
In 19th IEEE Computer Security Foundations Workshop, CSFW’06, Venice 2006.

Noninterference in the presence of non-opaque pointers

Daniel Hedin David Sands

Chalmers University of Technology, Sweden

Abstract

A common theoretical assumption in the study of infor-
mation flow security in Java-like languages is that point-
ers are opaque – i.e., that the only properties that can be
observed of pointers are the objects to which they point,
and (at most) their equality. These assumptions often fail
in practice. For example, various important operations in
Java’s standard API, such as hashcodes or serialization,
might break pointer opacity. As a result, information-flow
static analyses which assume pointer opacity risk being un-
sound in practice, since the pointer representation provides
an unchecked implicit leak. We investigate information flow
in the presence of non-opaque pointers for an imperative
language with records, pointer instructions and exceptions,
and develop an information flow aware type system which
guarantees noninterference.

1 Introduction

Background The area ofinformation flow securitydeals
with different means to define and enforce information flow
policies. Such policies describe the secrecy levels of data,
and how data may flow through the system. Semantically,
it is usual to define the meaning of “flow” as an end-to-end
condition usually referred to asnoninterference. Given a
policy which partitions inputs and outputs into secret (not
observable by the attacker) and public (observable by the
attacker), noninterference demands simply that the public
outputsare independent of the secretinputs.

A popular way of enforcing noninterference in programs
is to equip the language with asecurity type system, i.e.,
a type system which tracks information flow through a pro-
gram by security annotations in the types. Typically, a secu-
rity type system has the property that well typed programs
are noninterfering. For further information on the topic
we refer the reader to Sabelfeld and Myers’ comprehensive
overview of the area [10].

To date there are many formulations of noninterference,
depending, for instance, on the properties of the underlying
language, whether the attacker can observe timing proper-

ties, (the absence of) termination, and what parts are con-
sidered to be publicly observable.

In particular, a fair amount of work regarding informa-
tion flow security has been conducted for Java and Java-
like languages, ranging from more theoretical work such as
Banerjee and Naumann’s study [2], to the more practical
work on complete systems such as JIF [8], which is a full-
scale implementation of an information flow type system
for a security-typed extension of Java. For a mainstream
language Java is arguably a reasonable choice for such a
study since the Java core language is, in principle, fairly
small and clean.

The Problem Targeting real languages is beneficial: your
work may have practical impact and existing implementa-
tions (often on many platforms) relieve you from substan-
tial implementation work. While enjoying those benefits,
analysing an existing language also means that one has to
be faithful to the implementations. In the case of Java,
this extends beyond the core language to the API, some of
which is native and cannot be implemented in Java. How-
ever clean and concise the core language and its theoretical
abstractions may be, the runtime environment and native
methods can break many abstractions that are typically as-
sumed in both theoretical and practical studies of secure in-
formation flow. When abstractions are broken, attacks are
possible. By way of illustration we present such an attack
on JIF showing a well-typed declassification-free program
that leaks its secret.

As an example of a problematic native method, consider
the following program, which is using the default imple-
mentation of the methodtoString found in theObject class.

public class B {
public static void main(String [] ss) {

boolean secret = Boolean.getBoolean(ss [0]);
if (secret)newA();
System.out . println (newObject ());

}
}
class A { }

Apart from printing the name of the class of the object,

1

the toString method prepends an integer to the name. The
value of that integer, and thus the result of executing this
method can be affected by the initial allocation of an object
of a previously unused class. When run, this program will
deterministically1 give different outputs depending on the
value of secret. In this case (since the secret is a boolean) the
value of the secret can be completely determined from the
output. This is referred to as animplicit flow; implicit flows
arise when changes in the environment are indirectly con-
trolled by a secret value, thus encoding information about
the secret.

This program can be translated into JIF2 in a straight-
forward way such that the variablesecret is secret and the
output is performed on a public channel. Even though the
JIF version does not use any of JIF’s declassification mech-
anisms, the program is accepted by the JIF compiler while
retaining semantic behaviour, which means that the nonin-
terference is broken. (The JIF program is not presented here
for space reasons).

A more important example, from the point of view of
Java, is the use of built-in hashcodes. These can be used in
a manner similar to the above:

public class A {
public static void main(String [] ss) {

HashMap m =newHashMap();
boolean secret = Boolean.getBoolean(ss [0]);

Object o =newObject ();
if (secret) { m.put(o,o); }
System.out . println ((newObject ()). hashCode());

}
}

The hashcode of the newly allocated object will be deter-
ministically different depending on whether the body of the
secret conditional is run or not. The reason for the differ-
ence is that the hashcodes are drawn from one global se-
quence, and that the hashcode needed to put the object into
the hashmap is allocated when needed, i.e., in the body of
the secret conditional in this example.

The difference will typically be deterministic, even
though the sequence is normally generated by a pseudo ran-
dom generator, since for hashing, it is only the distribution
that is important, not the randomisation, which means that
the same sequence is used in every run.

Non-Opaque Pointers The above examples illustrate that
there is a risk that the runtime environmentextends the se-
manticsof the core language, in such a way that assump-
tions on the core language are broken or new covert flows

1Using the specific implementations that we tested: JRE 1.5.0_01b08,
SunOS 5.9 and JRE 1.4.2_09232, Mac OS X

2jifc version 1.1.1,jifc version 2.0.0

are introduced.
In this paper we focus on one common theoretical as-

sumption that may fail in practice: that pointers areopaque
– i.e., that the only properties of pointers that can be ob-
served are the objects to which they point, and (at most) the
equality of the pointers.

Java is typically assumed to have opaque pointers; al-
though it has pointer equality, the only pointer constant
available is thenil pointer and operations like coercing a
pointer value to an integer are not present in the core lan-
guage. However, we have no guarantee that the API does
not contain methods that reveal pointer values and breaks
the opaqueness. To connect to the above examples, a cheap
way of implementing hashcodes is to simply use the pointer
value — a plausible implementation for a JRE running on a
platform where resources are scarce3.

If a language does not have opaque pointers and is
equipped with deterministic allocation, the side effects of
allocation must be modeled to prevent leaks of this kind.
Even though non-deterministic allocation would prevent
implicit leaks via allocation this isnot an optionif we want
to make use of existing implementations that are determin-
istic.

Our Contribution We present a security type system for
a small imperative language with exceptions chosen to cap-
ture the essence of the problem in languages similar to Java.

The type system is based on the realisation that oper-
ations on pointers areopaque with respect to some of the
properties of the pointerand works by adding additional se-
curity and domain annotations to the pointer type; in partic-
ular we differentiate the security type of pointer values from
the security type associated with the record pointed to.

Other novel features of the type system include the com-
bination offlow sensitivity, meaning that variables are not
required to have a fixed security level, andexceptions.
Pointers pose problems in that most operations on point-
ers are partial — they fail if applied to the nil pointer. To
be able to use secret pointers (pointers whose representa-
tion is influenced by a secret) in a system where exceptions
are considered observable, the system includes the ability to
rule out information flows throughnil-pointer exceptions by
tracking the domain of a pointer location in the types.

