsanput erasing (Theo-

rem2).

Our final contribution (Sectidn 4) is to use this local chéedsation of erasure to de-
sign a type system which guarantees that well typed progeam@put erasing. The
type system is a direct adaptation (extension) of a flow seasype system for nonin-
terference described in [HS06].

Section 5 discusses some of the subtleties of erasure ambthgutation model.
Section 6 concludes, revisiting related work and sketchomge ideas for further work.

2 End-to-End Erasure

We start by considering erasure in its “purest” form. Coesigdrograms which just
transform some initial memory state to a final memory statsmdgetely, we can con-
sider a simplewvhile language with no input or output commands (essentially d@he |
guage described in Figuré 2 with all the input-output maehirremoved). The se-
mantics of this language can be given as a small-step detistivitransition relation
on configurations, where terminating computations havddtma (C, s) — (skip, t)
(hereC is a program and, ¢t are memorystates finite mappings from the settar of
variable names to values).

2.1 Flow sensitive End-to-End Noninterference

As in [HS06] we consider a flow sensitive form of noninterfere. Letl", I’ be finite
mappings from variable names to element36fC, LI, M) a lattice of security levels.
We will call thesesecurity type assignments/e writes =x t to mean that statesand

t agree on all variables in the s&t Fora € £ we writeI" - s =, t to mean that and

t are equal to all observers at or below security leyetlith respect to the security type
assignmenf”. Thatis:I' F s =, tiff s =x t whereX = {z|['(z) C a}.

4 Hunt & Sands, ESOP’08

Definition 1 (Noninterference (NI)). A command”' is noninterfering froml” to I,
written I" {C'} I, iff, forall a € L,if ' - s =, t and(C,s) — (skip,s’) then
(C,ty — (skip, t') for somet’ such thatl” - s’ =, ¢'.

(Note that, since programs are deterministia; iéxists - ie if the program terminates
- it is unique.) In other words, noninterference says thawd initial states are indis-
tinguishable to an observer at(with respect tol") then the resulting states will also
be indistinguishable (with respect fd). Note that, unlike [HS06], this is a termination
sensitiveNl property, meaning that we dmt allow information leaks through termina-
tion/nontermination behaviour. We chose this strongeawmabecause it is better suited
to a computational model with input-output (Section 3).

2.2 End-to-End Erasure

In what follows we have chosen to model erasure of the inftionatored in individual
variables. Our choice is essentially pragmatic: it allowgaiexpress the key ideas in
a simple way while supporting reasonably expressive eeagalicies. Other choices
are possible. For example we could model erasure of allnmdtion stored at a given
security level, or, conversely, partial erasure of therimfation stored in a variable. To
be more general still, one could model erasure of arbitranjeptions on the program
state — and such things could be done in the PER model [SSQE]imy abstract non-
interference [GMO04)).

We define end-to-end erasure as a simple information flowgutpdn its simplest
form, say that a progragompletely erasebe information in variable if varying (just)
the information inz prior to execution has no effect on the final program statéadn
we want to be more general than this (following [CMO05]). Wl way thatz is erased
to some leved, if varying x leaves the final state unchanged from the viewpoint of all
observers except those at leber above. In what follows we writex: for Var — {z}.

Definition 2 (End-to-End Erasure). Command_ erasest to b in I/, written

C : z/'bin I, iff, whenevers =_, ¢ and (C,s) — (skip,s’) then(C,t) —
(skip, t'), for somet’ such thatve 2 b, I+ s' =, ¢'.

Note that we can recover complete erasure from the more gletedinition, in the form
C:xz/Tin I, aslongas we have some security leVeduch that, for all variableg,
I'(y) 27T,

Consider the example programs in Figure 1. We hBve zr / H in I', but P,
doesnoterasez, * H because althougty, itself is physically overwritten, information
about the initial value ofy, is still present iny,;. The same goes faPs: it does not
erasezy, to H, this time because of an indirect information flowtg .

Typically, we will wish to enforce policies in which erasugerequiredin addition
to NI. The programs in Figure 1 satisty {P;} I" (i = 1,2,3). If we replaced:;, :=
0 with z;, := yys in P, the program would still erase;, to H, but would not be
noninterfering from/" to I".

2.3 Relating End-to-End Erasure and NI

It is clear from the definitions that end-to-end erasure amtnierference are closely
related. In later sections we exploit this relationship attbthe design of an erasure

Just Forget It 5

Priaxgi=xp+ym+zr Peraxu:=zatym+z2r P3:zp:=zg+ym+zL
YyMm = ym + 2 yMm = yYm + 2L if (22 =0) ym :==ym +1
zr =0 2 =0 zL =10

Fig.1. Example programs, assuming security type assignmdnt =
[xg—H, yym— M, z,— L] with respect to the three point lattideC M C H.

policy mechanism, and in the adaptation of the flow sensttige system from [HS06]
to produce a type system which also enforces erasure polithe key observation is
that every erasure property can be enforced by requirintateteN| property.

Proposition 1. If I'[z — b] {C'} " thenC : z,/bin I"'.

Proof. Assume |hs. Suppose =_, t andc 2 b. From the definitions and by assumption
of Ihs, it suffices to show that’[zx — b] - s =, t: this is immediate froms =_, t and
I'z—0bl(z)=bLec. O

For example, the Proposition tells us that we can veRfy: z; ~ H (Figure/ 1) by
showing thatl"[x,—H] {P1} I', and this can be done, for example, using the type
system from [HS06].

While useful, this leaves open the possibility that the r&sifeed NI condition of
Proposition 1 is too strong in general, requiring much mbaatis necessary to ensure
erasure. In practice, however, we wish to enforce erasut@oninterference together.
The following result shows that, if we already require thepkbpertyl” {C'} I/, then
the reclassified NI propert§f[x — b] {C} I" is preciselywhat we need to ensure that
x is erased to.

Proposition 2. If I" {C} I'" thenC : -, "bin I’ < I'[x — b] {C} I".

