
ELSEVIER Theoretical Computer Science 192 (I 998) 233-258

Theoretical
Computer Science

Refining multiset transformers

Chris Hankin”, Daniel Le MCtayerb, David Sandsc

Abstract

Gamma is a minimal language based on local multiset rewriting with an elegant chemical
reaction metaphor. The virtues of this paradigm in terms of systematic program construction and

design of parallel programs have been argued in previous papers. Gamma can also be seen as a
notation for coordinating independent programs in a larger application. In this paper, we study a
notion of refinement for programs involving parallel and sequential composition operators. and

derive a number of programming laws. The calculus thus obtained is applied in the development
of a generic “pipelining” transformation, which enables certain sequential compositions to be
refined into parallel compositions.

Kr~~~~ls: Gamma; Multiset rewriting; Program transformation

1. Introduction

We first describe the general motivation of the work presented here before sum-

marising the main results developed in the body of the paper.

1.1. Motioation

The notion of sequential computation has played a central r81e in the design of most

programming languages in the past. This state of affairs was justified by at least two

good reasons:

l Sequential models of execution provide a good form of abstraction of algorithms

matching the intuitive perception of a program defined as a “recipe” for preparing

the desired result.

l Actual implementations of programs were made on single processor architectures,

reflecting this abstract sequential view.

* Corresponding author. E-mail: clh@doc.ic.ac.uk.

0304.3975/98/$19.00 @ 1998 - Elsevier Science B.V. All rights reserved

PIIs0304-3975(97)00151-5

234 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

However, the computer science landscape has evolved considerably since then. These

changes have been caused by dramatic progress in the hardware technology and tremen-

dous increase in the size of real software applications. Let us examine these two issues

in turn and assess their impact on programming languages.

l We have seen in the last few years the widespread development of electronic net-

works made possible by the progress in communication technology. This trend is

likely to be accelerated in the future. As a consequence, a computer can no longer

be considered in isolation; it should rather be seen as a node in a graph representing a

distributed system. Individual computers themselves are no longer single processors:

parallelism is now integrated in various ways and at all levels of the computation

(from low-level pipelining and superscalar processors to shared-memory multipro-

cessors and fine-grained parallel machines). Programming such machines obviously

requires parallel languages and models of computation.

l As a result of the growing needs and the decreasing cost of hardware, we have

seen a tremendous proliferation of software systems. This evolution introduces new

problems: software developed through a long period of time tends to grow in size

and complexity and become extremely difficult to understand and to maintain. The

cost incurred by this complexity is becoming a serious concern and a major challenge

today is to provide ways of organising software in order to make big applications

manageable and to favour the reuse of existing products. Various languages have

been proposed recently to tackle these problems: they are called software architecture

languages [2], or coordination languages [lo]. A key feature of these languages is

to allow the description of interactions between individual pieces of software (which

may themselves be written in different programming languages).

Thus, the situation created by this double evolution has placed new needs on the

design of languages: sequentiality should no longer be seen as the prime programming

paradigm but just as one of the possible forms of cooperation between individual

entities.

The Gamma formalism presented a few years ago precisely captures the idea of

considering parallelism as the basic program structuring facility. Gamma is a kernel

language which can be introduced intuitively through the chemical reaction metaphor.

The unique data structure in Gamma is the multiset which can be seen as a chemical

solution. A simple program is a pair (Reaction condition, Action). Execution proceeds

by replacing in the multiset elements satisfying the reaction condition by the products

of the action. The result is obtained when a stable state is reached, that is to say when

no more reaction can take place. The following is an example of a Gamma program

computing the maximum element of a non-empty set.

max:x,y+x e x3y

x 3 y specifies a property to be satisfied by the selected elements x and y. These

elements are replaced in the set by the value x. Nothing is said in this definition

about the order of evaluation of the comparisons. If several disjoint pairs of elements

satisfy the conditions, the comparisons and replacements can be performed in parallel.

C. Hunkin et ul. I Theoretical Computer Sciewe 192 (1998, 233--25X 235

Let us consider as another introductory example a sorting program. We use a set of

pairs (index, 11ufue) and the program exchanges ill-ordered values until a stable state is

reached and all values are well-ordered:

Lv(mA :(i,x),(j,v) 4 (i,_~),(j,x) += (i<j) and (Y<-Y)

The interested reader may find in [6] a longer series of examples (string processing

problems, graph problems, geometry problems, etc.) illustrating the Gamma style of

programming. The possibility of getting rid of artificial sequentiality in Gamma has

two important consequences:

l It makes Gamma suitable as an intermediate language in the program derivation

process allowing the programmer to design a very abstract version of his program

in the first place (which is easier to prove correct); this version is then specialised

for the sake of efficiency by introducing extra control. The benefit of Gamma in

systematic program construction is illustrated in [.5].

l Gamma programs do not have any sequential bias and the language leads naturally

to the construction of parallel programs. It also makes Gamma a potential candidate

for a coordination language in which atomic actions would be seen as individual

pieces of software using the multiset as the only cooperation facility (just as Linda

promotes the design of coordination through a shared tuple space). The interested

reader can find in [20] more details about the design of a coordination (or software

architecture) language inspired by Gamma.

Furthermore, the very minimal nature of the language allows us to provide a clean

and concise semantics that can be used to reason about programs. So we believe

that Gamma is a promising starting point for the design of a language answering the

questions raised above. However the basic version of Gamma mentioned so far suffers

one major weakness: it lacks any means for structuring programs, or building complex

programs from simple ones. For the sake of modularity, it is desirable that a language

offers a rich set of operators for combining programs. It is also fundamental that these

operators enjoy a useful collection of algebraic laws in order to make it possible to

reason about programs.

The essence of this paper is the presentation of a set of operators for Gamma and a

study of their semantics and the corresponding calculus of programs. WC put empha-

sis on one program transformation called “pipelining” which allows us to transform

sequential composition of programs (which may be the most natural way to build

complex programs from existing ones) into parallel compositions (which may be more

efficient).

In the rest of this section, we sketch the main themes of this paper: we introduce

informally a sequential operator and a parallel operator; then we provide some intuition

about the operational semantics of this enriched Gamma language and the algebra of

programs it gives rise to. The pipelining transformation is introduced and motivated.

To conclude this section, we recall the definition of multisets and their operators, which

are central to the technical developments of this paper.

