
Bytecode 2005 Preliminary Version

Timing Aware Information Flow Security for a
JavaCard-like Bytecode

Daniel Hedin 1 David Sands 2

Department of Computing Science
Chalmers

Goteborg, Sweden

Abstract

Common protection mechanisms fail to provide end-to-end security; programs with
legitimate access to secret information are not prevented from leaking this to the
world. Information-flow aware analyses track the flow of information through the
program to prevent such leakages, but often ignore information flows through covert
channels even though they pose a serious threat. A typical covert channel is to
use the timing of certain events to carry information. We present a timing-aware
information-flow type system for a low-level language similar to a non-trivial subset
of a sequential Java bytecode. The type system is parameterized over the time
model of the instructions of the language and over the algorithm enforcing low-
observational equivalence, used in the prevention of implicit and timing flows.

Key words: covert channels, information flow, security, bytecode

1 Introduction

With the increasing adoption of mobile devices with extensible functionality,
security becomes more and more important. Common protection mechanisms
of today include sandboxes, which protect the system by running programs
with limited capabilities, and application firewalls, which prevent two appli-
cations from accessing each others private data or code. The safety of such
systems – in particular those targeting some variant of the Java virtual ma-
chine – often rely on type systems or other means of static verification that
prevent the application from breaking the abstraction.

Common to these techniques is that they fail to provide what is known
as end-to-end security. Nothing prevents a program with legal access to a
secret to tell this secret to the world, by accident or malice. Recent research

1 http://www.cs.chalmers.se/~utter
2 http://www.cs.chalmers.se/~dave

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Hedin

has focused on the problem of statically determining when programs satisfy
end-to-end secrecy properties [14].

The ways by which programs can disclose information are often categorised
into explicit and implicit flows, together with flows through other covert chan-

nels. Explicit flows amounts to directly leaking a secret using some public
communication channel. Implicit flows – a form of covert channel – may arise
when the program control flow depends on secrets. If the values of secrets can
effect the execution path through a program, then modifications to the envi-
ronment and public output in such a path may be used to indirectly encode
properties of the secrets.

Explicit flows are easily prevented using ordinary protection mechanisms,
while implicit channels need some kind of information flow aware mechanism.
A covert channel is the general name given to a medium not intended for com-
munication which is used to transfer information [10]. The timing of certain
observable events can be used as a covert channel, and this is considered in
this paper. Covert channels are a delicate problem which can be dealt with us-
ing techniques similar to implicit channels, but tend to lead to very restrictive
systems. Thus, they are often deliberately ignored in information flow secu-
rity in order to appear more “practical”. Nevertheless, covert channels pose
a real and serious threat and cannot be ignored just for convenience. As an
example, suppose that an attacker can only reliably observe variations in the
timing of observable events when the difference is of the order of 0.5 seconds.
Even with such a low bandwidth (corresponding to an attacker observing a
system across a busy network) it is quite plausible to leak the equivalent of
VISA card number in well under 2 minutes.

The protection mechanisms described in the majority of the research de-
scribed in [14] are similar in the respect that they are all automatic. The
untrusted code is statically verified prior to execution or monitored during
execution without calling for user interaction. Indeed, it may be unreasonable
to assume any user interaction when establishing security properties of dy-
namically downloaded code. However, any automated security checking that
does not model timing will potentially accept a program which leaks infor-
mation through timing, no matter how blatant the leak is. The program will
be allowed to run and, even worse, the verification process will establish trust
between the user and the program.

In this paper we explore the problem of end-to-end information-flow secu-
rity for a simple bytecode language in which we model and prevent certain
classes of timing attacks.

Analysis of lower level languages is difficult, but there are several potential
benefits. Higher-level programs makes the compiler part of the trusted com-
puting base. Development, implementation and maintenance of a trustworthy
compiler is a huge undertaking. From the point of view of timing proper-
ties, low-level languages are much more detailed, and thus allow finer-grained
timing models. This is often impossible to perform at the level of the source

2

Hedin

code, as many aspects of the timing behaviour determined by the compilation
process.

The remainder of the paper is organised as follows. Section 2 considers
related work, Section 3 introduces the language and its semantics, Section 4
discusses timing, time models and non-interference, Section 5 explores the
more interesting parts of the type system and Section 6 concludes.

2 Related Work

Our work builds on ideas from type-based program analysis. Among the more
complete treatments of type system based information flow security we find
FlowCaml [15,13] and JIF[12], handling large subsets of OCaml and Java
respectively.

Regarding type systems for low-level languages, Stata and Abadi[16] pro-
posed a type system for a subset of Java bytecode focused on the guarantees
provided by regular bytecode verification. For assembly languages, notable
work has been done by the TAL 3 group at Cornell. With respect to Java
bytecode the work by Morisett et al. in Stack-Based Typed Assembly Lan-
guage (STAL) [11] is the most relevant.