Proof. Subsumed by Theorem 1.

3 Erasure in the Presence of Input-Output

The previous section showed how end-to-end erasure policia be determined by
using reclassification and noninterference. But end-tb-@masure is not the kind of
policy we ultimately want to enforce. If all the attacker das literally observe the
final values of a computation then Proposition 2 really talisthat an erasure policy
is just a way to fix a noninterference policy for which someadatis assigned a level
which is too low.

Our task now is to generalise the notion of erasure to maketiemmeaningful and
more expressive. To do this we consider a system with inmdatputs, and a notion
of erasure at an intermediate program point. For simplieity will identify security
levels with channels, thus for eaghe £, we assume exactly one channel, also named
a, which carries data at level(c.f. [OCCO06]).

It is tempting (and potentially expressive) to introducpag@ate constructs for input

6 Hunt & Sands, ESOP’08

and erasure. But consider the example to theput » from «
right. Clearly,z is literally overwritten with a if (= 0)(x := —1; erased z to b)
constant in every run which passes the ergutput = on a
sure assertion. Intuitively though, this pro-
gram should be rejected, since an observer of outputsean still deduce something
about the erased data. This is an example of one particubdtemn; there are poten-
tially many such problems compounded by the interactiomvbeen different erasure
operations and the deductions an observer can make thopgts iand outputs.

Our key idea is to avoid these problems by combining inputexadure into a single
block structured command:

input z:a,/bin C

which can be read as the policy “inputon channek then compute”, after whichx
will have been erased to levigl By associating the lifetime of the data with the erasure
policy in a block-structured way we avoid some of the subttebfems of indirect in-
formation flow interacting with the erasure policy. More ionfantly, we will show that
we can apply the end-to-end erasure definition locally tacttramandC' to achieve a
meaningful global erasure.

To show that this is really the case we must first extend ounitiefis of noninter-
ference and erasure to take into account the fact that tigeidaye now has 1O.

3.1 A Language with Input and Output

To be concrete let us take the simplbile language and add input as an erasure dec-
laration as above, and a simple output statement. For thatimeal semantics of this
language we assume the existence of an infinite input streamatch security level.
We letI denote the set of input streams and, for any leydl, denotes the stream of
a-inputs, andl,, (m), m > 0 denotes then!” input on channet.

We assume a small-step operational semantics with confignsaf the form(C, s, 1),
whereC ands are as before ande £ — N is the input stream pointer which records
how much of the input streams have been consumed so far.

Transitions are written in the form F (C, s, i) LN (C',t,1") where the label is
either an input event?v, a silent transitionr, or an output event!v. We will often
omit the labelr. The syntax and semantics are given in Figure 2. The inpeasts/
are left implicit in the rules. We assume an expression eai £] s which produces
a value from an expression and an environment. We impliedisume well-typedness
for expressions.

A “vanilla” input commandinput x from a, i.e. one which is not associated with
an erasure property, can be defined as a shorthand for te #tasureinput « :

a /" a in skip (it is trivially erasing because “after executisRip the value input on
channek will only be visible at level or above”).

From the single step evaluation relation we define the zeroare-step relatior,
labelled with a sequence of non-silent events, in the olsAvay. We writec; —» co to
mean that; 3 ¢, for some (possibly empty) andec; S to meardes.cy S cs.

Just Forget It 7

Expressions E :=n |z | Eop E’
Commands C :=skip|z:= E | C; ; Cs|if E C; C2| while E C
|input z : /b in C | output E on a
Reduction Contexts R ::= [-] | (R[] ; C)
I,(n)=v n=ia)+1

(input z: a,"bin C,s,i) — (C, s[z > v],i[a — n])

[E]ls=v [E]ls=v

(z:= E,s,i) - (skip, slz — v], i) (output E on a, s, i) oy (skip, s, 1)
[Els = v € {true, false}
<if FE Cirue Cfalse, S, i> 5 <Cv7 S, i>

(while E C,s,i) = (if E (C ; while E C) skip, s, 1)

((skip ; C),5,i) = (C,s,1) (R[C], 5,1)
Fig. 2. Syntax and Semantics

3.2 Noninterference and Input Erasure

We extend the equality relatios, to input streams (and input stream pointers) by
sayingl =, I' (i =, j) whenevetl. = I (i(c) = j(¢)) for all ¢ C a. We writea: =, 8
to mean equality of the projections efand to all labels on channed or lower.

Definition 3 (Input-Output Noninterference). We define a commard to beinput-
output noninterferingf for all « € £, and all input streamd and I, if I =, I’ and

I+ (C,s,i) % thenl + (C,s,i) £ for somes such thaty =, §.

Let us now turn to the definition of the erasure property thatwant. It says that in
any execution, once control has reached the end of the ik mput z : a,b in C
—i.e. once we have finished executifig- then no information aboutshould be visible
through subsequent input or output events except at demehigher.

Definition 4 (Input Erasure). We say that a command, is input erasingf for all
input streamdl the following property holds. Suppose we have a computatiche
following form:

I'+{(Cy,s0,ip) — (R[input z : a, b in C],s,i) — (R[skip],s1,11) S

where the computatio®[input « : a b in C] — R[skip] is independent oR[].
Let I’ be an input stream which only differs fromon channela at input position
i(a) 4+ 1. Then the input erasing condition requires that there exéstomputation of
the following form:

I' +(Cy, s0,10) — (R[input z : a,/bin O], s,i) — (R[skip],t1,j1) 2

8 Hunt & Sands, ESOP’08

such thatvc 2 b we haves;, =, t;,i; =. j; (i = 1,2) anda =, (.

Note that the requirement that - (Cy, s9,i0) — (R[input = : a7 b in C],s,i)
is actually vacuous since the computation has not yet resitteepoint at whichl and
I’ differ. The start state, andiy in the above are universally quantified, but could be
fixed. A natural choice for an initial input pointer would ajurse be\a.0.