Related Work Parts of the present paper build on some
of the technical development from Banerjee and Naumann’s
study of noninterference for a Java-like language [2]. The
language studied there contains the assumption that pointers
are opaque, and introduces a formulation of noninterference
for heap structures via a bijection on pointers for the parts

3In fact, net rumor has it that in the early JREs – before the generational
garbage collector – this was in fact the implementation

2

of the heap reachable from low security data. This assump-
tion and the use of a bijection has been adopted in recent
work on noninterference for Java or Java bytecode [4, 6, 7].
Despite the fact that in the semantics for a language with
non-opaque pointers we cannot identify heaps up to bijec-
tive renaming, we show that it is still possible to adapt the
bijection-style formulation of noninterference.

Outline Section 2 provides an overview of key ideas in
the type system. Section 3 defines the syntax and seman-
tics of the language. Section 4 defines the types for values,
expressions and statements ending with some highlighting
examples. Section 5 introduces the semantic security condi-
tion and discusses the correctness proof. Section 6 discusses
further work; in particular we consider a type directed trans-
formation for safe object identifiers. Finally, Section 7 con-
cludes.

2 Types for Non-Opaque Pointers

Our goal is an information flow aware type system that
correctly handles the problems of non-opaque pointers. In
this section we introduce the key ideas which enable us to
achieve this, before presenting the actual formal details.

For simplicity we consider a standard two-point lattice of
security levels, representing public and secret information.
Each environment location, i.e., variables and records, is
assigned a security level, indicating whether the location
contains secret or public information. The type system then
tracks information flows and preventsdangerous flows, i.e.,
flows of secrets into public locations.

There are two different types of information flows: ex-
plicit flows — directly copying from a secret to a public
location — and implicit flow — differences in public side
effects depending on secret values. Implicit flows may arise
when the control flow is controlled by secrets. As is stan-
dard, following Denning’s original approach to analysing
programs for secure information flow [5], in order to pre-
vent implicit flows the notion ofsecurity contextis defined.
The security context of a program point is the least upper
bound of the security levels of the conditional expressions
of the enclosing conditionals and while loops. The secu-
rity context is sometimes referred to as the security level of
the program counter, since branching is essentially a condi-
tional update of the program counter. In this work we adopt
the standard approach to preventing implicit flows by ban-
ning side effects on public data in secret contexts.

Values of Pointers On the language side we will assume
a simple means of converting a pointere to an integer using
the coercion expression(e : int). It is this representative
non-opaque operation that models that there is some hid-

den part of the environment, namelythe state of the mem-
ory allocator. This provides an additional source of infor-
mation flow, and thus we record the security level of the
pointer context. This tracks the implicit information flow to
the memory allocator: when a pointer is allocated in a high
context, all subsequent allocated pointers can potentially,
via the non-opaque coercion to integers, leak secrets. The
pointer context thus affects the security levels of the future
pointers.

That the values of newly allocated pointers become se-
cret after the first allocation in a secret context is not as
problematic as it may sound, sincemost operations on
pointers are opaque to the value of the pointer. For instance,
consider the following program assuming thatA contains a
public integer fieldf , the variablesh1, h2 andh3 are secret
and thatb is a public pointer to a record of typeA,

if (h1) {h3 := newA{};} h2 := newA{}; b.f := h2. f

which is to be considered secure, even though the value of
the pointer stored inh2 encodes information abouth1.

To make use of this we differentiate between the security
level of thevalueof the pointer and the security level of the
record to which it points.

However, as we will see, the type system isexception
sensitive: abnormal termination and the cause of the termi-
nation is considered observable. Most operations on point-
ers are partial in the sense that they cause a nil-pointer ex-
ception if applied to the nil pointer. This means that we
cannot freely use partial instructions in secret contexts or
with secret data. Consider the following program under the
same assumptions as above,

h2 := nil ; if (h1) {h2 := newA{};} h2.f = 1

which is clearly insecure in an exception sensitive setting;
the last instruction fails only ifh1 = false. Even though
this program is to be considered wrong, crafting the type
system to rule out programs of this kind faces the risk of
ruling out the above secure example as well. We handle this
by keeping track of the domain of the pointers in the types
by having a type for definitely non-nil pointers. Thus, the
type system will allow the topmost example since it will be
able to see thath2 cannot contain a nil pointer, and thus will
never fail.

Highlighting the Pointer Type Annotations The follow-
ing examples are aimed at highlighting some key properties
of our type system by contrasting it with two hypothetical
“standard” systems: systems that do not separate the secu-
rity level of the pointer from the security level of the record
pointed to. The first system, which we will refer to as the
unsafe standard system, doesnot model the implicit leak
through secret allocation – i.e., it assumes (incorrectly) that
pointers are opaque. The second system, referred to as the

3

expressions e ::= n | nil | e1 • e2 | e1 = e2 | (e : int) | (A) e | e.f | x
left values lv ::= x | x.f
declarations D ::= rec A = π | τ x
handler h ::= catch(err) S
statements S ::= while e S | if e S1 S2 | lv := e | S1;S2 | skip | try S h1 . . . hn

| x := new A{f1 = x1, . . . , fn = xn}
program P ::= D1, . . . , Dn, S

Table 1. Syntax

safe standard system, is a similar system thatdoesmodel
the implicit leak, but still only has a single security level for
pointers. For obvious reasons, the safe standard system is
much more restrictive than the unsafe standard system. Our
system is less restrictive that the safe standard system, fre-
quently achieving the freedom of the unsafe system. Con-
sider the following program, whereh1 andh2 are secret:

if (h1) {h2 := newA;} a := newA; a. f = 1

An unsafe standard system would allowa to be public and
consider the above program secure. A safe standard system
would demand thata is secret and would reject the above
program, since the fieldf is public. Our system would see
that it is only the pointer value stored ina that is secret
and thata cannot contain the nil pointer. Thus, our system
would consider the above example as secure.

The difference between an unsafe standard system and
our system is highlighted by the following program, where
h1 andh2 are secret andb is a public pointer to a record of
typeA.

if (h1) {h2:=newA;} a = newA; b.f = (a : int)

This program would be considered secure by the unsafe
standard system even though the pointer value ofa, which
is written to the public fieldb.f , reflects the secreth. Our
system, however, would reject this program.

Before we can describe the type system we need to intro-
duce the specifics of the language and its memory model.

3 The Language

We define a small imperative language with iteration,
choice, assignment and sequencing, designed to capture the
problems of non-opaque pointers in a language like Java.
For simplicity we refrain from modeling features specific to
the object orientation and use records and record subtyping
to model objects. Furthermore, we add a special coercion
expression that models the possibility for the API to break
the opaqueness assumption. In this section we introduce the
syntax and semantics of the language.