Only recently has the problem of information-flow security been studied for
low level languages. Barthe and Rezk[4,5] provide a flow sensitive type system
for a sequential bytecode language. Their basic type structure is similar to
that of Stata and Abadi’s, extended to a polyvariant analysis. As is standard
for most analyses (deriving from the approach originally outlined by Denning
[6]), implicit flows are prohibited by forbidding modifications of parts of the
environment with lower security type than the current context. For example,
if the current program counter value depends on the value of a secret, then
the code must not write down to a lower security level. A noninterference
theorem is established for the type system.

With an emphasis on handling a full-scale language Genaim and Spoto[7]
present a compositional information flow analysis for full Java bytecode. The
analysis uses boolean functions to encode information flow.

At the other end of the scale, Kobayashi and Shirane[8] provide nonin-
terference proofs for an analysis of information flow for a tiny subset of Java
bytecode, excluding arrays, objects and methods. The main focus of their
work is an extension to the type system of Stata and Abadi with information
flow awareness. Unlike the above works there is also a brief consideration of
timing channels. Kobayashi and Shirane suggest a method for dealing with
timing derived from their main theorem, which says that if a program termi-
nates with a public value in m steps for one environment then it will terminate
for any low-equivalent environment within c∗m steps for some constant c. To
handle timing, Kobayashi and Shirane suggest that given this constant c you
measure the number of steps of execution when all secret values are set to 0,

3 http://www.cs.cornell.edu/talc

3

Hedin

and insert a delay before returning so that return always takes place after (c
+ 1)n steps. Their approach assumes both the possibility of measuring the
execution time of statements in the program as well as delaying results a spec-
ified time. In many circumstances (e.g. multi-function smartcards) neither is
possible.

With respect to timing aware systems Agat[2] presents a timing aware
type system for a small While-language which includes a transformation which
takes a program and transforms it into an equivalent program without timing
leaks. In [1][Paper II] Agat implements and evaluates the transformation for
a tiny subset of Java bytecode. The analysis is only informally specified, but
is enough to test that certain timing leaks can indeed be eliminated, based on
observations of a particular bytecode interpreter.

Our approach picks up from Agat’s preliminary experiment, and seeks to
extend it to a larger subset of Java bytecode, and to formalise it in a way
that allows us to formulate (and ultimately, we hope, prove) its correctness
specification.

The main contribution of this paper is a type system, which is parame-
terised over a timing and model of the instructions, allowing for various degrees
of timing sensitivity to be handled, including simple forms of cache-sensitive
timing.

3 Syntax and Semantics

The language is equivalent to a sequential subset of Java bytecode, including
objects and arrays, but excluding exception handling and the jsr/ret instruc-
tion pair.

3.1 Syntax

A program, ranged over by P , is a collection of classes. A class, ranged over
by C, is zero or more fields and methods. A field, ranged over by F , is defined
by its type and its identifier. A method, ranged over by M , is defined by its
identifier, type and a list of instructions. Class, method and field identifiers
are ranged over by C, M and F respectively. The syntax contains references
to the type language: τ , µ are security types defined in Section 5.1. Let l
range over program labels.

Programs P ::= C1 . . . Cn

Classes C ::= class cname[extends scname]{F1; . . . Fn;M1 . . .Mn}
Fields F ::= τ vname;
Methods M ::= mname µ {[l1] inst1 . . . [ln] instn}

Fig. 1. Syntax

The set of instructions, I, ranged over by inst, is defined in figure 2.

4

Hedin

pop,dup, swap, constZ, loadN, storeN, add, sub,mul,div, rem, if@l l,
gotol,newC, getfieldF ,putfieldF , invokeM τ, return, outputH|L, castC,

anewτ , aload, astore, length

where @ ∈ {eq, ne, le, ge, lt, gt}.

Fig. 2. Instructions

3.2 Semantics

The semantics is an ordinary small-step operational semantics on configu-
rations for a given program, with the addition of two explicit termination
transitions corresponding to normal and abnormal termination. Transitions
originating from instructions with publicly observable behaviour are anno-
tated with that observable behaviour. We assume that the original program
has been relabeled, so that each instruction has a unique label in the program.
Let PC be the set of instruction labels ranged over by pc and l, let p range
over object pointers, Ptr, and let ap range over and array pointers, APtr.

Primitive V alues vp ::= Z | p | ap
Objects o ::= 〈C,F1 : vp1, . . . ,Fn : vpn

〉
Arrays a ::= 〈τ, vp1, . . . , vpn

〉
Heaps oe ::= (p1 7→ o1, . . . , ap1 7→ a1, . . .)
Environments e ::= 〈st , r, oe, fs〉
Operand Stacks st ::= ε | vp · st
Register Banks r ::= (vp0, . . . , vp255)
Frame Stacks fs ::= ε | f · fs
Frames f ::= (st , r, pc)

Fig. 3. Values and environments

As given in Figure 3, the primitive values, ranged over by vp, are integers,
object pointers and array pointers. Objects and arrays are maps from field
identifiers or natural numbers respectively to primitive values. Objects and
arrays contain their security types, defined in Section 5.1. The heap is a map
from pointers to heap entities, arrays and objects. The execution environment,
ranged over by e, is a 4-tuple of the operand stack, the registers, the heap and
the framestack. The operand stack, ranged over by st , is a stack of primitive
values. A register bank, ranged over by r, is a map from register numbers to
primitive values. The frame stack, ranged over by fs, is a stack of frames. A
frame, ranged over by f , is composed of the saved operand stack, registers and
the program counter. In the remainder of this text we refer to registers, stack
locations and the fields of heap entities collectively as environment locations.

