
All Secrets Great and Small

Delphine Demange1 and David Sands2

1 University of Rennes 1, France
2 Chalmers University of Technology, Sweden

Abstract. Tools for analysing secure information flow are almost exclusively
based on ideas going back to Denning’s work from the 70’s. This approach em-
bodies an imperfect notion of security which turns a blind eye to information
flows which are encoded in the termination behaviour of a program. In exchange
for this weakness many more programs are deemed ”secure”, usingconditions
which are easy to check. Previously it was thought that such leaks are limited
to at most one bit per run. Recent work by Askarov et al (ESORICS’08) offers
some bad news and some good news: the bad news is that for programswhich
perform output, the amount of information leaked by a Denning style analysis is
not bounded; the good news is that if secrets are chosen to be sufficiently large
and sufficiently random then they cannot be effectively leaked at all. The prob-
lem addressed in this paper is that secrets cannot always be made sufficiently
large or sufficiently random. Contrast, for example, an encryption keywith an
“hasHIV”-field of a patient record. In recognition of this we develop a notion of
secret-sensitive noninterferencein which “small” secrets are handled more care-
fully than “big” ones. We illustrate the idea with a type system which combines
a liberal Denning-style analysis with a more restrictive system according tothe
nature of the secrets at hand.

1 Introduction

Most tools for analysing information flow in programs such asJif [MZZ+08] and Flow-
Caml [Sim03] build upon ideas going back to Denning’s work from the 70’s [DD77].
These systems enforce an imperfect notion of information flow which has become
known astermination-insensitive noninterference(TINI). Under this version of non-
interference, information leaks are permitted if they are transmitted purely by the pro-
gram’s termination behaviour (i.e., whether it terminatesor not). This imperfection is
the price to pay for having a security condition which is relatively liberal (e.g. allowing
while-loops whose termination may depend on the value of a secret) and easy to check.

How bad is termination-insensitive noninterference? Previously there have been in-
formal arguments that termination-insensitive noninterference leaks at most one bit:
either a program terminates or it does not, so at most one bit of information can be
encoded in the termination state. However, recent work by Askarov et al [AHSS08]
shows that for programs which perform output, an arbitrary amount of information can
be leaked. The following program outputs an ascending sequence of natural numbers
on a public channel until the secret has been output, at whichpoint it goes into a silent
loop:

To appear: Proceedings of ESOP’09, 18th European Symposium on Programming,25-27 March 2009, York, United King-
dom. Springer-Verlag (LNCS)

2 Demange & Sands, ESOP’09

for i = 0 to maxNat (
output i on public_channel
if (i = secret) then (while true do skip)

)

At the very least we can say that at each output step, the observer is able to narrow
down the possible values of the secret. This program (in suitable variants) is accepted
as secure by state-of-the-art information flow analysis tools such as Jif [MZZ+08],
FlowCaml [Sim03], and the SPARK Examiner [BB03,CH04].

Askarovet al formalise the notion of termination-insensitive noninterference and
show that although termination-insensitive noninterference can leak an arbitrary amount
of information, it cannot do so any more efficiently than the above example. The revised
intuition for programs performing public output is that thenumber of possible “term-
ination states” that can be used to encode information is of the order of the number of
public outputs performed by the program – since the program can diverge after 0 out-
puts, after 1 output, after 2 outputs, etc. This means that toleakn bits of information
the program needs to perform2n outputs.

For Denning-style analyses this means that if secrets are sufficiently large and suffi-
ciently random then programs arecomputationally securein the sense that the probabil-
ity of the attacker guessing the secret after observing a polynomial number of outputs
(again, in the size of the secret) gives only a negligible advantage over guessing the
secret without running the program.

What does this mean for information flow analysis in practice?Whereas previously
the imperfections of a Denning-style analysis were viewed as a reasonable tradeoff
between ease of analysis versus degree of security, we believe that in the light of
[AHSS08] we need a different perspective. The leak caused bytermination-insensitivity
is only acceptable for sufficiently large and random secrets. But secrets, in general, are
not always parametric: one cannot always freely choose to make a secret larger and
more random. For example, an application cannot decide thata credit card CCV num-
ber should be made larger. An encryption key, on the other hand, might be something
that the application can control, and decide to scale up.