The following proposition formalises the sense in which ‘thenilla” input is al-
ways erasing:

Proposition 3. If C'is input-output noninterfering and if each input command’ihas
the forminput x : a"a in skip for somer anda thenC is input erasing.

Proof. Let C' be ain input-output noninterferring command with input coamds re-
stricted as above. L&t = (C, sy, ip). Any computation involving an input command
with an input streani has the form:

I'+C 23 (R[input « : a,a in skip], s,1i) oy (R[skip], s[x +— v],i1) S

Supposd’ differs only from1 at the position corresponding to the inpuibove. Then
we have a computation of the form:

I' = C 28 (Rlinput z : aa in skip], s, i) oy (R[skip], s[x — w],11)

SinceC' is assumed to be input noninterfering then if we take anyg o« we have

I =. I’, and hencd’ + C 2 for somef3, such thatag (a?v)a =, By. Since the
language is deterministic, it follows th&t must have the formy,(a?w)s for someg

such thaty =, 3, and wherg R[skip, s[z — w],i;) % as required. O

3.3 Characterising Input Erasure with a Local Erasure Condiion

In this section we develop a local characterisation of eeswa generalisation of end-
to-end erasure which we can apply locally to the commiansut = : o b in C —
which will help us establish the “global” input erasure cibioh.

To do this we will need to work with a stronger notion of noeirierence than input-
output noninterference. Although the definition of inputyzut noninterference is a rea-
sonable top level definition (for more discussion on thisipsee sectian|5) it is difficult
to work with since it says nothing about the state. For exantps not compositional
with respect to sequential compositiafli = input z on H ; if x theny := 1is
I0-noninterfering, and so i€ = output y on L, butC; ; Cs is not. It is convenient
therefore to work with a stronger definition which also loaktshe initial and terminal
state (in the case that the program terminates).

Definition 5 (Stateful Input-Output Noninterference). Acommand’ is noninterfer-
ing fromI" to IV, written I" {C} I", iff, for all « € £, and all input streamd, I’, if
I'ks=,t,I=,1'li=,jthen

1. if I+ (C,s,i) % thenl’ - (C,t,j) & for somes such thaix =, 3, and

Just Forget It 9

2. ifT+(C,s,i) — (skip, s/,1") thenl’ - (C. t,j) — (skip,t’,j’) such that’ =, j
andI+ s =, t.

Now we will define an extension of the end-to-end erasuregngpl he idea is that,
when enforced locally on the erasing input command, thegatgvill be sufficient to
ensure the global erasure property.

The definition ensures that if a specific variablés erased fromu to b then it is
neither “visible” in the state except at or abdvéprecisely as beforajor via the input
pointer:

Definition 6 (Local Erasure). Command’' erasesr to b in I/, written C' : /b in
I, iff, whenevers =_, tandI + (C,s,ip) — (skip,s’,i) thenI (C.t,ip) —
(skip, t',j), for some’ andj such thatve 2 b, I - ¢’ =, ¢’ andi =, j.

Note that we have overloaded some definitions defined in@e2tilt is reasonable
to do this because they are conservative extensions of therekefinitions. Stated more
precisely:

Proposition 4. For any command” free from input-output statements, define the 10-
free semantics of' to be(C, s) — (C’, t) iff I - (C, s,i) - (C’,t,1). For any suchC
we have that

1. The statement that' is noninterfering froml” to I is identical for Definition 1
and Definition 5.
2. The statement that erasesc to b in I is identical for Definition 2 and Definition

6l

Proof. Observing that input-output-free commands compute incegetly from the
input streams, and to not modify the input stream pointées the result is immediate
by specialisising definitions 5 and Definition 6. O

The local erasure condition ignores the input and outpuas tdike place before the
computation is complete, but the condition neverthelessaels thai =, j. This is
motivated by the fact that the state of the input pointer canded as a covert store to
save information about the erased secret. Consider the aochthdefined as

if (x #0) (input y on M); (whereL C M C H)
z:=0;y:=0

If we ignored the final value of the input pointers, then thisnecnand would be con-
sidered to erase. This would be too weak for our purposes because after tleeiera
information aboutz will be known to an observer at levéf. To see this, consider
using the command() in the program to the right. So for example if tié input
stream has the value 1. .. then the value of} output onM will be 0 if z was0 and1
otherwise.

10 Hunt & Sands, ESOP’08

Reclassification In the manner of Proposition 1, we? = 0'; .
will show that the local erasure property can be chaf®Put @ : L/ H in C;
acterised in terms of noninterference. But since noH2Put ¥ on M ;

interference cares about the input output events tHE{tPut v on M

occur during a computation, and local erasure does not, @& aevay to “turn a blind
eye” to input output events. Towards this end it is useful Fsfoecification purposes

only — to introduce a language construct which “hides” ilspartd outputs:
Definition 7. We extend the language with commands of the fOrwith semantics
(C,s,i) S (C", 8, 1)
(C,s,i) = (C7,5',1) (skip, 5,1) = (skip, s, 1)

This is essentially just like the hiding operation of CSR] axcommonly used in pro-
cess calculi to specify noninterference properties (sg€e[Ros95,FG95]), except that
here we are hidingll events, s@’ behaves like”' but with every input or output label
of C replaced by the silent actian

Theorem 1 (Local Erasure as Reclassification)f I" {C'} I then
C:z/binl" < I'[z — 1] {6}F’

The theorem says that to check noninterference and erasusecbmmand it is neces-
sary and sufficient to check noninterference and a recledsifininterference property
but where input and output labels are ignored.