Let O be the set of observable behaviours and let ô denote the presence of
a behaviour o ∈ O or no observable behaviour. The semantics is formulated
w.r.t. a given program, P , with rules of the form:

. . .

(pci, ei)
ô
→ (pce, ee)

. . .
(pci, ei) → ee

. . .
(pci, ei) ↓

representing one step of execution with possible observable behaviour, normal

5

Hedin

and abnormal termination from left to right. A program may be started in
any static method taking an array of integers as parameter.

4 Timing and Non-interference

Non-interference is one of the most used concepts in information-flow security.
The general idea of non-interference is that variations in secret values avail-
able to the program should not produce variations in the publicly observable
behaviour. Roughly, the program environment is categorised into secrets (of
security level H) and non-secrets (of security level L). Non-interference states
that if you start the program in any two environments in which the non-secret
parts are equal, then, when the program terminates, the non-secret parts of
the resulting environments must also be equal. If this is the case, then the
secret parts of the environment cannot interfere with the non-secret parts and
thus no information about the secrets can be deduced from the non-secrets.
The judgement that two environments have equal non-secret parts is often
referred to as low-equivalence(Section 5.3), commonly formalised in terms of
equivalence relations w.r.t. to an environment security type(Section 5.1) de-
scribing which parts of the environments are considered secret and which are
not.

The success of non-interference comes from its generality, which allows
instantiations to cover a wide array of information flows. Any behaviour
which can be semantically modelled falls into the scope of non-interference –
e.g. explicit and implicit flows, but also timing, cache aware timing and other
covert channels.

The downside with non-interference is the strictness of the formulation.
Leaks are not quantified only qualified, which makes the notion unusable for
programs that naturally must contain leaks. This is beyond the scope of the
present study however. We refer the reader to [14] for a survey of language
based information-flow security.

To handle timing we need a time model, i.e. a model that describes the tim-
ing behaviour of the instructions of the language. For an assembly language,
the timing of an instruction depends amongst other things on the computer
architecture: the CPU and its surroundings. For an interpreted bytecode the
situation is more complex. Not only does the underlying hardware affect the
timing model, but also the implementation of the runtime environment. The
timing model is very important; the security of the system is directly linked
to the quality of the model. There are a number of possibilities:

Step-Counting Model The most simple possible model assigns the same
unit time to all instructions. This is equivalent to counting the number
of transitions in an operational semantics and is the type of timing model
presented in e.g. [8].

Constant Time Model Obviously, not all instructions take the same time.
One refinement is to assign different constant times to the different instruc-

6

Hedin

tions. This is the model found in [1].

Functional Time Model The next refinement is to let the time model be a
function of the parameters to the instruction. Instructions like anew, that
creates an array of size n, are not constant time. In [2], this is handled by
disallowing such instructions when they have secret values as arguments.

History Sensitive Time Unfortunately, the timing of certain instructions
is not a function solely of the current state upon which the instruction
operates. For instructions referencing memory, the state of the cache is an
important parameter with a potentially dramatic effect on the time taken
to execute an instruction.

Our formulation of time models covers these four cases.

4.1 Histories and Time Models

To allow for different models we extend the standard semantics with histories,
accumulating information about the execution. The histories are the base for
the calculation of an abstract time, which is used to ensure that the time of
publically observable is independent on secret values.

For a given program, a time model is a pair, (SM, TM), of the semantic
time model, SM , and the corresponding type time model, TM . The way to
view this is that SM provides the semantics for the time and TM provides
the type judgements, used in the type rules. The connection between TM and
SM is a non-interference style demand, similar to the one for traces below. For
example, if the time 4 of an instruction is depending on the first but not the
second of its parameters, then the security type of the time of that instruction
is affected by the security type of the first parameter but not the second.

A history is typically built from a number of sub-histories, e.g. the current
time and the state of the data cache, related to each other by the instructions,
but still relatively independent. 5 Because of this we define a history to be
an ordered product of sub-histories, imposing the same structure on the se-
curity type of histories. This allows for an adequate separation of (partially)
independent sub-histories.

4.1.1 Semantic Time Model

Let E be the set of environments, ranged over by e. The semantic time model
is a quadruple 〈H, T, hist, time〉 where

• H is the set representing execution histories, defined structurally in terms
of an ordered product of sub-histories, each with a distinguished empty
element and equality operation,

4 According to the semantic time model
5 It is possible to imagine situations where the state of the data cache reflects secret infor-
mation and the time doesn’t (the execution time of only a few instructions is depending on
the state of the data cache) or the other way around (there are more things than the data
cache that affect the execution time of instructions).