236 C. Hunkin et al. I Theoretical Computer Science 192 (1998) 233-258

1.2. Sequentiul and parallel composition operators

The basic operators that we consider in this paper are the sequential composition

Pi o Pz and the parallel composition PI 1 P2. The intuition behind PI o P2 is that the sta-

ble multiset reached after the execution of P2 is given as argument to PI. On the other

hand, the result of PI 1 P2 is obtained (roughly speaking) by executing the reactions

of PI and P2 (in any order, possibly in parallel), terminating only when neither can

proceed further. The termination condition is particularly significant and heavily influ-

ences our choice of semantics for parallel composition. As an example of sequential

composition of Gamma programs, let us consider another version of sort:

sortB : match o init
where init : (x ----f (0,x) -+ integer(x))

match : ((i,x),(i,y) ---f (i,x>,(i+ l,y)+x<y)

The program so?%B takes a multiset of integers and returns an increasing list encoded

as a multiset of pairs (index, value). The reaction init gives each integer an initial rank

of zero. When this has been completed, match takes any two elements of the same

rank and increases the rank of the larger.

The case for parallel composition is slightly more involved. In fact SOrtg could have

been defined as well as

sortB : match (init

because the reactions of match can be executed in parallel with the reactions of init.

As far as the semantics of parallel composition is concerned, the key point is that we

need a synchronised termination of PI and P2 for PI (P2 to terminate. It may be the

case that at some stage of the computation none of the reaction conditions of, PI (resp.

P2) holds; but some reactions by P2 (resp. PI) may create new values which will then

be able to take part in reactions by PI (resp. P2). This situation precisely occurs in the

above example where no reaction of match can take place in the initial multiset; but

init transforms the multiset and triggers subsequent reactions by match. Thus, the ter-

mination condition of PI) P2 indicates that neither PI nor P2 can terminate unless both

terminate. This contrasts with the asynchronous termination condition of most process

calculi (where if PI terminates (reduces to nil) then PI 11 P2 + P2). Gamma programs

should rather be compared with rewriting systems, and their parallel composition with

the union of rewriting systems. In this context, it is natural to say that a normal form

is reached only when none of the systems possess a rule which can apply to the

term.

1.3. An operational semantics and an algebra of programs

In Section 2, we propose an operational semantics of an enhanced version of Gamma

with sequential and parallel composition. We derive a rich set of program refinement

and equivalence laws for parallel and sequential composition. So, for example, the

C Hankin et al. I Theoretical Comnp~er Science 192 ! 1998) 233 258 237

input-output behaviour of sort B is equivalent to that of program sort.4 1 sort8. This is

(by definition) sort‘4 1 (match o init), and this is refined by the program

(sortA 1 match) o init.

This refinement is an instance of a general refinement law:

We particularly focus on conditions under which PI 0 Pl can be transformed into

PI 1 PJ and vice versa. These transformations are useful to improve the efficiency of a

program with respect to some particular machine and implementation strategy. Let us

take another example [6] to illustrate this point:

connected = singleton 0 (PI 1 P2)

where

PI : c, M’. (m, n) + c’ U w -.k nodes(c) A nodes(w) A m E 1’ A n E w

Pl : z‘, (m, n) + c + nodes(u) A m E L’ f\ n E c

This program is used to detect whether a graph is strongly connected or not. The

initial multiset representation of the graph consists of the collection of singleton sets

of nodes, together with the collection of edges. A pair (m,n) is used to represent an

edge linking nodes m and n. It proceeds by building bigger and bigger aggregates of

connected nodes (through PI). The predicate “nodes” simply allows the reactions to

distinguish between an edge and a node set. P2 is used to remove edges connecting

two nodes belonging to the same set. Once this process has stabilised, the graph is

connected if all the nodes have been gathered into a single set. This is tested via the

primitive singleton ~ not specified here.

Our algebra of programs allows us to show, for example, that PI 1 Pl is equivalent

to P2 o PI which means that all the reactions of P2 can be postponed until no more PI

reactions can take place. If the target architecture is a sequential one (or even a parallel

one with relatively few processors) P2 o PI will be more efficient because many useless

tests of the reaction condition of P2 will be avoided; however, PI 1 P2 might turn out

to be a better version if executed on a massively parallel machine because unnecessary

edges can be removed by P2 at the same time as aggregates are built by PI.

In this paper we focus on one program transformation called “pipelining” which

allows us to transform sequential compositions of programs into parallel compositions.

The significance of this technique comes from the fact that sequential composition is

often the natural way to build complex programs from existing ones. The pipeline

program obtained as a result of the transformation connects the subtasks in such a way

that the output of one task feeds piecemeal into the input of the next. The transformation

is based on a notion of stable elements which cannot partake in any reaction of a given

program. A sequential composition Pl o PI can be transformed into Pl 1 PI (in order to

allow P2 to consume the stable elements of PI as soon as they are produced) provided

238 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

that P2 does not interfere with the unstable elements of PI. This is achieved by adding,

in parallel, an interface program which tags stable elements of Pi and modifying P2 so

that it can only operate on tagged data. Section 3 presents the pipelining transformation

in detail with an example illustrating its relevance.

1.4. Multisets

A multiset, sometimes called a bag, is a set-like collection in which elements may

be duplicated. So, for example:

is a valid multiset. It is sometimes convenient to think of a multiset, LU, over a set, X,

as a function, M :X -+ Nat, which maps each element to its multiplicity - the number

of times the element occurs in the multiset. We write IMI for the set of elements

in M.

Given multisets, M and N, we write M\N for the multiset difference:

M\N(x) = max(0, M(x) - N(x))

and we write M kJ N for multiset join:

M &J N(x) = M(x) + N(x).

2. Operational semantics of Gamma programs

In this section we consider the operational semantics of programs consisting of basic

reactions (written A+ R, where R is the reaction condition, and A is the associated

action, both assumed to have the same arity), together with two combining forms:

sequential composition, PI o P2, and parallel combination, PI 1 P2 as introduced in [181.

PEP ::= (A+R) 1 POP 1

(PIP)

For the purposes of this paper, we will consider A to be a function and R to be a pred-

icate in first-order logic. We write M to denote the set of finite multisets of elements.

The domain of the elements is left unspecified, but is expected to include integers,

booleans, and closed under products. To define the semantics for these programs we

define a single step transition relation between con$gurations. The terminal config-

urations are just multisets, and the intermediate configurations are program, multiset

pairs written (P,M), where A4 E M. We will often use the alternative syntax for basic

programs (reactions) as was already done in the introduction:

G:x ,,..., x, + A(xl ,..., x,) + R(xl ,..., x,)

for: G : (A + R), where R and A are of arity n.

C. Hunkin et ~11. I Throreticul Computer Scienw 192 11998) 233-258

((A~R),M)~((A~R),(M\{lal...a,l}~A(al...a,))

if al . ..a.EM and R(al . ..a.)