Syntax The syntax of the language is defined in Table 1.
Since the syntax is depending on the type language for the
declaration of records and variables we begin by introduc-
ing the required parts of the type language. A more thor-
ough explanation of the types is found in Section 4 below.

sec. levels σ ::= L | H
pointer value v ::= > | ⊥
prim types τ ::= int σ | Av σ1 σ2

record types π ::= {f1 : τ1, . . . , fn : τn}

There are two security levels representing secret (H) and
public (L) respectively. The primitive types are integers and
pointers. Integers are simply annotated with a security level.
LetA range over the set of record identifiersRecID . Pointer
types (Av σ1 σ2) carry a security level for the pointer it-
self (σ1), a record security level annotation (σ2), the record
identifier of the record pointed to (A), and a value annota-
tion v expressing if the pointer is the nil pointer (⊥) or not
(>). A record type is a collection of uniquely named primi-
tive types, with the names drawn from the set of record field
identifiers. Letf range over the record field identifiers.

The expressions are built up by the standard constructs:
integer constants, ranged over byn, and the distinguished
constantnil, representing the nil pointer, variable names,
x ∈ Var , binary operators,e1•e2 and field projections,e.f .
The nil pointer is the only pointer that can be introduced as a
constant. Furthermore, the expressions are extended with a
non-standard coercion expression,(e : int), which converts
a pointer to an integer.

The syntax of the statement language is entirely stan-
dard apart from the record allocation,x := new A{f1 =
x1, . . . , fn = xn} which is the only source of pointers be-
side the nil constant above. Record allocation will never
return the nil pointer. The variablex, which is assigned
the newly allocated pointer, is available locally in the field
assignments in the body of thenew to allow for the con-
struction of cyclic records,which — more importantly —
provides the possibility of creating recursive records with-
out ever introducing nil fields at an intermediate step.

Record identifiers and variables must be declared at the
beginning of the program, and their types may be mutually

4

(S-VAR)
E(x) = v

〈E, x〉 ⇓ v
(S-INT)

〈E,n〉 ⇓ n
(S-NIL)

〈E, nil〉 ⇓ nil
(S-BINOP)

〈E, e1〉 ⇓ n1 〈E, e2〉 ⇓ n2

〈E, e1 • e2〉 ⇓ n1[•]n2

(S-EQP)
〈E, e1〉 ⇓ p1 〈E, e2〉 ⇓ p2

〈E, e1 = e2〉 ⇓ p1[=]p2
(S-PRJ-1)

〈E, e〉 ⇓ p (f = v) ∈ E(p)
〈E, e.f〉 ⇓ v

(S-PRJ-2)
〈E, e〉 ⇓ nil

〈E, e.f〉 ⇓ np

(S-CAST-1)
〈E, e〉 ⇓ p T (p,E) <: A

〈E, (A) e〉 ⇓ p
(S-CAST-2)

〈E, e〉 ⇓ nil

〈E, (A) e〉 ⇓ nil
(S-EERR)

〈E, e〉 ⇓ err
〈E,Q[e]〉 ⇓ err

(S-CAST-3)
〈E, e〉 ⇓ p not(T (p, E) <: A)

〈E, (A) e〉 ⇓ cc
(S-COERCE)

〈E, e〉 ⇓ p

〈E, (e : int)〉 ⇓ coerce(p)

Table 2. Semantics of Expressions

recursive. The declaration assigns a type to the declared
entity; record identifiers are assigned record types and vari-
ables are assigned primitive types. Finally, a program is
a sequence of declarations followed by a statement, which
constitutes the body of the program.

Semantics The semantics is a big-step operational seman-
tics with evaluation contexts[11] used to propagate excep-
tions. Letp range over the set of pointersPtr .

values v ::= n | p | nil
records r ::= {A, f1 = v1, . . . , fn = vn}
pointer contexts η ::= (p, n)
environments E ::= γ; ρ; η

The primitive values, ranged over byv ∈ Val , are
the pointers and the integers. Similar to the record types,
the records, ranged over byr ∈ Rec, are collections of
named values together with a record identifier. We write
(f = v) ∈ r whenf = v is defined inr. The pointer con-
texts, ranged over byη, are used by the memory model (de-
fined below), and represent the pointer and the size of the
most recently allocated record. The environments, ranged
over byE ∈ Env , are triples consisting of a variable envi-
ronment, a heap, and a pointer context. The variable envi-
ronments, ranged over byγ, and heaps, ranged over byρ,
are partial functions from variables to values and pointers to
records respectively. For an environmentE we writeE(p)
to meanρ(p) andE(x) to meanγ(x).

For the treatment of exceptions we extend the values and
the environments to include distinguished elements that rep-
resent erroneous computation:cc representing a class cast
exception, andnp representing a nil-pointer exception. Let
err range over the setErr = {cc, np}. Let v̂ range over
the extended valueŝVal = Val ∪Err andÊ range over the
extended environmentŝEnv = Env ∪ (Err × Env).

The Allocation Model To model the effect of non-opaque
pointers we need to model pointer values, and the way in
which they are chosen when a record is allocated. Sup-
pose we were to fix on the simplest possible model, e.g.
that pointers are natural numbers and that allocation simply
picks the next number in sequence. For such an implemen-
tation an attacker could potentially learn something only
from the order in which records are allocated. But if the
actual implementation chose the next pointer according to
thesizeof the previously allocated record then the attacker
could potentially learn more. Rather than attempting to find
a “worst case” model, the approach we take here is not to
fix a particular allocator but to work with an abstract model
and show that the approach is sound forany instantiation.

Definition 3.1 (Allocation Model). The abstract pointer
model is a quadruple〈Ptr , live,next , coerce〉, where

• Ptr is the set of pointer values,

• live is a function which given a heap and a record en-
vironment computes a set no smaller than the syntacti-
cally live pointers, i.e., those reachable from the envi-
ronment, and

• next is a function which when given the current
pointer contextη (i.e., the most recently allocated
pointer and the size|r| of the corresponding recordr)
and the current set of live pointers (L), returns the next
pointer to be allocated. The function satisfies:

next(η, L) 6∈ L.

• a functioncoerce ∈ Ptr → Z which models the action
of the non-opaque operation. Note thatcoerce(·) need
not be injective (useful, for example, to model hash-
codes).

The model is sufficiently general to cover deterministic
garbage collection, since it can allocate a previously allo-
cated but currently dead pointer.