7

Hedin

• T is the abstract domain of times, equipped with an equality operation,

• hist : I × E × H → H is a partial function which takes an instruction,
the current state and the history so far, and produces the extended history
corresponding to the next state of the computation.

• time : I × E ×H → T gives the observable time after executing the next
step in the history H.

4.1.2 Type Interface

Let ET be the set of environment types (Section 5.1). The interface to the
type system is a triple 〈HT, φ, ψ〉 where

• HT is the set of history security types defined by the structure of H by
assigning a security level to each sub-history,

• φ : I ×ET ×HT → HT , is a type function consistent with hist as defined
below,

• ψ : I × ET × HT → σ, is a type function extracting the type of time
consistent with time as defined below.

For example, let σ be the set of all security levels ranged over by σ (Sec-
tion 5.1). For a step counting approach, H = T = N, hist = λ(i, e, h).h + 1,
and time = λ(i, e, h).h + 1. As type interface we would get HT = σ and
φ = λ(i, et, ht).ht and ψ = λ(i, et, ht).ht

To model simple (data-) cache behaviour we can take H to be a pair of the
current time and the sequence of memory accesses performed so far, together
with an arbitrary time function, depending only on the current instruction
and the history. The type interface would be HT = σ×σ and φ and ψ would
be type functions corresponding to the time and history function in the way
defined above.

4.1.3 Augmented Operational Semantics

The operational semantics is augmented to maintain the current history, which
in turn enables the time to be computed and offered as part of the observable
output. The extension of the standard semantics with time is specified as
follows. For observable 6 transitions (pc, e)

o
→ (pc′, e′) we define

(pc, e, h)
o,time(pc,e,h)

−→ (pc′, e′, hist(pc, e, h))

Furthermore, for any vector of augmented observations õ, t, and any set

of program points P , we define an auxiliary transition relation,
fo,t
 P , which

describes sequences of observable steps which do not go beyond program points
in P . More precisely, if õ, t = (o1, t1), . . . , (on, tn), then

(pc0, e0, h0)
fo,t
 P (pcn, en, hn)

6 The extension for non-observable transitions is identical

8

Hedin

if and only if

(pc0, e0, h0) →
∗ o1,t1
 P · · · →∗ on,tn

 P (pcn, en, hn)

where at most the final program pcn may be one of program points in P . The
relation is used in the formulation of Low-observable equivalence, defined in
Section 5.3 below.

4.2 Top-level Non-interference

In this section we briefly state the semantic criterion which our type system
aims to verify. To describe whether an attacker (an observer of the low events
of the system) can learn anything about the high inputs to the system we need
to be precise about what the attacker can observe. We assume that the only
observable outputs are the values produced by the output instruction, together
with the time at which the output was made. Implicit in the formulation lies
the assumption that termination is not directly observable, nor the cause
of the termination. To see this, consider three programs all free from public
output of which the first terminates normally, the second crashes and the third
diverges. Under the assumption that only the public output is observable the
three programs are equivalent. This model is consistent with an attacker
who observes the running of the system only through its outputs, and cannot
see termination, normal or otherwise. Ignoring everything other than the
directly observable output could, in some circumstances, allow up to one bit
of information to be leaked per run. Ignoring timing leaks altogether, on the
other hand, is a more serious matter as we argued in Section 1.

The assumption that the termination is not observable lets us handle par-
tial instructions and loops on secret data in a more liberal way than would
otherwise be possible (c.f. [2,17]) However, once we have looped on high data
then no further low output can be allowed. In this sense we say that our
security criterion is weakly termination sensitive.

Now we can set out our formulation of non-interference. We suppose that
a method M takes an array as parameter. The array is of public length, but
contains secret contents. We say that M is non-interfering if there are no
variations in the public output or in the time at which output occurs for any
pair of initial environments e1 and e2 which differ only on the values stored in
the secret array:

∀õ, t̃1, t̃2.(Minit, e1, ε)
go,t1
 ⇐⇒ (Minit, e2, ε)

go,t2
 ∧ t̃1 =t t̃2,

where =t is the equality operation on the abstract domain of times from the
time model extended pointwise to vectors, and õ,t̃1, t̃2 are vectors of output
and time respectively.

5 Type System

We present a compositional, timing aware information flow type system with
the method as the unit of composition. The structure of the type system is

9

Hedin

Security Levels σ ::= L | H | t (α1, . . . , αn)
Prim. Security Types τ ::= aptrσ,σ τ | intσ | ptrσ,σ C
Method Quant. Context ∆m ::= · | α,∆m

BB Quant. Context ∆ε ::= · | γ

Method Types µ ::= ∀[∆m].τ̃ , σ, ξ
σ
→ τ, σ, ξ

Operand Stack Types s ::= ε | γ | τ · s
Register Bank Types r ::= (τ0, . . . , τ255)
BB Types ε ::= ∀[∆ε].s, r, σ, ξ

Fig. 4. Type Language

similar in spirit to that of STAL[11], with statically typed labels and polymor-
phic stack types, but less expressive. We don’t model the original type system
of bytecode, rather, we deviate from it in certain respects. However, we as-
sume that all programs under consideration have been subjected to byte code
verification and, thus, that certain invariants hold during program execution.