((A+R),M)--tMif ~3al...a,EM.R(aI...a,)

(P2,W AM (P?, M) + (Pi> M’)

(PI OP2,W ---f (Pl,M) (P, oP2.M) 4 (P, oP;,M’)

(PI,W --M (P2,W *A4

PI IP2,M) +A4

Fig. I. Structural operational semantxs of Gamma

239

The semantics of Gamma programs is given in Fig. 1 in the standard structurul op-

erutional semantics style. We make the assumption that the predicate R in a reaction

condition is a total function from tuples of multiset elements to the truth values, and

that the action function A is total on the domain of R. From these assumptions it easily

follows that the one step evaluation relation is total, i.e. that for all nonterminal con-

figurations (P,M) there is at least one configuration U (either terminal or nonterminal)

such that (P,M) + U.

Given this basic transition relation for programs, we now consider orderings on

programs according to their operational behaviours.

2.1. Rehtional orderings

A number of “refinement” orderings on programs arise from the various natural

ways to compare programs on the basis of their input-output (or relational) behaviour.

One possible “behaviour” which we should consider significant is the possibility of

nontermination for a given input. Nontermination, or “divergence” is a predicate on

program configurations:

Definition 1. P may diverge on M, (P, M)T, if there exist { (fi, M;)}iE,,, such that

(Ro,Mo) = (R.M) and (J?,Mi) + (E+I,M,+I).

It is convenient to abstract the possible relational behaviours of a program as a set

of possible input-output pairs. This includes the possibility of non-termination, which

we represent as a possible “output” using symbol “_L”:

Definition 2. The behaviours of a program P, .8(P) c M x (M U {I}) is defined as

.3(R) = {(MN) 1 (P,M) +* N} U {W’,I) I (P>M)T)

240 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

This definition of behaviours is aimed at a study of relational properties rather than

reactive properties. The development in this section carries over to the case of reactive

behaviours (e.g. traces) but one might argue that different composition operators should

be considered from the outset (e.g. recursion).

Note that every program has some behaviours, since we assume the reactions and

actions are total. In fact, this assumption gives us a much stronger property: for every

P, M, either (M,N) E 93(P) for some N, or (A4,i) E B(P) (or both).

In [181 a variety of orderings on programs was defined, based on their behaviours,

by considering the associated discrete power-domain orderings on Ml. In this study

we only consider the “relational ordering” (the <R order of [181).

Definition 3. P d Q if and only if B(P) C B(Q).

We read P<Q as “P correctly implements Q” or “P refines ’ Q”, since if any

result (including possible nontermination) is considered acceptable from Q, then any

behaviour that P can exhibit must also be acceptable. This view of refinement fits

with an implementation of “loose” nondeterminism, in which we assume that an im-

plementation must be able to realise some but not necessarily every behaviour of a

program. Let s be the associated behavioural equivalence, so P E Q if P<Q and

Q<P.

Fact 4. s is a congruence with respect to 0, that is

1. P, F-P2 * POP, SPOP&

2. PI =Pz * P,oP-PZOP.

However, E is not a congruence with respect to 1. Consider the following three

rules:

P: (n,m-+n+m)

Q: (n-n-l,l+n>l)

R: (n+n+l+n<lO)

Then P o Q E P but (P o Q) 1 R $ P o R; the left hand side may diverge because of the

interaction between Q and R, whereas the right hand side does not have this possibility.

We will return to this issue in the Conclusion.

2.2. Constrained re$nement

It is often difficult to refine programs without imposing some constraints on the nature

of the data upon which the program is executed. For present purposes we introduce an

’ This is consistent with the usual notion of refinement, but the comparison symbol < is used in the

opposite direction.

C. Hankin et al. I Tlworrfical Conlputrr Scimce 192 11998~ 233-2.58 241

indexed variant of the operational ordering, which expresses refinement with respect to

a simple local precondition on the elements of the multisets.

Definition 5. For any set of elements E, let Multi(E) denote the set of all finite

multisets of elements in E.

Now define the constrained behaviours of a program,

.I@(P)E = { (M,N) / A4 E Multi(E); N E M; (P, M) +* N}

U {(M, 1) 1 A4 E Multi(E); (P,M)T}

Finally, the constrained refinement relations for each set of elements E are defined

by

P <E Q if and only if &P)E (I .@(Q)E.

Constrained equivalence, =_E is defined in the obvious way. The constraint on inputs

is local in the sense that it imposes a restriction on the individual elements appearing

in a multiset, and not an arbitrary precondition on the whole multiset.

2.3. Tlw w.ridual program

The operational rules for sequential composition imply that the program component

of a configuration is not static during computation. But the possible ways in which

it can change are limited by the structure of the program (and not the multiset).

In particular, this leads us to the notion of the residuul part of a program - the

program component of any configuration that is an immediate predecessor of a terminal

configuration (multiset).

Definition 6. The residual part of a program P, written l’, is defined by induction on

the syntax:

(A+R)=(A+=R)

P, OPZ ‘5
- -

PI lP2 =p1 lP2

We will say that a program is simple if it does not contain any sequential compo-

sitions. Note that the range of the mapping 1 is the set of simple programs, and if P

is simple then P = P. ZZ

Proposition 7. (P,M) +* N H (P,M) +* (I’,N) + N.

Proof. (+) Follows from a straightforward induction on the length of the derivation

of (P,M) +* N.

(e) Immediate because --j* is the transitive closure of +. 0

242 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

Knowledge of the syntactic form of the program part of a configuration just before

the termination step provides us with a simple (i.e. weak) postcondition for programs.

We define a predicate @ on a program and multiset to be true if and only if the residual

part of the program is terminated with respect to the multiset.

Definition 8 (The postcondition @). @(P,M) H (l’,M) --,A4.

Intuitively, @(p,M) holds if A4 is a possible result for the program P (as determined

by the reaction conditions in the residual program), i.e.

@(P,M) can be constructed syntactically by considering

conditions in c:

@((A +R),M) =KX,)...) x, EM.%(X I)...) x,)

@(P 0 Q,M) = @(&V

@(PI QJW = @(p=,W A @(g,w

if (P,M) A* N then @(P,N).

(the negations of) the reaction

For example, for the program sortA in the introduction, by negating the reaction con-

dition we obtain

@(sortA,M) H ~{(I(i,x),o’,y)[) CM, i<j =k x6yj

i.e. an element with a higher index has at least as large a value.

We close this section with a theorem which gives a condition under which sequential

composition refines parallel composition. In order to prove the theorem, we require two

lemmas. The first provides a factorisation for the derivation sequence associated with

a program defined by sequential composition:

Lemma 9. (P 0 Q, M) +* N H 3N’.((Q,M) --f* N’ A (P, N’) +* N).

Proof. (*)

(P o Q, M) +k N a 3N’.((Q, M) +kl N’ A (P, N’) +k2 N)

with k = kl + k2 follows from a straightforward induction on k.

(-+) (Q,W -+* N’ implies (Q,M) +* (g, N’) and (g, N’) + N’, by Proposition 7.

Thus,

(f’oQ,W +* Po~,N’j+,N’j

and the result follows using the second conjunct. 0

The second lemma relates derivations for sequential and parallel composition.