5

(S-WHILE-1)
〈E, e〉 ⇓ 0

〈E, while e S〉 ⇓ E
(S-WHILE-2)

〈E, e〉 ⇓ n n 6= 0 〈E,S; while e S〉 ⇓ Ê1

〈E, while e S〉 ⇓ Ê1

(S-IF-1)
〈E, e〉 ⇓ 0 〈E,S2〉 ⇓ Ê′

〈E, if e S1 S2〉 ⇓ Ê′
(S-IF-2)

〈E, e〉 ⇓ n n 6= 0 〈E,S1〉 ⇓ Ê′

〈E, if e S1 S2〉 ⇓ Ê′

(S-ASSV)
〈E, e〉 ⇓ 〈E′, v〉

〈E, x := e〉 ⇓ E′[x 7→ v]
(S-ASSF-1)

〈E, e〉 ⇓ 〈E′, v〉 E′(x) = p r = E′(p)
〈E, x.f := e〉 ⇓ E′[p 7→ r[f 7→ v]]

(S-ASSF-2)
E(x) = nil

〈E, x.f := e〉 ⇓ np, E
(S-SEQ)

〈E,S1〉 ⇓ E1 〈E1, S2〉 ⇓ Ê2

〈E,S1;S2〉 ⇓ Ê2

(S-SKIP)
〈E, skip〉 ⇓ E

(S-TRY-1)
〈E,S〉 ⇓ E′

〈E, try S h1 . . . hn〉 ⇓ E′ (S-TRY-2)
〈E,S〉 ⇓ err , E′ 〈E′, S′〉 ⇓ Ê′′

〈E, try S · · · catch(err) S′ · · ·〉 ⇓ Ê′′

(S-TRY-3)
〈E,S〉 ⇓ err , E′ err 6∈ {err1, . . . , errn}

〈E, try S catch(err1) S1 · · · catch(errn) Sn〉 ⇓ err , E′ (S-SERR-1)
〈E, e〉 ⇓ err

〈E,R[e]〉 ⇓ err , E

(S-NEW)

r = mkrec(A) p = next(η, live(γ, ρ)) γ′ = γ[x = p]
ρ′ = ρ[p 7→ r[f1 = γ′(x1), . . . , fn = γ′(xn)]]

〈γ; ρ; η, x := new A{f1 = x1, . . . , fn = xn}〉 ⇓ γ′; ρ′; (p, |r|)
(S-SERR-2)

〈E,S1〉 ⇓ err , E′

〈E,S1;S2〉 ⇓ err , E′

Table 3. Semantics of Statements

Semantics of Expressions Table 2 defines big-step rela-
tions for expressions,(⇓) : Env × Expr × V̂al . The se-
mantics for variable lookup (S-VAR), integer constants (S-
INT), total binary operators (S-BINOP), pointer equality (S-
EQP), record field projections (S-PRJ-1), (S-PRJ-2) are en-
tirely standard. Casting follows the behaviour of the Java
bytecodecheckcastoperation in that it will always perform
a runtime check to make sure that the pointer is cast to a
subtype of the actual type of the record pointed to. The
(S-CAST-1) rule makes use of a function to extract the run-
time type of a pointer from the environment, defined as
T (p, E) = A iff E(p) = {A, . . .}, i.e., if p points to a
record of runtime typeA.

For expressions, rules (S-PRJ-2) and (S-CAST-3) are the
only sources of exceptions, originating from dereference of
a nil pointer and casting to an unsupported record type.

Exception Propagation Exception propagation in ex-
pressions is achieved using the following evaluation con-
text, which, together with the rule (S-EERR), defines how
an exception can be propagated from within an expression
to the top level. Let? range over the binary operators• and
the pointer equality=.

Q ::= [] | Q ? e | e ? Q | (A) Q | (Q : int) | Q.f

For our purposes, the evaluation context provides a way to
combine all the exceptions propagation rules into one rule.

Semantics of Statements Table 3 defines a big-step op-
erational semantics of the form,(⇓) : Env × Stmt × Ênv .
Iteration is provided by thewhile statement defined by (S-
WHILE-1) and (S-WHILE-2). Depending on the iteration
predicate the execution either terminates or continues with
the body of the while in sequence with the while itself.

Choice is provided by theif statement defined by (S-IF-1)
and (S-IF-2). Depending on the branch predicate either the
left or the right branch is chosen for execution. Assignment
to variables and fields is defined by (S-ASSV) and (S-ASSF-
1) together with (S-ASSF-2) respectively. Exceptions can be
caught and handled by thetry-catchstatement defined by
(S-TRY-1),(S-TRY-2) and (S-TRY-3). If an exception occurs
during the execution of the body (S) of the try-catchand
there is a handler for that kind of exception control is trans-
ferred to the corresponding exception handler.

Evaluation of sequences is defined by (S-SEQ-1) and (S-
SEQ-2) and, finally, evaluation of theskip statement is de-
fined by (S-SKIP). Of the rules, (S-ASSF-2) is the only rule
to introduce new exceptions; assignments to fields fail when
the pointer that should point to the record is the nil pointer.

Record Allocation The only non-standard statement is
record allocation. Pointer fields which have annotation>
denote adefinitely non-nil field. Since we do not allow the
types of fields to change during computation it is impor-
tant that such fields are not assigned a nil pointer as default

6

(ST-INT)
σ1 <: σ2

int σ1 <: int σ2
(ST-VENV)

∀x ∈ dom(Γ2) . Γ1(x) <: Γ2(x)
Γ1 <: Γ2

(ST-RECID)
∆(A1) <: ∆(A2)

A1 <: A2

(ST-REC)
π2 ⊆ π1

π1 <: π2
(ST-PTR)

A1 <: A2 v1 <: v2 p1 <: p2 o1 <: o2

Av1
1 p1 o1 <: Av2

2 p2 o2

(ST-ENV)
Γ1 <: Γ2 nt1 <: nt2

Γ1;nt1 <: Γ2;nt2

Table 4. Subtypes

value. It is for this purpose that thenewstatement contains
an initialisation specification. Thenewstatement creates a
new record using themkrec function, which creates a record
by giving each field a default value based on the type of the
field (0 for integer fields asnil for pointer fields). Thereafter,
it allocates a new pointer using thenextand live functions
from the allocation model, and updates the fields according
to the specification. This way, all fields that may not contain
nil pointers are updated in a way that is atomic with respect
to the view of the type system. That all fields are updated
is guaranteed by the typing of the initialisation specifica-
tion, see (T-NEW) below. Note that he bound variablex is
available locally to allow for self-cycles.

Exception Propagation Exception propagation of excep-
tions originating from expressions is provided by the fol-
lowing context together with (S-SERR-1).

R ::= [] | while R S | if R S1 S2

Propagation of errors in statements is only needed for se-
quencing and defined by (S-SERR-2).

4 Types

In this section we present the details of the information
flow aware type system. The basic structure of top level
judgments in the type system is of the form

Σ `ct S ⇒ Σ′, ξ

which is read as follows: the statementS is type correct in
the environment typeΣ and the security contextct, yielding
an environment typeΣ′ and anexception typeξ.

The fact that we have an incoming and an outgoing type
environment reflects the fact that we have aflow sensitive
type system, allowing variables to change their security
level during a computation.

Now we introduce the details of these type components
before discussing the actual typing rules.

Value and Environment Types The syntax of the value
and environment types was introduced in Section 3. The se-
curity levels, ranged over byσ, are secret,H, and public,L.