Proof. Firstwe note that we can easily specialise the definitioroofmterference to the
case where programs perform no visible 10. In this way we egrtisatl"[x — b] {C}
I’ if and only if for all a,

I=,I' A Iz—blbs=qt A i=gj A I+(C,s,i)— (skip,s,i)
=3t j. I'bs =t Ai=.j A I'F(Ctj) — (skip,t.j)

The following properties are easy consequences of the tiefisiand semantics of
hiding, and will be used freely in what follows: () {C} I'" = I {C'} I" and (ii)
C:z/binl" < C:2/binT". ~

For the (=)-direction of the theorem it is sufficient to prove thdtx — b] {C'}
I impliesC : z,/bin I". Assume the rhs, that =, t, andI F (C,s,i) —
(skip, s',i’). Sinces andt only differ atz, and inI"[z — b] we have that: is not
visible at levelc 2 b we haveVe 2 b.I'lx — b] b s =, t. From the specialised
noninterference property above we have tdtj’. I"F s = ' Ni' = J AT
(C,t,]) — (skip,t,j).

For the &)-direction of the theorem, assume the premise andithat I' AI'[x —
blFs=qgtAi=qjATF (C,s,i) — (skip, s, i').

If « 3 b, consider whether or naf(z) C a. In either case{y|I'(y) C a} C
{y|'[x — b](y) C a}. Hence, wherm J b, I'[x — b F s =, timpliesI" F s =, ¢
and the required, j’ exist by assumption of noninterference.

Just Forget It 11

Assume then that 2 b. Lets; = s[z — t(x)]. Then we haves =_, sy, and
I'[z — b] - s1 =, t. Sinces; and¢ agree onc then we also havé’ - s; =, t. Since
C :2/bin I we have thaf + (C, s1,i) — (skip, s,,i1) whereVe 2 b.i’ =, i; A
I+ ¢’ =, s}.Sincein particulaz. 2 btheni’ =, iy A" F s’ =, s}. FromI" {C} I’
we havel” {C} I', and sincel™ I s; =, t, we getl’ - (C,t,j) — (skip, ', j’) where
iy =, jandI" s| =, t. From transitivity of=, we conclude that =, j and
I'"+ s =, t' as required. O

3.4 From Local to Global Erasure

We have defined a local erasure condition for commands witlTh@ purpose of the
local condition is to provide sufficient conditions for irf@rasure. But in order to com-
plete this picture we need some noninterference conditibieslocal erasure property
can only give input erasure if the rest of the program doesatiolv the erased infor-
mation to flow back down to a lower level, i.e. it must have aintarference property.

Annotations To state the noninterference assumptions we need, we \gilpreggram
annotations. Annotations will provide the link to compasial program analyses such
as type systems. An annotation here is just a security tygigrasent. The operational
semantics of an annotation is transparent (otherwise itdvoat be an annotation!): we
extend the grammar of reduction contexts with the annotzatext(R[-])!’, and spec-
ify the rule (skip’ , s,i) — (skip, s,). In an annotated subteri’’, the annotation
I' is intended to describe the security levels of the stateeaptlint in execution after
C has been evaluated. This intuition is made concrete in thenwfimg definition which
connects annotations to the noninterference property.

Definition 8 (Well-annotated Commands).Command” is well annotatedff:

1. every annotated input commafichput = : a /b in C)! in Cy has the local
erasure propertyC' : x,/'bin I';
2. whenever a command of the foffskip’ | is reached from any computation be-
ginning withCy, thenI" { R[skip]} I for somel ™.
Theorem 2. If Cy is a well-annotated command such that every input commang in
is annotated, the; is input erasing.
Proof. Suppose that, satisfies the premise of the claim, and that
I+ {(Cy, so,i0) — (R[input z : a b in C], s, 1)
— (R[skip], s1,11) (independent of2[']).

«@
—»

Since each input command is annotated we know ffdt = R'[-] for someR’[] and I".
Suppose further thd{a) = k and thatl,(k + 1) = v. Given this, we know that the above
computation has the form

I+ (Co,s0,i0) — (R'[(input z : a,/bin C)"], s, 1)
oy (R'[CT, s[z — v],ila — Kk + 1])
— (R'[skip’], s1,11) %

12 Hunt & Sands, ESOP’08

Supposd’ is like I except thatl, (k + 1) = v’. Now we have that

I’ = (Co, 80,i0>

— (R'[(input = : a/bin C)"], s, 1) 0]
WARCT), s[z —), i[a — k + 1]) (ii)
— (R'[skip”],t1,j1) — (R'[skip], t1,]j1) (iii)
S (iv)

Step (i) holds because the input on whitland I’ differ has not yet been reached; (ii) follows
from the semantics of input. From the operational semantics it is easilytlsaethe command
(input = : a /b in C)” must have been present in the original program: sifigés well
annotated we have thét: x b in I, hence computation (iii) exists avd 2 b, I' F s1 =, t1
andi; =, ji- Then, sinceCy is well annotated, we havE {R'[skip]} I for somel”, and
hence we have for computation (iv) that there exists sughsatisfyingvVe 2 b, a =. 3, as
required. ad

4 Erasure by Typing

In this section we use the results of the previous sectioregigd a type system for
erasure (and noninterference). The idea is that we use &medrto guide us in the
treatment of the input erasure command, standard subphattion and noninterference
properties of the type system to establish a well-annotetesion of the program, and
Theorem 2 to prove that the type system guarantees inputreras

Our type system is a simple extension of the flow sensitivéegy®f [HS06] (al-
ternative flow sensitive base systems, such as [AB04], calsldl be considered). We
modify the system of [HS06] to b&rmination sensitivethe rules only allow while
loops to be performed over the lowest security levie), (@nd these can only occur in
the contextL. This is of course a rather restrictive notion. A more litbsgestem would
allow high loops when they can be shown to be terminating.

The type rules are shown in Figure 3. For a comm@nglidgements have the form
pbE I'{C} I'" wherep € L, andI, I'" are security type assignments. The idea is that
if I" gives the security levels of variables before executiof'othenl” will give their
security levels afterwards. The typeepresents the usual “program counter” level and
serves to eliminate indirect information flows: the ruleswe that only variables with
final types (inI’) greater than or equal fpmay be changed bg/. Similarly, input and
output is only permitted on channels greater than or equal to

The purpose of the type system is to guarantee nonintederand input erasure.
Here we provide explanation of the rules for input and ouytpintice they are the new
ones. The rule for input commands follows Theorem 1 ratherctly, making use of a
command transformer deleteOutfd} which simply replaces every output command
in its argument withskip. This is the means by which we ignore outputs when checking
the local erasure requirement. We cannot however ignonatsngince we still need
to ensure that there are no covert channels via the inputgreinOutput is simply
treated like an assignment to a variable of a fixed secunig.tPne can note that if we
specialise the typing rules to “vanilla” inputs, as reprged by commands of the form

Just Forget It 13

input z : a " a in skip, then we get what appears to be a flow sensitive version of
the deterministic part of the type system from [OCCO06].