Lemma 10. (PO Q,A4) +* N + (P / Q,M) -+* (P_IQ,Nj. -

Proof. By Lemma 9, there is a N’ with (Q,M) -+* N’ and (P, N’) +* N. Thus,

by Proposition 7, (Q,A4) +* ($2, N’) and (P, N’) +* (l’, N). By inspection of the

C. Hankin et (11. I Theoretical Computer Scienw 192 (1998) 233-258 243

semantics, we therefore have

as required. 0

Theorem 11. [f’V’M.(@(Q,A4) uncl (P,M) -+*N)+ @(Q,N), tlzen

PoQ<P(Q

Proof. There are two situations to consider:

1. (M, L) E .8(P 0 Q): If P o Q may diverge on 154, then either Q may diverge on A4

or (Q,M) +* N’ and P may diverge on N’. In either case. P / Q may diverge on

M as well; thus (M, 1) E .%(P 1 Q) as required.

2. (n4,N) E .@Po Q): By Lemma 9, there is an N’ such that (M,N’) E .&Q) and

(N’, N) E -k?(P). Thus, @(P, N) and also @(Q,N) (which follows from the assump-

tion since @(Q. N’) holds and (P,N’) +* N). By the semantics, these two postcon-

ditions entail @(P / Q, N), that is

which, together with Lemma 10, gives the required result. 0

2.4. Proyrarn IUWS

The program which “does nothing” - one which can never perform any reactions

and therefore can only terminate - will be represented by a single reaction-action pair

(A += False). Since the reaction condition is false, the action A, and arity are irrelevant.

Definition 12. Let d denote the canonical representative “skip” program, equivalent to

(A -+I False) for arbitrary A.

With respect to the basic input-output partial correctness ordering < it is clear

that d obeys the usual “skip” laws of being an identity for sequential and parallel

composition.

We present a collection of laws in Fig. 2. A number of laws involve residual pro-

grams (Definition 6). The residual program satisfies interesting laws because it ex-

presses concisely the termination synchronisation requirement of the program with its

context. The proof of most of these laws is straightforward. We just sketch three cases:

1. POAEP

2. P<PIP

3. (P(Q)oRdPl(QoR)

Proof. (1) Notice that B(d) = {(M, M) (A4 E M}. In the following let ? be a multiset

or 1.. Then if (M,?) E .S#(P o A), we also have (M,?) E .8(P) and if (M,?) E .49(P), then

we also have (M, ?) E .%?(P o A). This gives the desired equivalence.

244 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

The Parallel-Sequential Laws

~~(PI!2~~~6~~<Q~R)

~.(PI iP2>o<Q1 IQ~)G(PIoQ,)I(P~oQ~)

~.P~(QIR)~(P~Q)~(PoR)

-1

Fig. 2. Summary of laws.

(2) If (M, I) E 8(P) then the parallel composition P 1 P may also diverge.

Suppose (M,N) E ST(P). Thus, by Proposition 7,

(PM +* (P,N) -+N

Consideration of the semantics shows that steps which change the program in a config-

uration, do not change the multiset. Thus, there is a derivation sequence for (P I P,A4)

which changes the two instances of P in adjacent steps and

(P I P,W +* (~lEW--tN --

The result follows.

(3) Suppose that (M, 1) E .%((P) Q) o R) then either (M, I) E g(R), or (R,M) +* N’

and (N’, 1) E B(P I Q). In the first case, (M, I) E g(Q o R) and thus (A4, I) E 9l(P 1

(Q o R)). In the second case, by Proposition 7 and the semantics:

V’ I <Qo%W +* PI tQo&W’) + (PI Q>N’)

and the result follows.

Suppose that (M, N) E B((P I Q) o R). By Lemma 9, there is an N’ such that (M, N’)

E g(R) and (N’, N) E g(P I Q). By Proposition 7 and the semantics:

V’I (QohW +* (P I (Qo&N’) + 0’ I !i?,N’) +* N 0

To understand why P $ P I P in general, consider

P,: (n-n-l+=n>O)

P2: (n+n+l+n < 1)

P: P, oP2

C. Hankin et al. ITheoreticd Computrr Scimce 192 f 1998) 233-258 745

applied to the multiset (0). P increments the 0, decrements it and terminates; P 1 P

may not terminate:

Notice that the example makes essential use of sequential composition; the second

law for residual programs shows that the expected equivalence holds when P is

simple.

2.5. IntelCferm~e-~tred#Fn: stability, sqmubility and left rxclusicit!~

One way in which the parallel and sequential compositions of two given programs

can be related by the refinement relation is if certain “noninterference” conditions are

satisfed. Here we consider some noninterference conditions which are expressible at

the level of the individual elements within the multiset.

We start with some definitions of derived relations which will provide us with some

useful notations. Given R, a reaction condition of arity n, we define

where x is some multiset element and 5 is a tuple of elements. Informally, R,,,,(X) says

that if x is in any tuple of elements from M, then R is false for that tuple. If this

holds for arbitrary M, we just write R(x), with the intuition that x cannot partake in

any reaction for which R is the associated reaction condition. We say that two reaction

conditions are sepurable if the sets of elements that satisfy them are guaranteed to be

disjoint:

Sepruhle(R, R’) H Yx.(R(x)VR’(x))

An important notion is that of an element being stable with respect to some pro-

gram: roughly speaking, a stable element for a given program can never influence a

computation step in any multiset.

Definition 13 (Stubility). An element, e, is stable for a program P if and only if for

all multisets M:

1. (P,M)** M’ * (P,M u {e}) t* M’ u {e}.

2. (P,M U {e}) +* (P’,M’) + (P,M) +* (P’,A4”) where M’=M”U {e}.

As a consequence of this definition, we immediately have:

Fact 14. If R(e) then e is stable for (A -G= R).

We will need an asymmetric notion of exclusivity between programs:

246 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

Definition 15. (A + R) and (A’ + R’) are left exclusive, Lex((A -+ R), (A’ + R’)) if and

only if Separable(R,R’) and

(Vx ,,..., x,.R(x ,,..., x,))implies(Va E A(xi, . . . ,xn).lT(a))

This notion lifts to programs in the following way:

Lex(P, Q) if and only if r\{SepurabIe(R, R’) 1 R E P, RI E Q}n

A{(‘v’xi, . . . ,x,.R(xl,. . . ,x,))implies(Va E A(xi, . . . ,x,).p(a)) 1 (A += R) E P, R’ E Q}.

The symbol E is overloaded in Definition 15 but no confusion should arise from this

abuse of notation. R’ E Q means that the reaction R’ appears in the text of Q (similarly

for (A X= R) E P). The notation a E .4(x,, . . . , x,) means that the value a is a member of

the result of A(xi, . . . , xn). As an illustration of this definition, we have Lex(match, init),

where match and init are as defined in the Introduction.