Since the security levels are used for several different pur-
poses, for the readability we use additional meta variables
ct, nt, p ando to range over the security levels represent-
ing the security context, the pointer context type, the pointer
value security type and the pointer object security type re-
spectively.

As was discussed in Section 2 we will track the domain
of the pointers using annotations in the pointer types; the
domain annotations are ranged over byv, where> indicates
the definite absence ofnil and⊥ indicates the possibility of
nil.

The record types,π, are partial maps from field identi-
fiers to primitive types,τ , the variable environment types,Γ,
are maps from variables to primitive types, the heap types,
δ, are maps from pointers to pointer types and the record
type environments,∆, from record identifiers to record
types. Finally, the environment types,Σ = Γ; nt, are pairs
of a variable environment type and the type of the pointer
context.

Exception Types An exception typeξ is a partial func-
tion fromerr to pairs of a security level and an environment
type, written asσ @ Σ. If a statement is typable inξ, and
ξ(err) = σ @ Σ, then the computation may yield the ex-
ceptionerr , encoding information of security levelσ, and
resulting in (i.e., being raised at) an environment with type
Σ. If err 6∈ dom(ξ) then the exceptionerr is not a possible
result of the statement.

Subtypes and Least Upper Bounds For security annota-
tions we define subtyping to be the smallest transitive and
reflexive relation satisfyingσ <: H. Similarly, for pointer
domain annotations> <: ⊥. Value subtyping is defined
structurally by covariance, with record subtyping limited to
widthsubtyping[9], so thatπ1 <: π2 iff π2 ⊆ π1. The rules
are presented below: Like most systems for the informa-
tion flow analysis of objects, but in contrast to [1], the types
of records are flowinsensitive. This, together with our use
of width subtyping [9], avoids problems with pointer alias-
ing since it guarantees that all pointers pointing to the same
record must agree on the types of the common fields. The
rules for the subtypes are defined in Table 4.

The least upper bound of two typesT1 andT2 is defined

7

(T-PRJ-1)
Σ `ct e : A> p o, ξ (f : τ) ∈ ∆(A)

Σ `ct e.f : τo, ξ
(T-PRJ-2)

Σ `ct e : A⊥ p o, ξ (f : τ) ∈ ∆(A)
Σ `ct e.f : τo, ξ t {np 7→ ct t o @ Σ}

(T-CAST)
Σ `ct e : Av

2 p o, ξ

Σ `ct (A1) e : Av
1 p o, ξ t {cc 7→ o @ Σ}

(T-INT)
Σ `ct n : int L, ∅

(T-NIL)
Σ `ct nil : A⊥ L L, ∅

(T-COERCE)
Σ `ct e : Av p o, ξ

Σ `ct (e : int) : int p, ξ
(T-EQ-P)

Σ `ct e1 : Av1
1 p1 o1, ξ1 Σ `ct e2 : Av2

2 p2 o2, ξ2

Σ `ct e1 = e2 : int (o1 t o2), ξ1 t ξ2

(T-VAR)
Σ(x) = τ

Σ `ct x : τ, ∅
(T-BINOP)

Σ `ct e1 : int σ1, ξ1 Σ `ct e2 : int σ2, ξ2

Σ `ct e1 • e2 : int (σ1 t σ2), ξ1 t ξ2

Table 5. Expression Type Rules

as the smallest valueT satisfyingT1 <: T ∧T2 <: T . Least
upper bounds for exception types is defined as the union
of the two exception types while merging pairs associated
with the same exception usingσ1 @ Σ1 t σ2 @ Σ2 = σ1 t
σ2 @ Σ1 t Σ2.

Expression Type Rules The expression type rules are of
the formΣ `ct e : τ, ξ, which is read as follows: the ex-
pressione is type correct in the environment typeΣ in the
security contextct, yielding either a value of typeτ or an
exception defined byξ.

We use a global record type environment∆ ∈ RecID →
RecType to record the record types associated with the
record identifiers.

There are two type rules for field projection: (T-PRJ-
1) and (T-PRJ-2). The former rule corresponds to the case
where the possibility of a nil-pointer exception can be ruled
out by the domain annotation. The field projection expres-
sion is able to fetch values from a record even if the value
of the pointer is secret, without having to consider the re-
sult as a secret. This possibility comes from the separation
between the security level of the pointer value and the secu-
rity level of the record pointed to. The object security type
acts as an override for the security types of the record type.
Fetching data from a secret record returns secret results en-
forced by the following function:

(int σ1)σ2 = int (σ1 t σ2)
(Av p o)σ = Av (p t σ) (o t σ))

Subtyping allows us to disregard fields in a record
pointed to by a pointer, by changing the type of the pointer
to a smaller type. Casting, (T-CAST), is intended to re-
verse this operation by upgrading a pointer type to a wider
pointer type. The correctness of such an operation is not
statically decidable, which is why a runtime type check has
to be performed. If this type check fails, a class cast ex-
ception is thrown as documented by exception type. The

integers introduce public values, (T-INT). The same holds
for the (syntactic) nil pointer, (T-NIL). The coercion expres-
sion, (T-COERCE), models the failure of pointer opaqueness
by lifting pointer values to integers. The result of the func-
tion depends only on the values of the pointer, and safely
ignores the security annotations associated with the referred
record. The binary operators, (T-BINOP), are total and are
assumed not to cause abnormal termination, and simply re-
turn a result which is as secret as the most secret of its sub-
expressions. Note that the result of comparing two pointer
expressions for equality, (T-EQ-P), is independent of the se-
curity level of the pointer value. This is not surprising, since
equality in the presence of only nil pointer constants is an
opaque operation.

Statement Type Rules As mentioned previously, the
statement types are of the formΣ `ct S ⇒ Σ′, ξ, which
is read as follows: the statementS is type correct in the en-
vironment typeΣ and security contextct, yielding either an
environment of typeΣ′ or an exception defined byξ. The
statement type rules are found in Table 6.

Allocation, (T-NEW), allocates a new record and a
pointer and updates the pointer context. Allocation has the
property that a well-typednew will produce well-formed
records – even fornon-nil recursive record types. Just like
any other update, updating the pointer context (i.e., allo-
cating) in a secret context causes the pointer context to be-
come secret. We assume that allocation does not fail, which
means that we assume that the memory is infinite.

All of the while statement, (T-WHILE), the if-statement,
(T-IF), and the exceptions may introduce indirect leaks. Any
differences in low modifications in the body of anif or a
whileencodes information about the guarding expression.