. ; I'EFE:t
Skip—————— Assign
ppl—F{skip}F gpl—F{x::E}F[prl_lt]
Erasepl— Iz—a{C}YI" ptTz—b{C'}I" pCa C' =deleteOutpyC)
pk ' {inputz:a/bin C} I"
r-E: ubC Fr{cyr
Output b__pUbLCa Annotate” { }
pt I' {output Eona} I’ pFr{ctyr
cogf P LACH T pr I {Co} I TRE:t putk D{CHT i=1.2
q p"F{C1;Cg}F” pl—F{ifECng}F’
I'FE:L LFT{C}T mb{C} T L
While p2Ep, [E I ITE TS

L1+ I {while EC} T p2 I {C} I

Fig. 3. Type System

Example Let us reconsider the credit-card transaction server loamm the introduc-
tion. Let us suppose that C user C bank T T. To represent the intention that the
credit card data is erased by the end of each loop iteratiergdade can be rewritten as
_shown to the right. For the purpose of typ-W hile serverUp {
ing we assume thaprocess(cc) is just some . . .

: . . : . input cc: user /T in {
expression involvingee. Slnc_eT is used to input details from user
model the level of data that is no longer phys- 4 ment = process(cc)
ically present, no variables should be given a output payment to bank C
final type of T. With this restriction there is custInfo := custInfo @ details
(thankfully) no typing for this program. The cc =0
body of the erasure statemeft is, in fact, }
suitably noninterfering, as shown by the typing - - -
1+ I {C} I whereI'(serverUp) = L and
I'(z) = user for all other variables:. But to type the enclosing erasure input we also
need the typingL F I'[cc—T] {deleteOutpuiC)} I'. This is not possible because
payment := process(cc) forcespayment to type T instead ofuser. By appending
payment := 0 to the end ofC the program becomes typeable.

4.1 Type Correctness

In this section we prove correctness. In what follows, wethayC' is well-typedif, for
somep, I, I'", there exists a derivation eft I" {C'} I".

Before verifying the motivating semantic properties of thpe system, we show
that it is well behaved with respect to reduction by estabilig the obvious subject
reduction property.

14 Hunt & Sands, ESOP’08

Theorem 3 (Subject Reduction)If p = I {C} I andI + (C,s,i) —» (C',¢,i'),
thenp = I {C"} I, for somel™”.

Proof. We prove the property for single-step reductions. Thisr¢dmmediately to
multi-step reductions by induction on the number of steps.

The proof is by induction on the height of the type derivatiord by cases on the
last rule used.

Case Annotate: We haveC' = DI and the final derivation step is:

pk I {D} I
pE I {DT} I

There are two sub-cases to consider:
1. D = skip. In this case”’ = skip and by Skip we have + I {skip} I,
hence we may takg” = I".
2. D = R[Dy). In this case&”’ = R[D}]"" and the reduction step is justified by:

(Do, 5,i) 5 (D}, s, 1)
(R[Do)!", 5,1) 5 (RIDYIE", s, 1)

Thus:

(Dy,5,1) = (Df ', ¥)
(R[Do], 5.i) = (R[Dg, ', ')
By IH (applied to the Annotate premigel- I" {R[Do]} I'"), we havep
I {R[D}]} I'" for somel”. Hence, by Annotatey - I {R[D}]!"} I, as
required.
Case While: We haveC' = while E D andC’ = if E (D ; while E D) and the
final derivation step is:

F'tE:1l L1FT{D}T

While x
1+ I'{while ED} I

The required type derivation f@r’ is constructed as follows:
1l+-r{pyr L1L+-r{C}r
Seq {D} 1S Skip n
I'tE:L lul=1+r{D;C}r L+ I'{skip} I’
L+ I {if E(D;while ED)} I’

If

Case Erase:We haveC' = input z : ¢ /'b in D and the final derivation step is:

pk Iz al {D}I" pht 'z b] {deleteOutpuiC)} I" pLCa
pk I' {input z:a,"bin D} I

In this caseC’” = D and the result is immediate by the first premise to the final
derivation step.

Just Forget It 15

Case Assign:We haveC' = z := E, I = I'[x — p U t] and the final derivation step

is:
I'tE:t

pE T {z:=E} 'z — pUt

In this caseC’ = skip and by Skip we have - I {skip} I", hence we may
takel” =1".

The remaining cases are similar. O
The two fundamental semantic properties we require of the system are:

NI Type Correctness: that it guarantees the stateful input-output NI properigfii-
tion[5 (and thus the top level input-output NI property, Digiim|[3).

Erasure Type Correctness: that it can be used to establish the premises of Theorem 2
(and thus to guarantee input erasure).

Theorem 4 (NI Type Correctness)If p+ I {C} I'" thenI" {C} I".
Corollary 1. Well-typed programs are input-output noninterfering.

The proof of the theorem relies on the following three lemmas
Lemmal. Ifp# Landpk I" {C} I, thenl \- (C,s,i) % (skip, ¢',i’).

Proof. By inspection of the type system,jif- I" {C} I then all sub-commands of
C are typeable, each for sompé > p. Sincewhile E C' is only typeable fop’ = L

it follows that C' contains no loops. By inspection of the transition ruless itlear
that evaluation of”' must terminate inkip. (We note that this relies on the fact that
expression evaluation is assumed total and that no “stuskfigurations exist for the
given semantics.)