We close this section with a general result relating sequential and parallel composi-

tion; this proves useful later in the pipelining transformation:

Theorem 16. For any programs P and Q,

Lex(P,Q) + PIQcPoQ

Proof. (1) P o Q < P 1 Q: Suppose we have some M with @(Q,M) and (P,M) -+* N,

then @(Q, N) follows because Lex(P, Q). The result follows from Theorem 11.

(2) P 1 Q <P o Q: Lex(P, Q) enforces that P and Q consume disjoint sets of elements

and that the results produced by P cannot affect Q. Consider the behaviours:

(a) (M 1) E .g(P I Q>:
Either:

l there is a multiset M’ C: M with (M’, l_) E g(Q), in which case (M, 1) E

g(Q) and thus (M, J_) E @(P o Q), or

l M=M’ &J IV”, (Q,M’) -+* N and (P,M” M N)T. But then (M, I) E 98

(P 0 Q>.
@I (MN) E WPI Q>:

Since Lex(P, Q) there is a multiset N’ such that (Q,M) --$* N’ and (P, N’)

+* N. Thus (A4, N) E @(P o Q).

Thus we have B(P I Q) G B(P o Q). 0

3. Pipelining transformation

A natural style of programming involves the decomposition of a task into compo-

nents which are then sequentially composed. This style of programming is familiar

from functional programming. Understanding of the properties of the individual com-

ponents enables compositional reasoning about the properties of the whole program.

Unfortunately, in a parallel setting, this style fails to take any advantage of the potential

C, Hunkin et al. I Theoreticul Computer Science 192 (I%%‘] 233-258 247

for concurrent execution of the individual components. The purpose of this section is

to show how a program constructed from sequential composition can be transformed

into a pipeline program: one in which the sequence of tasks is connected in such a

way that the output of one task feeds piecemeal into the input of the next. The out-

come of this transformation is that sequential composition, o , is “replaced” by parallel

combination, 1.

3.1. .4 n twlmple

We start with a motivating example, based on various combinations of the following

three rules:

P,: (n+n-l,n-2+n>l)

Pz: (n- I+n=O)

P3: (n,m 4 n + m)

We start by considering the straightforward sequential composition of these rules:

If we apply this to the multiset {n}, it will terminate with a singleton multiset contain-

ing the nth fibonnaci number. This composition effectively builds the recursion tree and

then collapses it with the third rule. PI acts as an interface between the two processes.

Proposition 17. P3 0 P2 0 PI 5 P3 0 (P2 / PI).

Proof. It is straightforward to verify Separable(i,n. n > 1, i,n. n = 0) and Vu E (j-n. 1)x.

i,n.n > l(u). Thus, Theorem 16 applies and the result follows because s is a congruence

with respect to 0. 0

Unfortunately, we cannot replace the remaining o by a I. The reaction condition

of P-3 is not exclusive with either of the other conditions; as a consequence putting

P3 in parallel with P2 1 PI could lead to incorrect results (by deleting 0 elements)

or nontermination (because of the interaction between P3 and Pl). The sequential

composition encodes an essential producer/consumer relationship. However, a more

parallel program can be produced by placing an interjke between P3 and Pz 1 PI to

prevent interference whilst letting data pass to P3 in a piecemeal fashion.

We proceed by developing a general transformation scheme for pipelining before

returning to this example.

3.2. The pipelining transformation

We consider a program PI o PI. To enable P2 to consume the identified stable ele-

ments of PI concurrently, we must ensure that P2 does not interfere with the unstable

elements. This is achieved by tagging the stable elements and modifying Pz so that it

248 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-2.58

can only operate on tagged data. We introduce a pair of generic encoding and decoding

programs.

Definition 18. Given some tag, r’, we define the pair of encoding/decoding functions,

yr and 6,:

yr: (x + (7,x) ‘t= Gspair(x) v (fst x # z))

6,: (x i snd(x) e ispair A (fst x = z))

where fst, snd are the first and second projections on pairs, respectively, and ispair is

a predicate that tests if its argument is a pair.

We define S to be a multiset of r-free elements, and T to be the multiset of

r-encoded elements, {(r,e) 1 e E S}. It is easy to verify the following:

Lemma 19.

& o 6, --SLIT 6, (1)

YT o 6, --sUT Yr (2)

6,o y7 - 6, (3)

ST0 yr 0 6, - 6, (4)

Yr 0 YT = YT (5)

We wish to define an encoding operation on programs, such that the encoded version

operating on a tagged version of the data behaves just like the original, modulo tagging.

An encoding of P is specified by a tag and the transformation function; with respect

to relational behaviour, such an encoding, (7, Y) is correct if

6,oPss S,oY(P)oy,

There are a number of alternative, correct encodings. For example, (r, i,p.y, o p o 8,)

is a correct encoding for any program P. It is easy to see that if neither P, nor any

of its derivatives, introduce r-tagged elements, then correctness is equivalent to

P -_s 6,o Y(P)oy,

The whole purpose of encoding is to obtain interference freedom, and so the trivial

transformation given above will not be adequate. The following transformation will

provide a correct encoding operation and give us the interference freedom we will

need.

Definition 20. For simplicity of presentation we assume that basic programs have unary

reactions and actions (the generalisation is straightforward) and that the actions produce

C. Hankin et ul. I Theoretical Computer Science 19.? (1998) 233-258 249

k elements. The transformation & is defined inductively as follows:

$,((A(x)+R(x))) = (i(y I,... Vx).(T,.v,)...(z,,v~))A(snrls)

+= ispair A (fit x = 7) A R(snd x)

Proposition 21. For any multiset M, let 7. M denote the corresporlding multiset of

tagged elements {i(z,a) / a EMI}. For all P, M,

1. (P,M) + (P’,M’) =S ($T(P), 7. M) + (I,~~(P’),T.M’).

2. (&(P),T. M) --j (Q,N) =+ 3P’,M’. (P,M) + (P’,M’) A &(P’)= QA z.M’= N.

Proof. Inductions on the structure of the proof of the respective one-step transitions.

Proposition 22. For all programs, P, there is a tag, T, such thut (7, $i) is u car-rcct

transfbrmution ,fbr P.

Proof. We need to show that S, o $r(P) o yT E_S 6, o P where S is any multiset of r-free

elements. The precomposition of &(P) by ;a7 o &, and of P by 6, guarantees that the P

obtains a multiset with no tagged elements, and &(P) obtains the same multiset with

exactly one level of tagging. Thus, we can apply the previous proposition to show

that each step of one program can be simulated by the other. Finally, applying cir to

multisets N and r. N yields the same result. 0

A useful property of a r-encoding, which follows easily from the definition, is that

unencoded elements are stable for &(I’) (see Definition 13) ~ i.e. they cannot partake

in any reaction.