Exceptions introduce conditional branches to the associ-
ated exception handler — any modifications done after an
instruction that may cause exceptions may encode informa-
tion about the parameters causing the exception. Consider

8

(T-WHILE)

Σ′ `σ′ e : int σ, ξ1 ct t σ t lvl(ξ1) = σ′

Σ′ `σ′ S ⇒ Σ′′, ξ2 Σ′′ <: Σ′ Σ <: Σ′

Σ `ct while e S ⇒ Σ′, ξ1 t ξ2
(T-ASSV)

Σ `ct e : τ, ξ
lvl(ξ) = σ cmp(Σ′(x), τ)

Σ `ct x := e ⇒ Σ′[x : τ cttσ], ξ

(T-IF)

Σ `ct e : int σ, ξ ct t σ t lvl(ξ) = σ′

Σ `σ′ Si ⇒ Σi, ξi i ∈ {1, 2}
Σ `ct if e S1 S2 ⇒ Σ1 t Σ2, ξ t ξ1 t ξ2

(T-SEQ)

Σ `ct S1 ⇒ Σ′, ξ1 lvl(ξ1) = σ
Σ′ `cttσ S2 ⇒ Σ′′, ξ2

Σ `ct S1;S2 ⇒ Σ′′, ξ1 t ξ2

(T-ASSF-1)
Σ `ct e : τ, ξ Σ′(x) = A> p o (f : τ ′) ∈ ∆(A) lvl(ξ) = σ τ cttotσ <: τ ′

Σ `ct x := e ⇒ Σ′, ξ

(T-ASSF-2)
Σ `ct e : τ, ξ Σ′(x) = A⊥ p o (f : τ ′) ∈ ∆(A) lvl(ξ) = σ τ cttotσ <: τ ′

Σ `ct x := e ⇒ Σ′, ξ t {np 7→ ct t o @ Σ′}

(T-TRY)

Σ `ct S ⇒ Σ′, {err1 7→ σ1 @ Σ1, . . . , errn 7→ σn @ Σn} ∪ ξ err i 6∈ dom(ξ)
Σi `cttσi

Si ⇒ Σ′
i, ξi i ∈ {1..n}

Σ `ct try S catch(err1) S1 . . . catch(errn) Sn ⇒
⊔

i∈{1..n} Σ′
i t Σ′,

⊔
i∈{1..n} ξi t ξ

(T-NEW)

∆(A1) = {f1 : τ1, . . . , fn : τn, . . .} fi : A>
2 p o =⇒ i ≤ n

Γ′ = Γ[x : A>
1 (nt t ct) ct] Γ′(xi) <: τi i ∈ {1..n} cmp(Γ(x), τ)

Γ;nt `ct x := new A1{f1 = x1, . . . , fn = xn} ⇒ Γ′;nt t ct, ∅

Table 6. Statement Type Rules

the following program,

h2 := nil ; if (h1) then h2 :=newA{};
try { h2. f := 1; l := 1 } catch (np) { l := 0 }

wherel = 1 if h1 6= 0 andl = 0 if h1 = 0. This is where
the context annotation,ct, is used – every statement (and
thus expressions) has to be typable in the security context
of the controlling expression or exception.

In the statement sequence instruction this is expressed by
typing the second statement in the context of the exception
level lvl(ξ) of the first, wherelvl(ξ) =

⊔
{σ | ξ(err) =

(σ,Σ), err ∈ dom(ξ)}. In the if and thewhile not only
the security level of the guarding expression but also the
exception level decides the context of their bodies.

However, there are more places where we have to con-
sider the effect of exceptions namely in the instructions that
modify the environment, i.e., variable and field updates. If
an exception occurs in the expression providing the value
for the update this will prevent the update from occurring.
For this reason the context of the actual write has to be at
least as secret as the exception level of the expression.

As is the case with the field projection above, the type
rule for field update, (T-ASSF), gives us the possibility to
use low parts of records even after secret allocation.

From the variable assignment rule (T-ASSV) we can see
that assigning a value to a variable may cause the the se-
curity type of that variable to change (i.e., we have aflow
sensitivetype system). However, as is standard we do not

allow it to change the underlying type of the variable. As
seen in the type rule for variable assignment, (T-ASSV), this
is enforced by the demand of type compatibility, expressed
by the predicatecmp(·), defined as follows:

cmp(int σ1, int σ2)
cmp(Av1 p1 o1, A

v2 p2 o2)

Since the (security) types of variables may change on as-
signment, the sequencing rule, (T-SEQ), demands that the
second statement is correct in the type environment result-
ing from the first statement.

Furthermore, the flow sensitivity is what forces us to tag
the exception types with the environment type in which the
expression was thrown. As is seen in the type rule for the
try-catch(T-TRY), this annotation is used to make sure that
we can safely transfer control from the location of the ex-
ception to the corresponding exception handler by demand-
ing that the exception handler is typable in the environ-
ment type carried by the exception type. To understand
how thetry-catchstatement prevents succeeding statements
from executing in the context of caught exceptions note how
those are removed from the exception type of the entiretry-
catch, which will prevent them from being propagated to
the security context of the succeeding statement (if any).

Consider the following program whereS denotes any
statement andh is a pointer that could be nil.

try { h. f := 0; } catch (np) { skip ; }; S

9

(LE-INT-L)
β ` n ∼int L n

(LE-INT-H)
β ` n1 ∼int H n2

(LE-PTR-PL)
β ` p ∼PL

p

(LE-PTR-PH)
β ` p1 ∼PH

p1
(LE-PTR-OL)

pi 6= nil (p1, p2) ∈ β

β ` p1 ∼OL
p2

(LE-PTR-OL)
β ` nil ∼OL

nil

(LE-PTR-OH)
β ` p1 ∼OH

p2
(LE-PTR)

β ` ρ1 ∼Pp p2 β ` p1 ∼Oo p2

β ` p1 ∼Av p o p2

(LE-REC)
∀(f : τ) ∈ π . β ` r1.f ∼τ r2.f

β ` r1 ∼π r2
(LE-VENV)

∀x ∈ dom(Γ) . β ` γ1(x) ∼Γ(x) γ2(x)
β ` γ1 ∼Γ γ2

(LE-HEAP)

∀(p1, p2) ∈ β . T (p1, ρ1) = A = T (p2, ρ2)
β ` ρ1(p1) ∼∆(A) ρ2(p2)

β ` ρ1 ∼ ρ2
(LE-ENV)

β ` γ1 ∼Γ γ1

β ` ρ1 ∼ ρ2 ` η1 ∼nt η2

β ` γ1; ρ1; η1 ∼Γ;nt γ2; ρ2; η2

Table 7. Low-Equivalence of Values

Since thetry-catchis catching nil-pointer exceptions the nil-
pointer exception is removed from the exception type of the
try-catchstatement, which (in this case) results in the empty
exception type, the context ofS will not be touched by the
sequence statement. Without thetry-catch, S would execute
in the contexts of the nil-pointer exception i.e., the security
level ofh.

5 Noninterference

The security condition that the type system aims to guar-
antee is phrased as anoninterferenceproperty. Noninter-
ference is the prevailing formalization of absence of infor-
mation leaks. A program is secure –noninterfering— if
whenever the program is run in environments that are indis-
tinguishable to the attacker, the results of running the pro-
gram are also indistinguishable. The key to the definition is
to define the notion of “indistinguishable” in an appropriate
way. Typically, indistinguishability is defined with respect
to a classification of the different parts of the environments
into secret and public information — the environment type.
Given that the attacker can inspect only the public parts of
the environment, two environments are indistinguishable to
the attacker if their public parts are equal. Hence the fre-
quently used namelow-equivalencefor the indistinguisha-
bility relation.