In this paper we consider the information flow problem in an arbitrary multi-level
security lattice. We present a way (Section 2) of refining each security level in an
information-flow lattice into two levels:big secrets, that are sufficiently large and ran-
domized to abide some leakage, andsmall secrets, for which even slow leakage is unac-
ceptable. Then, we define a two-level noninterference (Section 3), following Askarov et
al’s recent work, which combines the demands of termination-insensitive noninterfer-
ence (for big secrets) with the stricter requirements of termination-sensitive noninterfer-
ence (for small secrets). A type system is provided (Section4) that ensures this notion
of noninterference. Additional novelties of the system area somewhat more liberal
treatment of small secrets than found in previous termination-sensitive type systems.
Section 5 describes a strengthening of the definition of security to eliminate leakage
correlations between big and small secrets.

All Secrets Great and Small 3

2 A Refined Multilevel Lattice

In [AHSS08] a definition of termination-insensitive noninterference (TINI) was intro-
duced which is suitable for programs with outputs, assumingonly two security levels
low andhigh. They proved that, even if programs verifying this condition can leak more
than a bit of information, the attacker cannot reliably (i.ein a single run) learn a secret in
polynomial time in the size of the secret. They also proved that, for programs satisfying
TINI, if secrets are uniformly distributed, then a particular observation of a computation
represents only a negligible hint for the attacker (Theorem3).

The basic idea in this work is to refine the notion ofhigh into two pointsbhighand
shigh. These will correspond to “big” secrets and “small” secretsrespectively. We will
define a notion of secret-sensitive noninterference which allows a low user to learn a
little about big secrets, and nothing at all about small secrets (relative to the notion of
observation that we model).

How are big and small secrets related? A key point here is thatdata labelledbhigh
will depend only onbhighor low data sources, whereas data labelledshighmight also
depend onshighdata sources. Thus the labelbhigh does not mean that the datais a
large secret – it just means that it does not depend on (contain any information about)
a small secret. We can then see that the resulting refined security lattice is as given in
Figure 1.

Now we generalise this refinement to the case of an

Fig. 1.The refined 2-point
lattice

arbitrary multi-level lattice of information levels [Den76].
Denning’s lattice model of information considers an ar-
bitrary complete lattice〈L,⊑L,⊔L,⊓L,⊥L〉 whereL is
the set of securityclearance levels(henceforth justlevels,
ranged over byi, j), and⊑L is the ordering relation which
determines when one level is higher than another. The idea
is that a principal with a clearance leveli is permitted to
see data which is classified at leveli or below according to

the partial ordering. Information from any levels may be combined, in which case the
classification for the resulting data is given deterministically by the least-upper-bound
operation⊔L.

To refine this general case we note that we must split each level i ∈ L, with the
exception of the bottom level⊥L (which can always be thought of as public data)
into two points, corresponding to the big secrets (labelledb) and the small (labelled
s). Thus any non-bottom elementi will be refined to(i, b) and (i, s). To define the
appropriate order between lattice elements we first note that (i, b) ⊑ (i, s) – with the
same motivation as given for the refined two-point lattice. Similarly, when comparing
secrets of the same kind we have(i, a) ⊑ (j, a) only wheni ⊑L j.

What about the relationship between two points(i, b) and(j, s) – when can infor-
mation flow between these points? The idea is that information at levelb is potentially
leaked via a covert channel, so that it may be leaked toany level. Because of this we
can only permit flow from(i, b) to (j, s), and then only wheni ⊑L j. If we permitted
a small secret(i, s) to flow to any(j, b) for (j 6= i) then we would be able to launder
small secrets by first allowing them to flow to a big secret and then leaking via the covert
channel from there. In summary, we define the refinement of a given security lattice:

4 Demange & Sands, ESOP’09

Definition 1. LetS denote the 2-point lattice formed fromb ands under the ordering
b ⊑ s. We define therefinementof a security latticeL as thepartial productof L
and S, which is the standard product latticeL × S, quotiented by the equivalence
(⊥L, b) ≡ (⊥L, s) – and this bottom element will be simply denoted by⊥L.