Now supposing that we have a program, int which detects and tags all stable el-

ements for PI, then we can implement P2 o PI by 6,o (&(P2) 1 int 1 PI) for some suit-

able r. Unfortunately, it is not always possible to write an interface to detect all stable

elements; instead we specify the properties that we expect an interface to satisfy. Notice

that 4 ’ satisfies this specification (the “bottom” interface).

Definition 23. A program, int is an interface for the program P, if

I. its only action is to tag elements:

int: (x - (7,x) += (1 ispair V (fst x # z)) A C(x))

for some condition C dependent on s.

2 Recall that A s (A + False) for arbitrary action A

250 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

2. &o(intIP)d&oP

Now suppose that we have such an interface for PI then we have the following

result:

Proposition 24. If z is a new tug, P2 is simple and does not produce z-coded elements

and z-coded elements are stable for PI:

~,o(?/,IIC/,(P2))o(~~/r(P2)IintIP1)dsP2oP~

for any multiset of z-free elements, S.

Proof. Since r is new and P2 does not produce r-coded elements, we have 6, o P2 o

6, q P2. Thus,

PZOP, =s &OP~O6,OP,

3 &o$r(P2)oyro&o9

3 s,o~~(P2)oYro6,0(intIPl)

f s,o~~(P2)oy,o(intIP1)

3 s,o(~,(P2)lyro(intIPl)) from Left-exclusivity

2 6, o (yT l&(q)) o (IcI,(P2) I int I PI > by residual program laws. 0

The rightmost element of the composition causes PI and t,QP2) to be executed in

parallel with the interface mediating between them. The interface may not tag all stable

elements (consider A) and thus, when the rightmost element terminates there may still

be some elements which have not been processed by &(Pz); hence the second element

of the composition. We would like to simplify this result by omitting the second

component; we can do this when the two components have the same postcondition, as

shown in the following:

Proposition 25. If @(&(Pz) I int 1 Pl,M)+ @(y, I &(Pz),M) then:

6, o($4P2) I int IPI >G&o(y, I WV>o($4P2) I int I PI)

Proof. We consider two cases:

1. For all M

(&o(IcI,(P2) I int IPI),WT * ((tW2> I int IPILWT

* (&ok I WJ2))o(tW2> I int 19bWl

2. Suppose (6, 0 ($dP2) I int I PI 1, M) --+* N for some N. Then there is some multiset

N’ such that

(4Wd I int I PI,W +* N’ and @(4W2) I int IPIN)

C. Hunkin et al. I Throreticul Computer Scicxcr 192 (1998) 233-258 1.51

But then, by assumption, @(yr / $,(&),N’) and thus:

(6,o(~,/~,(P*))o(~,(PZ)Iint/P,),M)i*N C

In particular, it is easy to verify that this proposition does apply if int is complete

(i.e. tags all stable elements).

3.3. The esuw~ple retkited

Returning to our example the only stable elements for P2 1 PI are the 1s; since

it is possible to define a complete interface, the program P3 o (P2 1 PI) can be trans-

formed to

(A 0 (MP3) I in? I PZ I PI >

where

int: (x + (T, 1) +=x= 1)

To close this section we present another example of this pipelining transformation.

We consider the prime factorisation problem, presented in [5], which utilises the result

from number theory that any number can be written uniquely as a product of primes.

The program has a number as its input and produces a multiset of primes, each prime

factor of the input being repeated the number of times that it is used in the factorisation.

We define the initial program as follows:

where

PI : ((a,b) + (a,b,O),(a - l,b)*a33)

P2:

P3 :

((a,b) + (a,b,O)+ua<3)

((tx, 4 b), ty, c, d)) + (21, c, d) += nzultiple(x, y))

P4: ((nl,nz,k) + (nl,n2/ni.k + l)+multiple(n2,n1))

Ps: ((nl,n2,k) + (m,n2,k - l),nl +k31)

where we have used pattern matching on the bound variables in order to avoid com-

plicating the reaction conditions.

Pi and P2 together produce a (multi)set of triples such that each element consists

of a number less than or equal to the original input, the original input and 0; P3

removes all of the triples which do not have a prime number as their first component;

P4 increments the third component of the triples to record the number of times that the

252 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-2.58

prime first element divides the input; Ps generates copies of the primes; and PS deletes

redundant triples. We make the following observations about factor:

and

which both follow from Theorem 16.

We can define an interface, int, for P4 o (P3 1 P2 1 PI):

int: ((nl,n*,k) + (z,(nl,q,k)) + ~multiple(n2,nl))

It is routine to verify that

&o(intI(Pqo(fi IP2 IP1)))b(P4o(P3 IS IS>>

and

@(&,(p6) / $k/r(pS) I int I cp4 o (fi / p2 I pl)h”) + @(Yr I $@6> I &,(PS)$f)

and consequently, factor(n) can be implemented by

A final optimisation which is possible is to omit the tagging of the second component

of the right hand side of $,(P,); such single elements can play no further part in the

computation.

4. Conclusion

In this paper, we have introduced a notation for composing parallel programs which

has been used to enhance the original Gamma language. In order to put this work

into perspective, we first provide a sketch of formalisms akin to Gamma and alterna-

tive views of program composition in Gamma. Then, we summarise ongoing work on

Gamma and suggest avenues for further research.

4.1. Related work

Some languages bearing similarities with the chemical reaction paradigm have been

proposed in the literature. Let us briefly review the most significant ones:

l A Unity program [1 I] is basically a set of multiple-assignment statements. Program

execution consists in selecting nondeterministically (but following a fairness con-

dition) some assignment statement, executing it and repeating forever. [1 l] defines

a temporal logic for the language and the associated proof system is used for the

systematic development of parallel programs. Some Unity programs look very much

C Hunkin et al. I Theoretical Computer Scicwr 192 (1998) 233.-258 253

like Gamma programs (an example is the exchange sort program presented in the

introduction). The main departures from Gamma is the use of the array as the basic

data structure and the absence of locality property. On the other hand, Unity allows

the programmer to distinguish between synchronous and asynchronous computations

which makes it more suitable as an efiective programming language for parallel

machines.

l In the same vein as Unity, the uction ,s~~.sterns presented in [4] are &-OL(programs

consisting of a collection of guarded atomic actions, which are executed nondeter-

ministicly so long as some guard remains true.

l Linda [17,9] contains a few simple commands operating on a tuple space. A pro-

ducer can add a value to the tuple space; a consumer can read (destructively or not)

a value from the tuple space. Linda is a very elegant communication model which

can easily be incorporated into existing programming languages.

l LO [3] (for Linear Objects) was originally proposed as an integration of logic

programming and object-oriented programming. It can be seen as an extension of

Prolog with formulae having multiple heads. From an object-oriented point of view,

such formulae are used to implement methods. A method can be selected if its

head matches the goal corresponding to the object in its current state. The head

of a formula can also be seen as the set of resources consumed by the application

of the method (and the tail is the set of resources produced by the method). LO

has been used as a foundation for interaction clhstruct machines, extending the

chemical reaction metaphor with a notion of broadcast communication: subsolutions

(or “agents”) can be created dynamically and reactions can have the extra effect of

broadcasting a value to all the agents.