For simplicity we have excluded static fields, interfaces and exception han-
dling. The two former would be a trivial extension. JIF shows us a way
to handle exceptions (of which the solution in [5] can be seen as a special
form) that probably can be adapted to our setting, although timing makes it
a delicate matter.

Due to space constraints we can only present a small selection of the type
system. For more information we refer the reader to the home page 7 of this
paper, where the entirety of the type system and prototype implementations
will be available.

Common to all information-flow aware type systems is that they must
track implicit flows. As mentioned earlier implicit flows arise when the control
flow is depending on secrets; i.e. from the conditional branches. To allow for
a smooth formulation of the type system bytecode programs must be pre-
processed to regain some structural information, e.g. the (least) merge point
of branch instructions. Informally, the merge point is the first program point
passed through by all traces starting at the targets of the instruction. For a
given control flow graph, this is an easy graph problem. The lack of dynamic
branches, i.e. branches where the possible targets are not statically known,
makes the (inter-method) control flow statically decidable. See [7] for a more
thorough discussion on this topic.

5.1 Type Language

Defined in Figure 4, the formal security levels, ranged over by σ, consists of
the two actual security levels H(high or secret) and L(low or public), and a
formal least upper bound of security variables t(α1, . . . , αn). The security
levels form a lattice with L as the least element, H as the top element and the
formal joins in between, ordered by set inclusion of the variables. We write α

7 http://www.cs.chalmers.se/˜utter/bytecode-time/

10

Hedin

for t(α).
The primitive security types, ranged over by τ , are built from types of in-

tegers, object pointers and array pointers annotated with security levels. The
security level on integers is associated with the value of the integer. Pointers
have two security levels: the first is associated with the actual value of the
pointer and the second is associated with the structure of the pointed object.
The structure of arrays is the size and the structure of objects is the (principal)
class. This differentiation allows for a better handling of pointer dereferencing
instructions. The pointer types also carry the security types of the pointed
object.

In the types of methods and basic blocks there is a special security level,
referred to as the type of pc. This pc type is related to, but different from,
the pc type of JIF. As we shall see, the pc type tracks information encoded
by outcome of execution partial instructions. Successful completion tells you
that the parameter to the partial instruction was not in the range of values
that would have caused the instruction to fail and the other way around for a
crash.

Basic block types, ranged over by ε, may be polymorphic in stack types as
indicated by the universally quantified stack type variable context, ∆ε. From
left to right, the type is built up by a stack type, ranged over by s, the register
bank type, ranged over by r, the security level of the pc and the type of the
history, ranged over by ξ. Stacks are either empty, a primitive security type
followed by a stack or a stack variable, γ. The register bank type is a mapping
from register numbers to primitive security types.

The method type is the most complicated of the types. Method types are
polymorphic in the security levels defined by the security variable context ∆m.
A method typed ∀[·].τ̃ , σip, ξi

σctx→ τ, σop, ξo accepts parameters of a subtype to
τ̃ , can be run in any environment with a pc type that is a subtype of σip and
a history type that is a subtype of ξi, returns a value that is a subtype of
τ , a new pc type σop and a new history type, ξo. The method type also has
same kind of side effect constraint, σctx in the example type, as found in e.g.
[5,3]. The side effect constraint constrains public output and side effects much
like the pc, but is used to retain compositionality in the presence of dynamic
invocations on secret objects.

5.2 Subtyping

We define structural subtyping relations in the standard way. For example, if
τ1 <: τ2, then τ1 is a subtype of τ2. Method subtyping is defined by contra-
variance in the (ordinary) parameters, the history parameter and the pc pa-
rameter, invariance in the side effect constraint and co-variance in all return
types. The invariance in the side effect constraint ensures compositionality in
the presence of dynamic invocation on secret objects, by ensuring that if one
method is free from low side effects, then all methods with the same name

11

Hedin

must be free from low side effects.

τ̃2 <: τ̃1
σ4 <: σ1

ξ3 <: ξ1
σ2 = σ5 τ1 <: τ2

σ3 <: σ6

ξ2 <: ξ4
∀[·].τ̃1, σ1, ξ1

σ2→ τ1, σ3, ξ2 <: ∀[·].τ̃2, σ4, ξ3
σ5→ τ2, σ6, ξ4

5.3 Low Equivalence

As described in Section 4 non-interference is typically formulated in terms of
a low-equivalence relation on environments. Put simply, two environments
are low-equivalent w.r.t. an environment type if all parts of the environment
classified as public by the environment type are equal. For example, consider
two environments e1 and e2 both containing a variable a. If variable a is
classified as public by the environment type then the value of a should be
equal in e1 and e2. The direct extension of this scheme to handle heaps is to
demand the rooted low-reachable graphs of both environments be isomorphic.
Locations related by this isomorphism are then demanded to have equal values.