Example Consider the example whereL = {secret, financial,medical, public} is
the set of the four security levels a program has to deal with,ordered according to the
Hasse diagram in Figure 2. Motivating a refinement of the lattice, there could be medical
data that is encrypted – or simply very large (e.g. high resolution image data) that could
be safely allowed to leak slowly, and other medical data thatare to be handled with
more care, such as an “hasHIV” boolean flag in a patient record. The partial product of
latticesL andS is presented in Figure 3.

Fig. 2.ExampleL Fig. 3.The refinement ofL

3 Secret-Sensitive Noninterference

In this section we define the security goal for programs computing over data labelled
with a refined lattice. This variant of the notion of noninterference,secret-sensitive
noninterference, combines the demands of termination-insensitive noninterference for
b-data, and the stronger termination-sensitive noninterference fors-data. Further, we
develop a bisimulation-style characterisation ofsecret-sensitive noninterferencewhich
provides a convenient proof method.

Operational Semantics We keep our presentation language independent, but we as-
sume some basic structure for an operational semantics. We will consider simple im-
perative computation modelled by a standard small-step operational semantics defined
over configurations of the form〈M,C〉 whereM is a memory (store) – a finite mapping
from variables to values – andC (C ′, D etc.) is a command. Each variablex is assumed
to have a fixed policy denotedΓ (x), which we take to be a member of the refinement
of some latticeL.

We assume an operational semantics consisting of deterministic labelled transitions
between configurations, where a labelu is either (i) an observable outputi(v), meaning
that a valuev is output on a channel observable at leveli ∈ L or above, or (ii) a silent

action labelledτ . We write e.g.〈M,C〉
i(v)
→ 〈M ′, C ′〉.

On top of the basic labelled transitions we define a family of transition systems
labelled by a particular level:

All Secrets Great and Small 5

Definition 2 (i-observable transitions).We can define the transition relations
u
→i, i ∈

L as:

〈M,C〉
j(v)
→ 〈M ′, C ′〉 j ⊑L i

〈M,C〉
v
→i 〈M

′, C ′〉

〈M,C〉
u
→ 〈M ′, C ′〉 u = τ or u = j(n) wherej 6⊑L i

〈M,C〉
τ
→i 〈M

′, C ′〉

Thus thei-observable transitions are obtained from the raw transitions by filtering out
(replacing byτ) all output actions that are not visible at leveli. Note that the non-
τ transitions are just the value which is observed and not the channel on which it is
observed.

Now we define the “big step” transitions〈M,C〉
u
⇒i 〈M

′, C ′〉 as follows

〈M,C〉
τ
⇒i 〈M

′, C ′〉 , 〈M,C〉
τ
→

∗

i 〈M
′, C ′〉

〈M,C〉
v
⇒i 〈M

′, C ′〉 , 〈M,C〉
τ
→

∗

i

v
→i〈M

′, C ′〉

We also define the multi-step observations〈M,C〉
~v
⇒i 〈M

′, C ′〉 with ~v = v1v2 · · · vn

as follows:

〈M,C〉
v1⇒i 〈M1, C1〉

v2⇒i 〈M2, C2〉
v3⇒i · · ·

vn−1

⇒ i 〈Mn−1, Cn−1〉
vn⇒i 〈M

′, C ′〉

for some sequence of intermediate configurations〈Mi, Ci〉. We define the multi-step
reduction for the empty vector to be synonymous with

τ
⇒i.

Attacker’s knowledge Our presentation follows the style of Askarovet al [AHSS08]
closely. The definition of noninterference developed here builds on the concept ofat-
tacker knowledgewhich is what an attacker (an observer of a given clearance level i)
can deduce about the initial values of variables based on a particular observation of a
program run.

The attackeri knows the initial low part of the memory. The low part of the memory
from the perspective of a given leveli is all variables with policy(i, s) or lower - and
observes some output trace~v that is not necessarily maximal, knows the program and
is able to make perfect deductions about the semantics of theprogram. For a memory
M we letM i denote the low part of the memory from the perspective of an observer at
level i, i.e. the part of the memory that he can see.