A different approach to the introduction of composition operators in Gamma is taken

in [131. Their solution is based on a separation of reduction rules into proper trans-

formations (which correspond to individual chemical reactions) and unproper transfor-

mations which modify the program but have no effect on the multiset. The resulting

definition of the parallel operator restricts its non determinism and makes it possible

to avoid some undesired computations. Two observational equivalences based on the

concept of bisimulation are defined and are shown to be congruences and they are

characterised by means of sound and complete axiomatisations [131.

Several proposals have been made recently for enhancing Gamma with better fa-

cilities for expressing control. Let us mention in particular higher-order versions of

Gamma [19, 141 which make it possible to manipulate reactions just as ordinary data

(allowing the programmer to define his own composition operators) and the language

of schedu1r.v [121. The idea behind schedules is to separate the definition of a Gamma

program in two parts: individual reactions, which correspond to a single application of a

rewrite rule, and schedules, which specify the control part of the program. The language

of schedules includes iteration, sequential and parallel composition, non-determinism.

A nice property of schedules is that they disentangle the two orthogonal features of

Gamma (the choice of multisets as the data structure and the “stirring mechanism” as

the control structure) and they allow the user to make his own choice concerning the

254 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

control component of the program. A notion of refinement is also defined in [12] in

terms of degree of determinism of schedules.

The interested reader can find in [6] a more comprehensive account of the chemical

reaction paradigm including various examples, a discipline of programming based on a

set of program schemes called tropes, different extensions and implementation issues.

4.2. Ongoing work and perspectives

4.2.1. Structured Gamma

The choice of the multiset as the unique data constructor may lead to programs

which are unnecessary complex when the programmer needs to encode specific data

structures. For example, it is necessary to resort to pairs (index, value) to represent

sequences in a sort program. Trees or graphs can be encoded in a similar way. This lack

of structuring is detrimental both for reasoning about programs and for implementing

them. It is important to circumvent this problem without jeopardising the basic qualities

of the language. Let us point out in particular that it would not be acceptable to take

the usual view of recursive type definitions because this would lead to a recursive style

of programming and ruin the fundamental locality principle (because the data structure

would then be manipulated as a whole).

To solve this problem, we have proposed an enhancement of Gamma based on a

notion of structured multiset. A structured multiset can be seen as a set of addresses

satisfying specific relations and associated with a value [16]. A type is defined in terms

of rewrite rules and a structured multiset belongs to a type T if its underlying set of

addresses satisfies the invariant expressed by the rewrite system defining T. In contrast

with the local conditions used in this paper, structured multisets can be seen as global

properties of the multiset.

A reaction in Structured Gamma can:

l Test and modify the relations on addresses.

l Test and modify the values associated with the addresses.

The significance of the approach is that the programmer can define his own types

and programs can be checked according to the type definitions. This verification can

be made automatically using term rewriting techniques [161.

A promising application of this idea concerns the definition and analysis of software

architectures: in this context, values are the individual entities to be coordinated (agents

or processes) and the relations represent their communication capabilities. The invariant

is a property of the communication structure (e.g. ring, star, etc.). The interested reader

can find more information on this application in [20].

A natural avenue for further research is the extension of the results presented in this

paper to Structured Gamma. The extra information provided by the structured types

can be useful to allow further transformations. We are also studying the relevance of

the ordering introduced in Section 2 for software architectures. A notion of refinement

is crucial in this context (to decide when an architecture is a correct implementation of

another, more general one). There does not seem to be a single answer to this problem

C. Hankin et al. I Theoretical Computrr Scienw 192 (1998) 233-258 25s

because different usages may put different requirements on the notion of refinement.

For instance, security-related properties may be preserved through refinements corre-

sponding to multiset inclusion (because removing links or entities decrease the global

information flow), but this form of refinement may not be acceptable for functional

properties (because removing links or entities may alter the services provided by the

system).

4.2.2. Cornpositional semantics

As mentioned earlier, the behavioural equivalence (E) used in this paper is not a

congruence with respect to I. Because of the lack of a general substitutivity property,

the use of the relational ordering in reasoning about programs is limited. Neverthe-

less, there is rich selection of refinement laws which do indeed respect the parallel

composition operator. These are studied in [23,22]; in these earlier papers, only par-

tial correctness was studied but the latter paper also considered different composition

operators

The equivalence used in this paper is based on input-output behaviours of programs.

A first idea to get a more precise notion of equivalence would be to define it in terms

of intermediate states rather than just input--output. But it is well-known from the study

of state-based concurrency that it is insufficient to use sequences of states as a means of

distinguishing programs. The reason why a semantics based on state-sequences still does

not yield a compositional definition is that it does not take into account the possible

interference (from the program’s surrounding context) that can occur during execution.

In order to solve this problem, we can think of the computational model as a form

of shared-variable language, and seek inspiration from techniques developed in that

context.

The papers [23,22] adapt a standard approach used in the semantics of shared-

variable concurrency based on sequences of multiset pairs: [1,2 1, 151 and in particular

Brookes’ variant [8]. The idea is to define the meaning of a program P as a set of

nonempty finite sequences of multiset pairs. The transition traces describing the finite

(terminating) behaviours of a program, specified as in [S], is given by the set

The intuition behind the use of transition traces is that each transition trace

represents a terminating execution of program P in some context, starting with multiset

MO, and in which each of the pairs (M,,N,) represents computation steps performed

by (derivatives of) P and the adjacent multisets N,_ 1, Mi represent possible interfering

computation steps performed by the “context”.

256 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

A key feature of Brookes’ definition of transition traces is that they use the reflexive-

transitive closure of the one-step evaluation relation, +* . A consequence of this re-

flexivity and transitivity is that they are closed under “stuttering” and “absorption”

properties described below. In the following let F denote the empty sequence.

Definition 26. Let M range over finite sequences of multiset pairs, and p range over

finite or infinite sequences. A set T C: p((M x M)‘) U @((M x M)“) 3 is closed under

left-stuttering 4 and absorption if it satisfies the following two conditions

left-stuttering
@JET, P#E

absorption
WC W(N M’)P E T

WO+‘)P E T a(M, M’)/? E T

Let $T denote the left-stuttering

a set T.

and absorption closure (henceforth just closure) of

It is easy to see that the finite transition traces of a program are closed, and can

be obtained from the traces of atomic steps (-) by closure. We extend the definition

to all the transition traces of the program using this closure operation on the atomic

traces:

Definition 27. The atomic traces of a program, T[PJ, are the finite and infinite se-

quences of pairs of multisets, given by

TF’II = {(Mo,No)(MI,NI)...(~~,N~)I

{(MO,NO)(M,,Nl)...(~~,N,)... I

(pJf0) -+ (~,No) A (Pi,M) --) (Pi+l,NLi> 1)

The transition traces of a program are given by the closure of the atomic traces:

ITI[Pll.