Low-equivalence Informally, two values are low-
equivalent with respect to a security type, if all their public
parts are low-equivalent with respect to their respective
security types. In order to define this notion we need to
traverse the heap. In a setting where pointers are opaque we
do not need to insist that pointer values are identical – it is
sufficient that there is a bijective renaming that relates them.

The use of a bijection (on the low-reachable sub-domains
of the heaps) in the formulation of low-equivalence was
pioneered by Banerjee and Naumann[3]. The bijection has
two purposes: firstly, it makes the low-equivalence relation
inductively definable in the presence of cycles on the heap
and, secondly, it has the beneficial side effect of allowing
equality comparisons of certain pointers with secret values
in addition to the ones with public values. Since the
work by Banerjee and Naumann abstracts away from the
values of the pointers, parameterizing the low-equivalence
relation is not strictly necessary – it would suffice to apply
a renaming before relating two values. In the present
work the bijection plays a more crucial role, since the
actual pointer valuesare exposed, which prohibits us from
renaming values.

Let β be a bijection on some subset ofPtr . Table 7
defines the meaning of the security types for values,low-
equivalence, as a family of partial equivalence relations in-
dexed over the family of heap bijections and the value types.

Two public integers are low-equivalent if they are the
same integer (LE-INT-L). Any two secret integers are low-
equivalent (LE-INT-H), reflecting the fact that any two se-
cret integers look the same to the attacker. Pointers have
more than one security annotation. As with integers there
is a security level for the value of the pointers. Thus, two
(value-wise) public pointers are low-equivalent if they have
the same value (LE-PTR-L) and any two (value-wise) se-
cret pointers are low-equivalent (LE-PTR-H). The remaining
security annotations for pointers deals withpointer related
object properties. Two pointers are related with respect to
OL if the records pointed to in the respective heap have the
same runtime type and the records are low-equivalent field
for field (LE-PTR-OL). The reason for demanding that the
records have the same runtime type is because the cast oper-
ation can be used to distinguish between records of different

10

runtime types. Pointers typedOH pose no demands on the
records pointed to (LE-PTR-OH). Similar to above, demands
of low-equivalence for records are carried by the bijection
to the low-equivalence rule for the heap in which they are
enforced. Two heaps are low-equivalent with respect to the
bijection if all records pointed to by pointers in the bijection
are low-equivalent with respect to the record type.

Low-equivalence for pointers with respect to the entire
pointer type demands low-equivalence with respect to the
value and object security levels (LE-PTR). Records, variable
environments and environments are then related by point-
wise extension (LE-REC, LE-VENV, LE-ENV).

Finally, an important property of∼Σ is that it is apartial
equivalence relation(PER) – i.e., that it is transitive and
symmetric.

Lemma 5.1. (LE-ENV) is a partial equivalence relation.,
i.e., β ` E1 ∼Σ E2 =⇒ βop ` E1 ∼Σ E2 and β1 `
E1 ∼Σ E2 ∧ β2 ` E2 ∼Σ E3 =⇒ β1 ◦ β2 ` E1 ∼Σ E3

Proof. By induction on equivalence derivation.

Low-equivalence with respect to Exceptions We define
the family of low-equivalence relations on̂Val as the small-
est family of symmetric relations satisfying:

β ` v1 ∼τ v2

β ` v1 ∼ξ,τ v2

ξ(err) = H @ Σ′

β ` err ∼ξ,τ v

err1 ∈ dom(ξ) err2 ∈ dom(ξ)
ξ(err1) : L @ Σ1 ∧ ξ(err2) : L @ Σ2 =⇒ err1 = err2

β ` err1 ∼ξ,τ err2

Similarly for Ênv :

β ` E1 ∼Σ E2

β ` E1 ∼ξ,Σ E2

ξ(err) = H @ Σ′

β ` E1 ∼Σ E2

β ` E1 ∼ξ,Σ err , E2

err1 ∈ dom(ξ) err2 ∈ dom(ξ)
ξ(err1) : L @ Σ1 ∧ ξ(err2) : L @ Σ2 =⇒ err1 = err2

β ` E1 ∼Σ1tΣ2 E2

β ` err1, E1 ∼ξ,Σ err2, E2

We note that the resulting relation for environments is not
transitive. However, it is transitive on the distinct domain
of environments, which is what is needed in the proof of
correctness.

5.1 Soundness

Now, given the notion of low-equivalence, we formulate
the notion of security,exception-sensitive noninterference,
which is a termination-insensitive noninterference, where

δ ` n : int σ δ ` nil : A⊥ p o
δ(p) <: A p 6= nil

δ ` p : Av p o

∆(A) = {f1 : τ1, . . . , fn : τn} δ ` vi : τi

δ ` {A, f1 = v1, . . . , fn = vn} : A

∀x ∈ dom(Γ) . δ ` γ(x) : Γ(x)
δ ` γ : Γ

∀p : A ∈ δ . δ ` ρ(p) : A

δ ` ρ

δ ` ρ
δ ` γ : Γ

δ ` γ; ρ; η : Γ;nt

δ ` v : τ
δ ` v : ξ, τ

ξ(err) = σ @ Σ
δ ` err : ξ, τ

δ ` E : Σ
δ ` E : ξ, Σ

ξ(err) = σ @ Σ′ δ ` E : Σ′

δ ` err , E : ξ, Σ

Table 8. Well Formed Values

abnormal termination and the cause of the abnormal ter-
mination is considered observable but not non-termination.
Specifically, this means that we cannot consider a program
that causes secret exceptions as secure. Depending on what
is considered the result of running the program, we get dif-
ferent formulations of indistinguishability. The least we
must demand is that publicly observable actions are equal.

However, a formulation of noninterference that only con-
siders public observations, is frequently not compositional4

and, thus, hard to prove directly from a compositional type
system. The solution is to find a stronger formulation of
noninterference, which is compositional and a safe approx-
imation of the original formulation, typically by extending
the equality demand to the non-observable public parts, and
to show that well-typedness implies the stronger relation.
Since our language is not equipped with any constructions
for communication with the outside world we assume an ex-
ecution model where the public (low) parts of the final envi-
ronment as well as the termination status are observable to
the attacker. From the compositionality argument above it
should be clear that this does not impose any demands that
are not needed by the proof.

Assume thatS is well-typed, i.e.,Σ `ct S ⇒ Σ′, ξ. To
formulate a noninterference property applicable to such a
judgment we need to start computingS in two low equiva-
lent environments with respect toΣ.

To do this we will need a simplewell-formednessrela-
tion for type environments. The rules forwell formed values
(including environments) are found in Table 8.