Picture 5 illustrates the idea by depicting two environments, e1 on the left
half of the picture, and e2 on the right, and the low-reachable tree rooted
in the first few registers with the dashed arcs representing the isomorphism.
The type of register r1 (ptr L L) dictates that the structure (class) of the
object to be equal as well as the contents of the object. The type of register
r2 forces the contents of the register to be equal. Going one step further into
the tree the type of the first field of C demands the (shared) low contents of
the object to be equal but not structure of the pointed objects. The safety of
this interpretation is depending on the opaqueness of bytecode pointers.

e2

HED H

registers heap (e1) heap (e2)

L

ptr L Lptr L HC ptr L HCH H

r2

r1

r2

r1

e1

Fig. 5. Low Equivalence

5.4 Type Rules

This section presents and discusses a small selection of the type rules, chosen
to explain the key ideas of the type system. The rules for instructions are of

12

Hedin

the form:

p1 . . . pn

Σ; Γ ` i⇒ Γ′

which is read as instruction i is type correct in the static environment Σ,
consisting of the program under consideration, the return types and other
constraints of the method, and the environment Γ, producing the environment,
Γ′. Let Γ and Σ refer to the initial environment and static environment in all
the rules. Γ ranges over quantifier free environment types.

Common to all rules is the the history premise of the form φi(Γ) = ξ2, for
an instruction, i. This premise ties the rule to the timing model by producing
a new history type from the initial environment type, Γ, which contains the old
history type and, where necessary, types of the parameters of the instruction.

5.4.1 Direct Time and Termination Leakages

We assume that that neither termination nor the cause of termination is di-
rectly visible to the attacker. This allows us to have partial instructions with
secret parameters. If termination were directly observable, information about
the (partial) parameters would leak. For example, if the execution of a di-
vision operation does not crash we know that the value of the divisor was
distinct from 0. In our case non-termination can only be signalled to the out-
side using public outputs. Thus, as long as public output is prohibited after
the execution of a partial instruction on secret information nothing is leaked,
which gives us the possibility to continue with unconstrained computation on
secret information after the low communication has ceased. The primary use
of the pc type is in the type rule of the outputL instruction,

ψ(ξ1) <: L σp <: L φoutputL
(Γ) = ξ2

Σ; intL · s, r, σp, ξ1 ` outputL ⇒ s, r, σp, ξ2

which disallows low output if the pc, σp, is not L. This rule is interesting for
other reasons as well. Being the only source of publicly observable behaviour,
the outputL instruction is the only instruction to extract the time type from
the history type. If the time type is H, this means that the time of the
execution of the instruction may been affected by secrets, for instance by
looping on a secret or by the creation of an array of secret size. Under such
circumstances public output must be prohibited, since the time of the output
would give away information on the secret responsible for the time differences.
Thus, the type rule demands that the extracted time is L in the premise
ψ(ξ1) <: L. Obviously, the value to be output must also be public. For
example, assume that the top of the stack is a secret integer, i.e. that the
stack type is intH · γ, then the following programs would be ill typed:

output L

anew (int L)

const 1

output L

iconst 1

div

output L

13

Hedin

5.4.2 Implicit Information Flows

In the style of Agat[1] we use a semantic side condition, low-observable equiva-
lence, in the type rule of if@-instructions to prevent implicit and timing flows.
Intuitively, the side condition is used to make sure that it is impossible to tell
which branch was taken by inspecting the publicly observable behaviour of
the execution, or the low part of the contents of the resulting environment.

Low-Observable Equivalence

More precisely, we define low-observable equivalence in terms of trace equiva-
lence. For a body to be low-observably equivalent it has to be that all traces
through the body of the branch, e.g. all traces beginning at the top of either
of the branches, produce the same observable output at the same time and, if
terminating normally by reaching the end of the high security context, their
resulting environments are low-equal w.r.t. the environment type of the merge
point. To illustrate trace equivalence, consider the following for two traces
starting in l1 and l2 respectively ending in the least merge point le.

(l1, e1)
o1,t1
 . . .

on,tn
 (l2, e2)

=θ,Γ . . . =θ,Γ

(le, e
′
1)

o1,t1
 . . .

on,tn
 (le, e

′
2)

For high security contexts beginning at l1, l2 ending in any of the labels le ∈ lse

we define low-observational equivalence ('), w.r.t. the initial and the final
environment type of the body of the context, Γ and Γe respectively. To allow
for arbitrary calling contexts we quantify over all partial bijections compatible
with the bijection induced by the type on the initial environment.

l1'
Γ,Γe

lse
l2 ≡ ∀e1, e2, θ.e1 =θ,Γ e2 =⇒ (l1, e1)∼

Γe

lse,θ(l2, e2)

Let o denote a non-empty sequence of output and �lse
be a big-step re-

duction up to any label in lse without observable output. Trace equivalence
is formulated as follows:

(l1, e1)∼
Γe

lse,θ(l2, e2) ≡ ∀õ, t̃, l′1, l
′
2, e

′
1, e

′
2.