Definition 3 (Observations).Given a programC and a low memoryM i, thei-observa-
tions is the set of all possible sequences of observable outputs that could arise from a
run ofC with a memory compatible withM i. It is defined:

Obsi(C,M i) = {~v|〈N,C〉
~v
⇒i 〈N

′, C ′〉, N i = M i}

Definition 4 (Attacker’s knowledge).Given a programC, an initial choiceM i of the
low part of the memory (for leveli) and a trace ofi-observable outputs~v, the attacker’s
knowledge gained from this observation is the set of all possible memories that could
have lead to this observation.

ki(C,M i, ~v) = {N |〈N,C〉
~v
⇒i 〈N

′, C ′〉, N i = M i}

6 Demange & Sands, ESOP’09

Note that increase in knowledge corresponds to a decrease inthe size of the knowledge
set. Knowledge increases with outputs: the more outputs theattacker observes, the more
precise is his knowledge [AS07]:

∀C,M i, ~v, v. ki(C,M i, ~vv) ⊆ ki(C,M i, ~v)

In order to distinguish between what is learnt about the “big” secrets (variables at levels
(i, b)) from what is learnt about the “small secrets” (variables atlevels(i, s)) we define
the projections of knowledge sets to theb- ands-parts.

Definition 5 (b- and s-restricted memories). Given a memoryM , and a security
sizea ∈ S, we defineM |ia to be the restriction ofM to those variablesx such that
Γ (x) = (j, a), j 6⊑ i – i.e. the ”a-secrets” fromi’s perspective. We extend the definition
pointwise to sets of memories.

Definition 6 (b- and s-restricted knowledge).Given a programC, a security sizea ∈
S and an initial choiceM i of the low part of the memory and a trace of outputs~v, thea-
restricted knowledge of the attackeri, writtenka

i (C,M i, ~v) is defined(ki(C,M i, ~v))|ia.

Fig. 4.Thefinance-perspective on the example refined lattice

Informally, the restricted knowledgeka
i (C,M i, ~v) is i’s knowledge about thea-secrets

(from i’s perspective) after having observed~v from initial memoryM i.
The idea of “i’s secrets” can be illustrated using the lattice presented in Figure 3.

For example, the projectionM |finance
s restrictsM to just those variables with classifi-

cations(medical , s) or (secret , s). Thefinance-perspective on the lattice is illustrated
in Figure 4, where theb-secrets ands-secrets are marked. The low part of the lattice,
from the finance perspective, is also marked.

The s-restricted knowledge for an attacker at levelfinance is thus the knowledge
that can be deduced about thes-secret part of the memory.

Noninterference Several kinds of noninterference can be defined from the notion of
knowledge. Here we adapt the definition of termination-(in)sensitive noninterference
that was proposed in [AHSS08] and then propose a definition ofa two-levelled nonin-
terference.

All Secrets Great and Small 7

Definition 7 (Termination-Sensitive Noninterference (TSNI)). A programC satis-
fies TSNI if for alli, whenever~vv ∈ Obsi(C,M i) then

ki(C,M i, ~v) = ki(C,M i, ~vv).

TSNI means that at each step of output, nothing new about the high memory is learnt
by the attacker.

Definition 8 (Termination-Insensitive Noninterference (TINI)). A programC satis-
fies TINI if for all i, whenever~vv ∈ Obsi(C,M i) then

ki(C,M i, ~vv) =
⋃

v′

ki(C,M i, ~vv′).

TINI allows leakage at each low output step, but only throughthe fact that there issome
output step. The knowledge leaked by one output is the same asfor any other.

In order to deal with our two different kinds of secret (b ands), the idea is here to
combine both TSNI and TINI: although we only accept TSNI fors-data which must be
handled with more care, we allow TINI forb-data, that abide some leakage since they
are randomized and large enough.

Definition 9 (Secret-Sensitive Noninterference (SSNI)).A programC satisfies SSNI
if for all i, whenever~vv ∈ Obsi(C,M i) then the following two properties hold:

ks
i (C,M i, ~vv) = ks

i (C,M i, ~v) (s-TSNI)
kb

i (C,M i, ~vv) =
⋃

v′ kb
i (C,M i, ~vv′) (b-TINI)

3.1 Characterising SSNI

The knowledge based definitions are (in our opinion) lucid because they give a clear
attacker perspective on the problem. However, for reasoning about secret-sensitive non-
interference we find it convenient to work with a more conventional characterisation in
terms of bisimulation relations. Here we develop this alternative characterisation, which
we will employ in Section 4 in order to prove that the type system there guarantees
secret-sensitive noninterference.