Lemma2. Ifpt I {C} I"andp L cthen'Fs=.t=1"+ s=.1t.

Proof. By induction on the height of the type derivation and by caseshe last rule
used, it is readily proved thatiZ I (z) = I'(z) C I"(z). The lemma follows since,
under assumptiop Z ¢, we thenhavd”(z) Cc=pZ ['(z) = ['(z) C I''(z) =
I'z) CgthusT'Es=.t=1"Fs=,t.

Lemma3.If p - I' {C} I"and I + (C,s,i)y S (C',¢',i') thenc 2 p = 1 =,
iNa=.eNI"Fs =,s.

Proof. We prove the property for single-step reductidns (C, s, i) 4 (', ¢, 1.
This extends to multi-step reductions by induction on th@ber of steps, using Subject
Reduction.

The proof is by induction on the height of the type derivatiord by cases on the
last rule used. We show the case for Erase by way of illustnati

16 Hunt & Sands, ESOP’08

Case Erase:We haveC' = input z : ¢ /'b in D and the final derivation step is:

pkIx—al{D}I" pk [z~ b {deleteOutpuiC)} I pCa
pk I' {input z:a/bin D} I

In this caseC’ = D, ¢ = a?v, s’ = s[z — v], I =i[a — i(a) + 1].

Sincep C a andp IZ c it follows thata £ c¢. Froma [Z ¢ we havea?v =, € and
i’ =, i. Froma Z c we also havd [z — a] - s =, s’ and thus, applying Lemma 2
to the first premise of Erasé) - s =, s’, as required. O

Proof (of Theorerh 4)The proof is by induction on the height of the type derivation
and by cases on the last rule used.

Case If: We haveC' = if F Cirue Cralse @nd the final derivation step is:

I'-E:a pUabkT{C,}I" wve {true, false}
p I {if E Cvtrue Cfalse} Iv

Assumel =, I', I' + s =, t,i =, j. Now, assume
I+(C,s,i) & (C',§,1)
In this casex = 7o’ with
TH(C,s,1) 5 (Cy,s,1) % (C, 8, 1)

wherev = [E]s, and
I/ |_ <Cﬂt7j> l} <Cw5t7j>

wherew = [E]t. We must show:
1. (Cy, t,§) & (C” ¢, §) with B =. .
2. If ¢ = skip then(C,, t,j) — (skip,t',j’) with ¢’ =, s’ andj’ =, j.

There are two sub-cases to consider:

Casev = w: Both parts follow by IH appliedtp Ua - I" {C,} I".

Casev # w: In this casea Z ¢ (since, otherwisel” - s =, t hence[E]s =
[E]¢t), thusp U a Z c. Applying Lemma 1 to the typing premise f6t,, gives
(Cuw\t,) 8, (skip, t',j’) and applying Lemmal3 to both premises givés=.
€ =. (. Applying Lemmd 2 to either premise (plus assumptiof s =, t)
givesI” - s =, t. By assumptioni =, j. Applying Lemma 3 to both premises
givesi" =i,j=j,I"+ s =, sandI" -t =. ¢. Hencei’ =, j’ and
I+ s' =, t' follow by transitivity of =...

Case Erase:We haveC' = input z : a b in D and the final derivation step is:

pkxw—al {D} " phk 'z b {deleteOutpuiC)} I pLCa
pt ' {input x:a,bin D} I

Assumel =, I',I' + s =, t,i =, j. Now, assume

I+(C,s,i) & (C',§,1)

Just Forget It 17

In this casev = a?va’ with
I+{(C,s,i) oy (D, s[x + v],i[a — n]) & (C', s, 1)
(wheren = i(a) + 1 andv = I,(n)) and
' {0 t5) (D, te — o], jla— 1))

(wheren’ = j(a) + 1 andv’ = I/, (n')).
Now if a E ¢, then by the assumptioms= n’ andv’ = v, hencea?v’ =, a?v and
I'x — a] F s[z — v] = tfx — ¢'] andi[a — n] =. jla — n']. On the other
hand, ifa IZ cthena?v’ =. e =; a?vandl [z — a] b sz — v] =, t[z — v'] and
ila — n] = jla — n'], regardless of the values+’. Stateful NI then follows by
IH applied to the typing premiset I'[x — a] {D} I".

Case Assign:In this caseC isz := E, I'" = I'[x — p U «a] and the final derivation
step is:

I'tFE:a
pkT'{xz:=FE} 'z — pUa)

Assumel =, I', I' + s =, t,i =, j. We have

I+-{(C,s,1i) 5 (skip, sz — v], 1)
wherev = [E]s, and
I+ {(C,t,j) = (skip, t[x — w],j)
wherew = [E]t. It suffices then to show
Iz —pUa]k sfz—v] = tlx — w] (%)

Now if a E ¢, thenI' - s =, ¢t impliesI" F s =, t, hencev = w, hence(x) holds.
On the other hand, i& Z ¢ then(x) follows from I" + s =, ¢, regardless of the
valuesv, w.

Case Seq:In this case” = C; ; C5 and the final derivation step is:

pET{C}y " pkI"{Cy} I
p"F{Cl;CQ}IW

It is easily verified that any derivatioh - (C,s,i) 3 (C’,s’,i’) has one of the
two following forms:
1. I+ {(Cy;Co,s,i) S (C]; Co,s',i") wherel - (Cy,s,1) S (C1,¢,1)
2. I+ {(Cy ; Co,s,i) S (C4,¢,1'y wherel + (Ch, s, 1) o (skip, s”,i"”) and
T {(Cy, 8", i") % (CY, 8, 1), with o = o/ 70
In either case the result follows straightforwardly by aqgtion of IH to the premises
of the type derivation.

The remaining cases are similar. ad

18 Hunt & Sands, ESOP’08

Theorem 5 (Erasure Type Correctness)lf C is well-typed thert” is well-annotated.
Corollary 2. Well-typed programs are input erasing.