(((l1, e1)
fo,t

+
lse

(l′1, e
′
1) ⇐⇒ (l2, e2)

fo,t

+
lse

(l′2, e
′
2)) ∧ (l′1, e

′
1)∼

Γe

lse,θ(l
′
2, e

′
2)) ∨

∃θ′.(((l1, e1)�lse
e′1 ⇐⇒ (l2, e2)�lse

e′2) ∧ θ ⊆ θ′ ∧ e′1 =θ′,Γe
e′2)

Naturally, since objects may be allocated within the high security context
we allow the partial bijection to be extended to include them. For simplicity
we are assuming that the domain of the environment is growing monotonically,
i.e. that there is no garbage collector.

Instantiations of the Side Condition

The role of the side condition is to express the when secret branches are free
from implicit flows in general terms without mandating the implementation of
the enforcing algorithm. The benefits of using a side condition like this is that

14

Hedin

it allows you to instantiate the type system with different implementations as
long as they guarantee the properties demanded by the side condition.

If we temporarily ignore timing, one way to approximate the side condition
is the widely used technique to prohibit modification of public environment
locations from high security contexts. This can easily be seen to approximate
the semantic side condition (under the assumption that the whole program
has been typed): if low modification is prohibited then so is low-output and,
trivially, all low output will be equal. Furthermore, since the body of the high
security context is prohibited from modifying the low parts of the memory no
new low objects can be allocated and all public environment locations must
be left untouched.

As shown in [1][Paper II] we can formulate “non-assignment” instructions,
which are skip instruction sequence timing equivalent to a reformulation of the
ordinary assignment instruction. Using this fact we can approximate the side
condition by (syntactically) demanding that each high modification is matched
by a high “non-modification”, each low-modification (including low output)
is matched by an equivalent low-modification in lock-step. While this may
seem to be an unreasonable demand for real world programs, it can be very
useful for programs transformed using the cross-copy idea from [2]. Although
Agat only argued correctness for a functional time model, this approach is also
sound for a simple history-based cache model, since it preserves the sequence
of memory accesses.

Being the only source of implicit flows, the type rule for the if@-instruction is
the only place where the side condition is used. Assuming a branch, if@l1,l2,le,
which is the head of a high security context (i.e. with a secret parameter)
implicit flows are prohibited by demanding low-observational equivalence for
all traces from l1 and l2 up to the merge point le using the semantic side
condition. Let δ range over substitutions that closes both Γ and Γe.

context

l1 l2

H

le

high
security

φif@(Γ) = ξ2
Γ′ = s, r, σp, ξ2 typeof (Σ, le) = ∀[∆ε].Γe

σ 6= L ∧ ¬(σ <: σp) =⇒

∀δ.δ(σ) = H =⇒ l1'
δ(Γ′),δ(Γe)
{le}

l2

Σ; intσ · s, r, σp, ξ1 ` if@l1,l2,le ⇒ Γ′

Fig. 6. Conditional Branch

To exemplify the use of the side condition and flowing security levels, consider
the tiny program in Figure 7, in which register r1 is public inside the high
security context but secret at the merge point since it takes on different values

15

Hedin

...

l1: (s: (int H) . a) (r1 : int L, r2 : int H) pc t

if l2 l3 l4

l2: (s: a) (r1 : int L, r2 : int H) pc t

const 1

dup

store 1

store 2

goto l4

l3: (s: a) (r1 : int L, r2 : int H) pc t

const 2

store 1

const 1

store 2

l4: (s: a) (r1 : int H, r2 : int L) pc H

...

Fig. 7. Example of Conditional Branch

depending on which branch was taken, whereas register r2 may be considered
public, even though it was secret inside the context, because it will always be
equal to 1 when reaching l4. Because no partial instructions are used the piece
of code is polymorphic in the type of pc. Assuming a constant time model,
we see that the program will reach l4 at different times depending on which
branch is taken, which is reflected by the type of time going H on the type of
label l4.

Pointer Types

Another of the distinct features of the type language is the type of pointers,
which differentiates between the security level of the pointer value, and the
structure of the pointed object, which is illustrated in the type rule of the
length instruction,

φlength(Γ) = ξ2
Σ; aptrσ1,σ2

τ · s, r, σp, ξ1 ` length ⇒ intσ2
· s, r, σp, ξ2

where the returned type of length only reflects the structure type of the array
pointer, which is safe since the length instruction cannot distinguish between
two similarly sized arrays. This feature is potentially useful together with
the Agat style side condition, which allows for precise approximations of low-
observability. The pc is not affected by the type of the pointer, which is safe
if we define the length of a null-pointer to be 0.