The basic idea is to establish the two components of SSNI via two forms of bisim-
ulation relations between configurations.

Definition 10 (Termination-sensitivei-bisimulation (i-TSB)). A symmetric relation
R on configurations is a termination-sensitivei-bisimulation, if〈M,C〉R〈N,D〉 im-
plies:

(i) M i = N i andM |ib = N |ib, and
(ii) whenever〈M,C〉

u
→i 〈M

′, C ′〉 then〈N,D〉
u
⇒i 〈N

′,D′〉with 〈M ′, C ′〉R〈N ′,D′〉.

Two configurations are said to bei-TSB equivalent (denoted by∼=i) if there exists a
i-TSB relating them.

8 Demange & Sands, ESOP’09

Here, the termination-sensitivity comes from the ability to produce the next output to-
gether with the symmetry of the relation.

Definition 11 (Termination-insensitive i-bisimulation (i-TIB)). We say that a con-
figuration 〈M,C〉 diverges fori, written 〈M,C〉⇑i, if 〈M,C〉 cannot perform any i-
observable output transition

v
→i.

A symmetric relationR on configurations is defined to be atermination-insensitive
i-bisimulationif whenever〈M,C〉R〈N,D〉 we have

(i) M i = N i and
(ii) if 〈M,C〉

u
→i 〈M

′, C ′〉 then either〈N,D〉
u
⇒i 〈N

′,D′〉 with 〈M ′, C ′〉R〈N ′,D′〉,
or 〈N,D〉⇑i.

Two configurations are said to bei-TIB equivalent (denoted by≃i) if there exists a
i-TIB relating them.

Note that the notion of “divergence” used here is purely fromthe perspective of a remote
observer who sees only the outputs on channels. We could makethis more conventional
if we made program termination an observable event for all levels. We have chosen not
to do so, but the technical development in this paper does notdepend in a crucial way
on this fact.

Before we show how these relations are sufficient to characterise SSNI, we need the
following lemmas abouti-TSB andi-TIB.

Lemma 1.
If 〈M,C〉 ∼=i 〈N,D〉 and 〈M,C〉

~v
⇒i 〈M ′, C ′〉 then 〈N,D〉

~v
⇒i 〈N ′,D′〉 with

〈M ′, C ′〉 ∼=i 〈N
′,D′〉.

Lemma 2.

If 〈M,C〉 ≃i 〈N,D〉 and〈M,C〉
~v
⇒i 〈M

′, C ′〉 then〈N,D〉
~v′

⇒i 〈N
′,D′〉 for some~v′

such that either~v = ~v′ and〈M ′, C ′〉 ≃i 〈N
′,D′〉, or ~v′ is a prefix of~v and〈N ′,D′〉⇑i.

Proof. (Lemmas 1 and 2) By induction on the number of outputs (length of ~v), and in
the base case by induction on the length of the raw transitionsequence. 2

Proposition 1.
Suppose that for all levelsi and all memoriesM and N such thatM i = N i and
M |ib = N |ib we have〈M,C〉 ∼=i 〈N,C〉. Then for alli, whenever~vv ∈ Obsi(C,M i)
thenks

i (C,M i, ~vv) = ks
i (C,M i, ~v).

Proof. See technical report [DS09]. 2

A similar proposition can be stated about termination-insensitive noninterference con-
cerningbhigh data.

Proposition 2.
Suppose that for all levelsi and all M and N , such thatM i = N i we have that
〈M,C〉 ≃i 〈N,C〉. Then~vv ∈ Obsi(C,Mi) implieskb

i (C,M i, ~vv) =
⋃

v′ kb
i (C,M i, ~vv′).

All Secrets Great and Small 9

Proof. See technical report [DS09]. 2

Clearly, then, putting the propositions together we get a proof technique for SSNI:

Corollary 1. C satisfiesSSNI if, for all levelsi and allM andN , we have

• M i = N i implies〈M,C〉 ≃i 〈N,C〉, and
• M i = N i andM |ib = N |ib implies〈M,C〉 ∼=i 〈N,C〉.