Proof. By inspection of the type system, any derivation of a typioiga program must
include a sub-derivatiop - I" {input x : a,/'b in C'} I for every input command,
and we can use each suEhto annotate the corresponding input command. By insert-
ing uses of Annotate into the original type derivation we claarly recover a derivation
for the annotated program. By Theorem 5 the annotated progravell-annotated and
hence, by Theorem 2, is input erasing. Since the annotategtgm is semantically
equivalent to the original, it follows that the original igiut erasing. ad

Proof (of Theorerm 5)The proof of the theorem is in two parts, corresponding to the
two parts of the definition of well-annotation. For the firsirpwe rely on Theorem 1,
which shows that well-annotation of input commands is a ltanp of the following
lemma:

Lemmad. If p+ I' {(input z : a,/bin C)I"} I'" thenI'[z — b] {C} I".
For the second part, we rely on the following lemma:
Lemma 5. If p - Iy {R[skip’ |} I thenI” {R[skip]} I".
The second part of well-annotation then follows by subjeduction. ad

The proofs of the lemmas follow.

Proof (of Lemma 4)Assume |hs. By inspection of the type system, we have a sub-
derivationp; F I'1[z — b] {deleteOutpuiC)} Iy, withp C p;, I’ C I, I C I". By
Theorem 4,1 [z — b] {deleteOutput”)} I7. Sincel’ C I3, it follows thatI'[z —

b] C It[z — b], hencel'[x — b] {deleteOutput”)} I, by montonicity. It is clear
that the behaviours of deleteOutpdiy andC are identical except that any nerevent
labels on the transitions of deleteOutfilij are replaced by on the transitions of .

It follows that [z — b] {C} I", as required. O

Proof (of Lemma 5)By induction on the structure at|[-].

CaseR[] = [-]: We have aderivatiop - I, {skip’ } I and we must show {skip}
I, which will follow if I" C I'". This latter is easily seen to hold because the given
derivation must end with a single use of Annotate followedéso or more uses of
Sub.

CaseR|[| = R[] ; C": We have a derivatiop - Iy { R'[skip’]; C'} I"'. This deriva-
tion must end with Seq followed by zero or more uses of Subcéeme have
derivationsp’ + I}, {R'[skip’ |} I andp’ - I {C"} I with """ C I". By
IH I" {R'[skip|} """ and by Theorem|4” {C"} I"""". Hence, by compositionality
and monotonicity]” { R'[skip]; C'} I, as required.

CaseR|[| = R'[]"": We have aderivatiop - I, {R'[skip”]”"'} I"’. This derivation
must end with Annotate followed by zero or more uses of Subcheve have
derivationp - Iy {R/[skip’ |} I with I, © I, I € I". By IH I { R'[skip]}
I'" hence, by monotonicity]’ {R'[skip]} I". Since the operational semantics of
annotations are transparent, it follows tia{ ?'[skip]”" } I”, as required. O

Just Forget It 19

5 On the Adequacy of the Input-Output Model

We have adopted a simple stream-based model of input-ouipatgeneral nondeter-
ministic setting, such a model does not adequately modaga™attacker who is trying
to pass information to “low” through the program, and it b®es necessary to quantify
over all possiblestrategiesadopted by the principals. This is a well known problem in
the noninterference literature [WJ90]. See [OCCO06] for @&nédtanguage-based take
on the issue. Fortunately, since we deal with determinftigrams, it turns out that
simple stream modekre nevertheless adequate, as shown recently by Clark and Hunt
[CHO7].

What about erasure? Are there potential problems that anseriot modelling an
active attacker’s strategy? In fact the problem here iswleatannotreasonably model
inputs as coming from an attacker with an arbitrary stratbggause it only makes
sense to promise to erase data if the supplieroisan adversary. A payment system
typically promises, on completion of a transaction, to erde credit card data but to
retain the shipping address. The system will not succeethsirgy the credit card data
if the user’s strategy is to re-input the credit card data assponse to a subsequent
request for the shipping address, but clearly we do not veaatiinit such strategies.

There are more subtle cases which show that we must assumeneve about the
data supplier’s behaviour. Suppose that, before the cecadit is erased, the program
sends back to the user a special offer ctaddojasf23” with the promise “present this
code when you next shop with us for a 10% discount”. What if toide is simply an
encryption of the credit card number? The program in thig ecaay well have erased
the credit card number by the end of the transaction, bugifuer re-inputs this code
then the program will have reconstructed the credit cardbarm

What assumptions are reasonable for the data supplier? \WWaestom a nonin-
terference perspective, that attackers can make arbjteanéurate semantic deductions
based on their observations and complete knowledge of tgraon. For a non attacker
it seems reasonable to assume the opposite — the honesteséhns program as a black
box. How then can we solve the problem from the example aliatie user cannot be
relied upon tcknowwhether‘zahojasf23” contains their credit card information? Our
proposed solution is to:

— assume that the user is aware of the erasure “contract”;khew that they are
providing an input which is scheduled for erasure, and theynatified when the
erasure is complete, and

— assume that the user treats any outputs from the progratefatavel) as poten-
tially tainted with data currently scheduled for erasure.

We believe that the stream model that we have used here tigrcaptures these as-
sumptions, but it is beyond the scope of this paper to exjpliciodel such user strate-
gies in order tgprovethat the stream model is indeed correct in this sense.

6 Conclusions and Further Work

We have studied the semantics of erasure and shown its d@mec noninterfer-
ence. We have introduced a particular idiom for expressmaguge policies in code,

20 Hunt & Sands, ESOP’08

and shown that a natural global erasure property can becatfdry a combination of
noninterference and a local erasure property, which in tamalso be established by
a noninterference property. This leads to a fairly diredinition of a type system for
which well typed programs correctly erase their data. Weskate here by returning to
the related work, before finishing with some remarks abouhér work.

Related work In addition to Chong and Myers work [CMO05], Hansen and Probst
[HPQO6] describe what they cadimple erasure policiehich correspond to a specific
instance of our end-to-end erasure policies, but statesting of the erasure of a whole
level rather than a single variable. Neither of these wodscdbe an implementation
of erasure, either by encoding into standard noninterterer developing a specific
program analysis.