This makes the basic connection betweenvaluesand

4since we do not have any information about the non-observable public
values of the environment

11

types. To make the family of well-formedness relations in-
ductively definable in the presence of cycles on the heap
they are parameterized over a heap typeδ, which maps all
reachablepointers to theruntime typeof the record pointed
to.

A program is secure with respect to some initial and fi-
nal type environmentsΣ andΣ′ and the exception typeξ,
if whenever the program is run on environments that are
indistinguishable to the attacker, the results (modulo non-
termination) are also indistinguishable. Clearly, since it is
assumed that the attacker can distinguish between normal
and abnormal termination we cannot allow secret excep-
tions propagating to the top level. Thus, the following no-
tion of non-interference is defined only for exception types
ξ s.t. lvl(ξ) = L.

Definition 5.1 (Noninterference). For lvl(ξ) = L

NI Σ,Σ′,ξ(S)
def
= ∀E1, E2 . E1 : Σ ∧ E2 : Σ∧E1 ∼Σ E2

∧ 〈E1, S〉 → Ê′
1 ∧ 〈E2, S〉 → Ê′

2 =⇒ Ê′
1 ∼Σ′,ξ Ê′

2

With this we can formulate the main theorem of the pa-
per: that well-typed programs are noninterfering. A nonin-
terference proof is essentially a preservation proof. We are
proving that executionpreservesa type invariant. Because
of the form of the noninterference definition, the proof is
a merge between two proofs: one proof that provesor-
dinary preservation of types, i.e., thatwell-formednessis
preserved, together with one proof that proves that low-
equivalence is preserved. The reason for this is that the
well-formedness properties are needed in some cases in the
proof of preservation of low-equivalence.

Theorem 5.1. If Σ `ct S ⇒ Σ′, ξ and lvl(ξ) = L then
NI Σ,Σ′,ξ(S)

Proof. By induction on the type derivation. The proof is
omitted for space reasons.

6 Future Work: Security by Transformation

The main topic of this paper has been how to deal with
the indirect information leaks arising from allocation in se-
cret contexts, with the perspective that the allocation model
is fixed and deterministic.

Another way of avoiding the covert channels caused by
non-opaque pointers is astrong separationof the heap into
apublicheap and asecretheap, for allocations in public and
secret contexts respectively – in a style typical of “classical”
military message passing systems.

In this section we present an idea on how to achieve the
same effect as a strongly separated heap within a single
heap system, with a combination of dynamically allocation

of new identifiers for public data which can be used to form
a safe coercion function, together with a type directed trans-
formation that transforms a program free from leaks other
than secret allocation to a program that is noninterfering.

The point of this transformation is that in a reasonable
language, this map can be expressed in the languagewithout
extending the semantics. Consider the following example:

original transformed

int L x;
p1 := newA;
if (secret)

{ p2 := newA{}; }
p3 := newB;
x := (p3 : int)

int L x;
p1 := newL A;
if (secret)

{ p2 := newA{}; }
p3 := newL B;
x := (p3 :L int)

The left program would not be type correct (nor safe) but
the transformed program on the right would. In addition
to allocating a new object of typeA, p1 = newL A also
allocates a new unique identifier and associates the newly
allocated pointer with this identifier. Again, both a pointer
and an identifier is allocated byp3 = newL B and it is this
identifier,not the pointer representation, that is returned by
thex = (p3 :L int) instruction at the end of the program.
In contrast to the pointer representation ofp3 the identifier
associated with the pointer is not affected by the allocation
in the secret context, since that allocation does not allocate
an identifier.

The correctness of such a transformation relies on that
“reasonable” programs using non-opaque pointers are not
dependent on aparticular allocation model, i.e., their se-
mantics is independent of the values of the allocated point-
ers. With this view one could see such a transformation as
a refinement of the original program.

7 Conclusion

This paper has presented the problem of information
leakage in the presence of non-opaque pointers, and pre-
sented a type-based analysis for a simple imperative lan-
guage which tracks the use of opaque operations in order to
eliminate a class of information flows not previously mod-
eled by either theoretical or practical systems. The type
system combines a number of features, including separate
types for pointer value and record pointed to and value-flow
information about the initialisation status of pointers. On
the semantic side, we adopted an abstract and rather gen-
eral model of allocation to represent many possible imple-
mentations of non-opaque pointers, and were able to prove
a noninterference result for the type system, demonstrating
that key reasoning methods for opaque pointers can still be
applied in a non-opaque setting.

12

Acknowledgements Thanks to Niklas Broberg, Tobias
Gedell, Ulf Norell and Andrei Sabelfeld for helpful com-
ments and feedback. Thanks to the anonymous referees for
numerous helpful comments and suggestions. This work
was partly supported by the Swedish research agencies SSF,
VR and Vinnova, and by the Information Society Technolo-
gies programme of the European Commission, Future and
Emerging Technologies under the IST-2005-015905 MO-
BIUS project.

References

[1] Torben Amtoft, Sruthi Bandhakavi, and Anindya
Banerjee. A logic for information flow in object-
oriented programs. InProceedings of the Thirty-
third Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 91–102, January
2006.

[2] A. Banerjee and D. A. Naumann. Secure information
flow and pointer confinement in a Java-like language.
In Proc. IEEE Computer Security Foundations Work-
shop, pages 253–267, June 2002.

[3] Anindya Banerjee and David Naumann. Stack-based
access control for secure information flow.Journal of
Functional Programming, pages 131–177, sep 2005.

[4] Gilles Barthe and Tamara Rezk. Non-interference for
a jvm-like language. InTLDI ’05: Proceedings of
the 2005 ACM SIGPLAN international workshop on
Types in languages design and implementation, pages
103–112, New York, NY, USA, 2005. ACM Press.

[5] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow.Comm. of the
ACM, 20(7):504–513, July 1977.

[6] René Rydhof Hansen. Flow Logic for Language-
Based Safety and Security. PhD thesis, Technical Uni-
versity of Denmark, 2005.

[7] Daniel Hedin and David Sands. Timing aware infor-
mation flow security for a javacard-like bytecode. In
Fausto Spoto, editor,BYTECODE’05, ENTCS. Else-
vier, April 2005.

[8] A. C. Myers, N. Nystrom, L. Zheng, and
S. Zdancewic. Jif: Java information flow. Soft-
ware release. http://www.cs.cornell.edu/jif, July
2001.

[9] Benjamin C. Pierce. Types and programming lan-
guages. MIT Press, Cambridge, MA, USA, 2002.

[10] A. Sabelfeld and A. C. Myers. Language-based
information-flow security.IEEE J. Selected Areas in
Communications, 21(1):5–19, January 2003.

[11] Andrew K. Wright and Matthias Felleisen. A syntactic
approach to type soundness.Information and Compu-
tation, 115(1):38–94, 1994.

13

	Introduction
	Types for Non-Opaque Pointers
	The Language
	Types
	Noninterference
	Soundness

	Future Work: Security by Transformation
	Conclusion