3.2 Computational Security

Definition 9 clearly enforces termination-sensitive noninterference fors-data. Regard-
ing b-data, we can provide the computational security guarantees of [AHSS08] to show
thatb-secrets, if chosen uniformly, cannot be leaked in polynomial time in their size. To
argue this we can first reclassify all secrets asb-data (or equivalently assume that there
are nos-secrets). Then we are back in the standard security lattice, and we simply need
to generalise the results of [AHSS08] from a two-point lattice to an arbitrary one. This
is, as usual, unproblematic since from the perspective of each individual leveli there
are only two levels of interest: the levels which can be seen (i.e. the levels less than or
equal toi) and those which cannot. The main result is that ifb-data is randomly chosen,
then an observer at leveli learns a negligible amount of information (as a function of
the size of theb-data) about the data whichi cannot see. We will not further develop the
details of this argument in the present article. The differences from the development in
[AHSS08] would be minor.

4 Secret-Sensitive Noninterference by Typing

In this section, we describe a type system that enforces noninterference Definition 9:
well-typed programs are secret-sensitive noninterfering. We study a classical determin-
istic while programming language defined with expressions and commands.

e ::= n | x | e op e

c ::= skip | x := e | c ; c | if e then c else c |

while e do c | for e do c | outputi(e)

Heren stands for any integer constant,x for any variable andop for any of the classical
binary arithmetical operators. Booleans are represented by integers the classical way
(0 is false, and everything else istrue). We also assume that there are no exceptions
raised: all binary operators are totally defined.

Note that the language provides two types of loops:for loops are always termi-
nating, that is the guard expression is evaluated just once,leading to a constant that is
decreased each time the end of the loop body is reached, andwhile loops are potentially
non terminating. The distinction will be used in the type system to good effect.

The language includes theoutputi primitive method that writes the value of its
argument to a channel with leveli. The operational semantics is standard and is given
in the technical report [DS09].

10 Demange & Sands, ESOP’09

4.1 Type system

This type system is based on the combination of a standard Denning-style analysis
(in type system form [VSI96]) for enforcing the termination-insensitive security forb-
secrets, and a more restrictive type system for handling thes-secrets. One such termina-
tion-sensitive type system is that described in [VS97], butthat system is extremely
restrictive: loops are only allowed if the guard does not refer to anything except data
at the lowest lattice level, and if there is a branch on secretdata at any level then no
loops are allowed inside the branches. Instead we adapt an idea common to the type
systems from [BC01] and [Smi01] for the termination-sensitive part. The idea is here
to allow high while loops (i.e. loops with high guards or arbitrary while loops occurring
in a high context) so long as no assignment or output to levelsbelow the loop guards
follows them.

The form of the typing judgements follows the style of [BC01]in that it handles
indirect information flows by recording the write effect of acommand (the lowest level
to which it writes data). This gives the same power as Denning’s popular approach
which uses a “program counter” level.

Consider both latticesL andS, and letP be their partial product as previously
defined. A type is either an expression type denotede : τ , or a command type writ-
ten (τ, σ, δ)cmd, where bothτ andσ are inP, the set of security levels, andδ, the
termination flagis a member of the set{↓, ↑}, where we order the elements↓ ≤ ↑.

Type judgments are of the form

Γ ⊢ C : (τ, σ, δ)cmd

whereΓ is the typing environment i.e. a mapping from variables to variable types. In
the following,Γ is kept implicit. The syntactic meaning of such a judgment isthat

– τ is a lower bound on the security levels of variables that are assigned to inC.
– σ is the least upper bound on the levels of (for,if,while) guards occurring inC.
– δ is ↓ if C contains no while loops, and is↑ otherwise.

The semantic implication of these typings is that

– τ is a lower bound on the thewrite effectof the command – i.e., the command only
modifies variables of levelτ or above, and

– σ is the termination effect: observing thatC produces some output (i.e. “termi-
nates”) give us knowledge about data at level at mostσ.

– δ is a termination flag: if δ = ↓ then the command always terminates.