Sands [23,22] present a compositional definition of the transition trace semantics,

introduce an ordering based on traces and verify a number of compositional program

laws. All of the laws presented earlier in this paper can be verified for the new order-

ing using the transition trace semantics; many of the proofs are more straightforward.

However, Proposition 7 is not valid in the compositional semantics. Since the devel-

opment of the pipelining transformation makes use of this result, we cannot use the

3 If S is a set, then S+ will denote nonempty finite sequences of elements from S, and S”’ the infinite

sequences.
4 Notice that we say left-stuttering to reflect that the cnntext is not permitted to change the state after the

termination of the program. In this way each transition trace of a program only charts interactions with its

context up to the point of the program’s termination.

C. Hunkin et al. I Throwtied Computer Science 192 (1998) 233-258 257

compositional semantics to validate that transformation. Interesting questions relating

to the use of the compositional laws and whether the transition trace semantics is fully

abstract merit further investigation.

Acknowledgements

The authors were partially funded by ESPRIT project 9102 (Coordination). They

wish to thank their partners on this project, who have provided useful comments on

earlier drafts of the paper. Michel Chaudron also provided valuable comments.

References

[I] K. Abrahamson, Modal logic of concurrent nondeterministic programs, in: Proc. Internat. Symp. on

Semantics of Concurrent Computation. vol. 70, SV, 1979, pp. 21. 33.

[2] R. Allen, D. Garlan, Formalising architectural connection, in: Proc. IEEE 16th Internat. Conf, on

Software Engineering, 1994, pp. 7 I-80.

[3] J.-M. Andreoli. R. Pareschi, Linear objects: logtcal processes with built-in inheritence, New Generation

Comput. 9 (1991) 4455473.

[4] R. Back. Refinement calculus, Part 2: parallel and reactive programs, in: J.W. de Bakker, W.P. dc

Roever, G. Rozenberg (Eds.), Workshop on Stepwise Refinement of Distributed Systems: Models.

Formalisms, Correctness, Lecture Notes in Computer Science, vol. 430, Springer, Berlin. 1990.

[5] J.-P. Banltre, D. Le Metayer, The Gamma model and its disctpline of programming. SCI. Comput.

Programming I5 (1990) 55-77.

[6] J.-P. Banitre, D. Le Metayer, Programming by multiset transformation, Comm. ACM 36(I) (1993)

98---l I I.
[l] J.-P. Banitre, D. Le Metayer, Gamma and the chemical reaction model, in: J.-M. Andreoli, C. Hankin, D.

Le Metayer (Eds.), Coordination Programming: Mechanisms, Models and Semantics, IC Press, London.

1996.

[8] S. Brookes, Full abstraction for a shared variable parallel language, in: Logic m Computer Screncc.

IEEE Press. New York, 1993.

[9] N. Carriero, D. Gelemter, Linda in context, Comm. ACM 32(4) (1989) 444--45X.

[IO] N. Carriero. D. Gelemter, How to Write Parallel Programs, MIT Press, Cambridge, MA, 1990.

[I I] K.M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley. Reading. MA. 198X.

[12] M. Chaudron, E. de Jong, Towards a compositional method for coordinating Gamma programs.

in: P. Ciancarini, C. Hankin (Eds.), Coordination‘96 Conf.. Lecture Notes in Computer Sc~cnce.

vol. 1061, Springer, Berlin, 1996, pp. 107.-123.

[131 P. Ciancarini, R. Gorrieri, G. Zavattaro, An alternative semantics for the calculus of gamma programs.

in: J.-M. Andreoli, C. Hankin, D. Le Metaycr (Eds.), Coordination Programming: Mechanisms, Models

and Semantics. IC Press, London, 1996.

[14] D. Cohen. J. Muylaert-Filho, Introducing a calculus for higher-order multiset programmtng.

in: P. Ciancarini, C. Hankin (Eds.), Coordination’96 Conf., Lecture Notes in Computer Science.

vol. 1061, Springer, Berlin. pp. 1244141.

[15] F.S. de Boer. J.N. Kok, C. Palamtdessi, J.J.M.M. Rutten. The failure of failures in a paradigm for

asynchronous communication, in: J.C.M. Baeten, J.F. Groote (Eds.). Concur’9l. Lecture Notes in

Computer Science, vol. 527, Springer, Berlin, 1991, pp. I I I-126.

[I61 P. Fradet, D. Le Metayer, Structured gamma, Tech. Report 989, IRISA, 1996.
[I71 D. Gelemter, Generative communication in Linda, ACM Trans. Programming Languages Systems, 7(I)

(1985) 80-I 12.
[181 C. Hankin, D. Le Metayer, D. Sands, A calculus of gamma programs, in: U. Banerjee, D. Gelemter.

A. Nicolau, D. Padua (Eds.), Proc. 5th Workshop on Languages and Compilers for Parallel Computing,

Lecture Notes in Computer Science, vol. 757, Springer, Berlin, 1992.

258 C. Hankin et al. I Theoretical Computer Science 192 (1998) 233-258

[I91 D. Le Metayer, Higher-order multiset programming, in: Proc. DIMACS Workshop on Specifications of

Parallel Algorithms, American Mathematical Society, Providence, RI, 1994.

[20] D. Le Metayer, Software architecture styles as graph grammars, in: Proc. ACM SIGSOFT’96 4th Symp.

on the Foundations of Software Engineering, ACM Press, New York, 1996.

[2l] D. Park, On the semantics of fair parallelism, in: Abstract Software Specifications (1979 Copenhagen

Winter School Proc.), Lecture Notes in Computer Science, vol. 86, Springer, Berlin, 1979,

pp. 504-526.

[22] D. Sands, A compositional semantics of combining forms for Gamma programs, in: D. Bjoemer,

M. Broy, I. Pottosin (Eds.), Formal Methods in Programming and Their Applications, Intemat. Conf.

Academgorodok, Novosibirsk, Russia, June/July l993., Lecture Notes in Computer Science, vol. 735,

Springer, Berlin, 1993, pp. 43-56.

[23] D. Sands, Laws of parallel synchronised termination, in: G.L. Bum, S.J. Gay, M.D. Ryan (Eds.), Theory

and Formal Methods 1993: Proc. 1st Imperial College, Department of Computing, Workshop on Theory

and Formal Methods, Isle of Thorns, UK, 1993; Springer, Workshops in Computer Science.