There are several fundamental differences betweedéfinitionof erasure devel-
oped here and that of Chong and Myers. Ignoring the fact/@istJ5] also deals with
declassification policies, we note the following differeacFirstly, [CM05] does not
consider a system with interaction, something that we feeéntral to making notions
of erasure meaningful. Secondly, in the abstract systemehindCMO05] the state of
the system igust a store. The obvious way to encode an imperative programas su
a system would be to usepogram countewariable, but there is no suitabplicy
in their language which one could attach to such a programteouThus their model
might not be suitable for modelling imperative programs feast not with a straight-
forward encoding. Thirdly, they require a “physical er&wondition which says that
at the point where a variable is erased it should contain defireed constant. This is
stronger than necessary. Although we satisfyerasure properties in that way, there
is nothing to stop us from erasing data to levdly e.g. overwriting it with something
else from a lower level. Lastly, since erasure can be thoafjas a dual to declassi-
fication (since it is used to strengthen as opposed to weaKeweNcan see that their
erasure condition and ours tackle differeifnensionsf erasure: using the terminol-
ogy of [SS05], their erasure properties deal withenerasure takes place, whereas our
input-centric erasure determinefere(in the code) erasure takes place.

Finally, we note that our use of a block structured erasurencand is similar in
spirit to Almeida Matos and Boudol's [AB05] block structdreleclassification con-
struct,flow F' in C, which locally extends the global information flow policy thvi
flows F* for the duration ofC.

Further Work There are several obvious avenues for further work.

We can follow the “dimensions” and consider, for exampléinement ofwhatis
erased. For example, erasure of all except the first foutsdaia credit card number.
Work on corresponding “what” declassification policies (85can be applied directly.

The input erasure construct used here can be generalisatiimlaer of potentially
useful ways. One possibility is to introduce an erasureoregia code block in which
all subsequent inputs are erased.

A naive implementation of the type system as presented entiatly exponential
in the depth of nesting of erasure statements, because dyeobthe erasure statement
appears twice in the premise of the Erase rule. By buildingesnlts from [HS06], we

Just Forget It 21

are hopeful that this behaviour can be avoided by obtaitiagwo typings for the body
of an erasure input as specialisations of a single printyye.

On the theoretical side we noted at the end of the previoussebe need for fur-
ther work on modelling attacker strategies and “honesttigipants. A process calculus
setting may prove more suitable to conduct such an inveatiga

Acknowledgements Thanks to various members of the ProSec group at Chalmers for
helpful comments, to Steve Chong and to the anonymous esféoe numerous helpful
comments and suggestions. This work was partly supportdeH8RC research grant
EP/C009746/1 Quantitative Information Flow, the Swededearch agencies Vinnova,
SSF, VR and by the Information Society Technologies prognanof the European
Commission under the 1IST-2005-015905 MOBIUS project.

References

ABO04. Torben Amtoft and Anindya Banerjee. Information flow analysifogical form. In
SAS 2004 (11th Static Analysis Symposium), Verona, Italy, August\&flQe 3148
of LNCS pages 100-115. Springer-Verlag, 2004.

ABO5. A. Almeida Matos and G. Boudol. On declassification and the narledisre policy.
In Proc. IEEE Computer Security Foundations Workshhme 2005.

CHO7. D. Clark and S. Hunt. Observation, nondeterminism and nowdbédity on strate-
gies. Workshop presentation at PLID’07, 3rd International WorkstroProgramming
Language Dependence and Independence, August 2007.

CMO05. S. Chong and A. C. Myers. Language-based informatiomeragn Proc. IEEE Com-
puter Security Foundations Workshalune 2005.

FG95. R. Focardi and R. Gorrieri. A classification of security propefte process algebras.
J. Computer Securify3(1):5-33, 1995.

GMO04. R. Giacobazzi and I. Mastroeni. Abstract non-interfereqma@ameterizing non-
interference by abstract interpretation.Rroc. ACM Symp. on Principles of Program-
ming Languageages 186197, 2004.

HP06. R. R. Hansen and C. W. Probst. Non-interference and eraslicies for java card
bytecode. In6th International Workshop on Issues in the Theory of Security (WITS
'06), 2006.

HSO06. S. Hunt and D. Sands. On flow-sensitive security type®dRL'06, Proceedings of
the 33rd Annual. ACM SIGPLAN - SIGACT. Symposium. on Principlesgf&mming
LanguagesJanuary 2006.

OCCO06. Kevin R. O'Neill, Michael R. Clarkson, and Stephen Chongrination-flow security
for interactive programs. IProc. IEEE Computer Security Foundations Workshop
pages 190-201. IEEE Computer Society, 2006.

Ro0s95. A. W. Roscoe. CSP and determinism in security modelingrdo. IEEE Symp. on
Security and Privacypages 114-127, May 1995.

SS01. A. Sabelfeld and D. Sands. A per model of secure informatianifil sequential pro-
grams.Higher-Order and Symbolic Computatiob4(1):59-91, March 2001.

SS05. Andrei Sabelfeld and David Sands. Dimensions and principlésatdssification. In
Proceedings of the 18th IEEE Computer Security Foundations Workslagies 255—
269. IEEE Computer Society Press, 2005.

WJ90. J. Todd Wittbold and Dale M. Johnson. Information flow in nondatastic systems.
In IEEE Symposium on Security and Privapgges 144-161, 1990.

	Information Erasure
	End-to-End Erasure
	Flow sensitive End-to-End Noninterference
	End-to-End Erasure
	Relating End-to-End Erasure and NI

	Erasure in the Presence of Input-Output
	A Language with Input and Output
	Noninterference and Input Erasure
	Characterising Input Erasure with a Local Erasure Condition
	From Local to Global Erasure

	Erasure by Typing
	Type Correctness

	On the Adequacy of the Input-Output Model
	Conclusions and Further Work