With these intended meanings ofτ , σ andδ, there is a natural partial order on types
which is contravariant in its first component and covariant in its second and third:

(τ, σ, δ)cmd ≤ (τ ′, σ′, δ′)cmd if τ ′ ⊑P τ andσ ⊑P σ′ andδ ≤ δ′

This relation is not used in the type system, but is used in thestatement of e.g. the
subject reduction property below.

For elements ofP (the first two components of a command type in particular) we
define the first and second projections in the obvious way:fst(i, a) = i andfst(⊥P) =
⊥L; snd(i, a) = a andsnd(⊥P) = ⊥S = b.

All Secrets Great and Small 11

Rules of the security type system are displayed in Figure 5, where we drop the
subscript for the relation⊑P .

Explicit flows are handled with rules for expressions, rulesT-ASSIG, and T-OUT,
while implicit flows are treated in T-IF, T-WHILE and T-FOR which demand that
their body is at least as high as their guard level.

Most of the action takes place in the sequential compositionrules. The interesting
case is T-SEQ2 where the termination effectσ1 of C1 is ans-secret, andC1 is indeed
potentially nonterminating. This means that we cannot allow arbitrary assignments in
C2 since these might leak information about thes-secrets which affected the termina-
tion of C1. Thus the write effect ofC2 is constrained so that it does not write below
σ1, the termination effect ofC1. For rule T-SEQ1 we are more liberal, since either the
guards do not depend ons-secrets, orC1 is always terminating.

The same reasoning is applied to while and for loops – their execution may be a
sequential composition of the body of the loop and the loop itself.

⊢ n : τ
T-CONST

Γ (x) = τ var

⊢ x : τ
T-VAREXP

⊢ e : τ ′ τ ′ ⊑ τ

⊢ e : τ
T-SUBEXP

⊢ e1 : τ ⊢ e2 : τ

⊢ e1 op e2 : τ
T-BINOP

⊢ skip : (⊤P ,⊥P , ↓)cmd
T-SKIP

⊢ e : τ Γ (x) = τ var

⊢ x := e : (τ,⊥P , ↓)cmd
T-ASSIG

⊢ e : τ fst(τ) ⊑L i

⊢ output
i
(e) : ((i, s),⊥P , ↓)cmd

T-OUT

⊢ Ci : (τi, σi, δi)cmd snd(σ1) = b or δ1 = ↓

⊢ C1; C2 : (τ1 ⊓ τ2, σ1 ⊔ σ2, δ1 ⊔ δ2)cmd
T-SEQ1

⊢ Ci : (τi, σi, δi)cmd σ1 ⊑ τ2 snd(σ1) = s δ1 = ↑

⊢ C1; C2 : (τ1 ⊓ τ2, σ1 ⊔ σ2, ↑)cmd
T-SEQ2

⊢ e : θ ⊢ Ci : (τi, σi, δi)cmd θ ⊑ τi

⊢ if e then C1 elseC2 : (τ1 ⊓ τ2, σ1 ⊔ σ2 ⊔ θ, δ1 ⊔ δ2)cmd
T-IF

⊢ e : θ ⊢ C : (τ, σ, δ)cmd θ ⊑ τ snd(σ) = s ⇒ σ ⊑ τ

⊢ while e do C : (τ, σ ⊔ θ, ↑)cmd
T-WHILE

⊢ e : θ ⊢ C : (τ, σ, δ)cmd θ ⊑ τ snd(σ) = s ∧ δ = ↑ ⇒ σ ⊑ τ

⊢ for e do C : (τ, σ, δ)cmd
T-FOR

Fig. 5.The security type system

4.2 Type Soundness

In this section we prove some results about well typed programs with regard to the
type system in Figure 5. The main proposition establishes that the type system indeed
enforces the secret-sensitive noninterference property we defined in Section 3.

12 Demange & Sands, ESOP’09

Proofs of the following results are only sketched here. A full version of the proofs
can be found in the technical report corresponding to the present paper [DS09].

The first property is the standard notion ofsubject reductionwhich guarantees that
execution preserves types.

Theorem 1 (Subject reduction).If ⊢ C : (τ, σ, δ)cmd and〈M,C〉
u
→ 〈M ′, C ′〉, then

⊢ C ′ : (τ ′, σ′, δ′)cmd with (τ ′, σ′, δ′)cmd ≤ (τ, σ, δ)cmd.