5.4.3 Programs, Methods and Basic Blocks

A program is type correct if all the methods of the program are type correct.
A method is type correct if all its basic blocks are type correct w.r.t.

the side effect constraint and the return types of the method. Furthermore,

16

Hedin

the type of the initial basic block should be compatible with the execution
environment provided by the type of the method.

A basic block is type correct if its instruction sequence is type correct in
the entry type of the basic block, producing an exit type compatible with all
the successors of the basic block.

6 Conclusion and Future Work

We have formulated a timing aware information-flow type system for a sub-
set of a bytecode-like language. Our method generalizes previous attempts
to model time by parameterizing the semantics and the type system with a
time model. The project is still in its infancy and much work remains to be
done. As mentioned above, the type system has been formulated with a cor-
rectness proof in mind, but any such proof remains an important part of the
future work. We have created a prototype implementation and begun initial
evaluation by a series of rudimentary tests, including the implementation of
modular exponentiation [9]. The prototype implementation does type check-
ing only, which does not scale well to real sized programs because of the size
of the types. In this paper we present slightly simplified object types, with
one security type per class. This is satisfactory for whole-program analyses
but problematic in the light of compositionality and inferability since there is
no most general security type for the field of a class. If a field is neither forced
public or secret by the method of a class we could choose either, but neither
choice would fit all programs. For instance, imagine we create a container class
of some kind. If we choose the elements to be public we cannot store secrets
into the container and vice versa. Without support from the type system we
would end up having to implement two different containers: one for public
and one for secret information. For a two level security lattice this may be
acceptable but for a richer structure it certainly is not. One natural remedy
to this problem is to allow object types to be polymorphic in the security
levels restricted to uniform recursion to avoid problems with cyclic objects.
We believe these types to be inferable, and an implementation of inference is
forthcoming.

Acknowledgements Thanks to the referees, and to Ulf Norell, Andrei Sabelfeld

and Kyle Ross for helpful suggestions. The work was partially funded by the Swedish

Foundation for Strategic Research (SSF), VR and Vinnova.

References

[1] J. Agat. Type Based Techniques for Covert Channel Elimination and Register
Allocation. PhD thesis, Chalmers University of Technology and Gothenburg
University, Gothenburg, Sweden, December 2000.

[2] Johan Agat. Transforming out timing leaks. In POPL, pages 40–53, 2000.

[3] A. Banerjee and D. Naumann. Secure information flow and pointer confinement

17

Hedin

in a java-like language. In Proc. IEEE Computer Security Foundations
Workshop, pages 253–267, June 2002.

[4] Gilles Barthe, Amitabh Basu, and Tamara Rezk. Security types preserving
compilation. In Proceeding of VMCAI’04, volume 2937 of Lecture Notes in
Computer Science. Springer-Verlag, 2004.

[5] Gilles Barthe and Tamara Rezk. Secure information flow for a sequential java
virtual machine. TLDI’05: Types in Language Design and Implementation.

[6] D.E. Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5):236–243, May 1976.

[7] Samir Genaim and Fausto Spoto. Information flow analysis for java bytecode.
To appear in: Proc. of the Sixth International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI’05).

[8] Naoki Kobayashi and Keita Shirane. Type-based information flow analysis for
low-level languages. English version in 3rd Asian Workshop on Programming
Languages and Systems (APLAS’02), Japanese (full) version in Computer
Software 20(2), Iwanami Press, pp.2-21, 2003.

[9] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Proc. CRYPTO’96, volume 1109 of Lecture Notes
in Computer Science, pages 104–113, 1996.

[10] B. W. Lampson. A note on the confinement problem. Communications of the
ACM, 16(10):613–615, October 1973.

[11] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed
assembly language. In Xavier Leroy and Atsushi Ohori, editors, 1998 Workshop
on Types in Compilation, volume 1473 of Lecture Notes in Computer Science,
pages 28–52, Kyoto, Japan, March 1998. Springer-Verlag.

[12] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java information
flow. Software release. http://www.cs.cornell.edu/jif, July 2001.

[13] Francois Pottier and Vincent Simonet. Information flow inference for ML.
In Proceedings of the 29th ACM Symposium on Principles of Programming
Languages (POPL’02), pages 319–330, Portland, Oregon, January 2002.

[14] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
J. Selected Areas in Communications, 21(1):5–19, January 2003.

[15] Vincent Simonet. The Flow Caml System: documentation and user’s manual.
Technical Report 0282, Institut National de Recherche en Informatique et en
Automatique (INRIA), July 2003.

[16] Raymie Stata and Martin Abadi. A type system for java bytecode subroutines.
In POPL, January 1998.

[17] D. Volpano and G. Smith. Eliminating covert flows with minimum typings.
Proc. 10th IEEE Computer Security Foundations Workshop, pages 156–168,
June 1997.

18

	Introduction
	Related Work
	Syntax and Semantics
	Syntax
	Semantics

	Timing and Non-interference
	Histories and Time Models
	Top-level Non-interference

	Type System
	Type Language
	Subtyping
	Low Equivalence
	Type Rules

	Conclusion and Future Work
	References