Proof. We proceed by induction on the typing derivation, and then by case analysis on
the last rule of the operational semantics. 2

We need some preliminary lemmas in order to prove the SSNI enforcement. The follow-
ing lemmas (using the terminology from [VSI96]) confirm thatthe informal definitions
we gave about both components of a command type in Section 4.1are enforced by the
type system.

Lemma 3 (Simple security).If ⊢ e : τ then every variable occurring ine has type
τ ′ var whereτ ′ ⊑ τ .

Lemma 4 (Confinement).If ⊢ C : (τ, σ, δ)cmd, then every variable assigned to in
programC has typeθ var with τ ⊑ θ.

Lemma 5 (Guard safety).If ⊢ C : (τ, σ, δ)cmd, then every while loop or conditional
guard in programC has typeθ var with θ ⊑ σ.

Lemma 6 (Termination). If ⊢ C : (τ, σ, ↓)cmd, thenC terminates on all memories.

These four lemmas can be easily proved by induction on the typing derivation.
In the formal development that follows for simplicity’s sake we only treat the case of

the three point lattice in Figure 1. The following results can be extended to the general
case: for a given clearance leveli in L, as was depicted in the example offinance ’s
perspective in Figure 4, the refinement ofL can be rethought of as a three point lattice
- low level,bhighandshighsecrets.

Proposition 3 (Noninterference of well typed commands).
If a commandC is typable, i.e.,⊢ C : (τ, σ, δ)cmd, thenC satisfies SSNI.

Proof. (Sketch; see technical report [DS09] for details) We use the proof technique
provided by Corollary 1. In the construction of the specific bisimulations we adapt the
proof from [BC01]. The first step is to show that⊢ C : (τ, σ, δ)cmd implies〈C,M〉 ∼=i

〈C,N〉 for all levelsi, to have the s-TSNI property of Definition 9. The interestingcase
is i = low sincei = high is vacuous (memories and commands are in this case equal).

A commandC is said to beshigh or bhigh if there existsτ and σ such that⊢
C : (τ, σ, δ)cmd with respectivelyτ = shigh or bhigh ⊑ τ . We show that⊢ C :
(τ, σ, δ)cmd implies 〈C,M〉 ∼=l 〈C,N〉 for all M andN that are equal on their low
and bhigh parts. To do this we define a relationR1 : 〈M,C〉R1〈N,D〉 iff C andD are
typable,M l = N l andM |lb = N |lb , and one of the following four conditions holds:

(i) C andD areshigh; (ii) C = D

All Secrets Great and Small 13

(iii) C = C1;C2, D = D1;C2 with 〈M,C1〉R1〈N,D1〉 andC2 is shigh
(iv) C is shigh, D = D1;D2 with 〈M, skip〉R1〈N,D1〉 andD2 is shigh

We then show thatR1 is a l-TSB by induction on the definition ofR1, and conclude
using Proposition 1. By Clause (ii) and Proposition 1, we have that in well typed pro-
grams, there is no flow fromshigh data tobhigh andlow data.

The next step is to prove that the type system ensures TINI concerning thebhigh

data. We proceed in a similar way, providing al-TIB R2 over configurations. The rela-
tion R2 is defined:〈M,C〉R2〈N,D〉 iff C andD are typable,M l = N l, and one of
the following holds:

(i) C andD arebhigh (ii) C = D
(iii) 〈M,C〉R′

2〈N,D〉, where the relationR′
2 is defined inductively as:

C,D bhigh

〈M,C;C ′〉 R′
2 〈N,D;C ′〉

R1
〈M,C〉 R′

2 〈N,D〉

〈N,C;C ′〉 R′
2 〈N,D;C ′〉

R2

By Clause (ii) and Proposition 2, we then have the TINI property of well typed programs
concerning theirbhigh data: there is no flow frombhigh data tolow data except via
the termination channel. 2

5 Correlation Leaks

In this section we mention a weakness in the definition of secret-sensitive noninterfer-
ence which allows the attacker to observecorrelationsbetween big and small secrets.
We show how the definition can be strengthened to remove such correlations, and con-
jecture that the type-system guarantees correlation-freedom without need for modifica-
tion.

Suppose thatb is bhighands is shigh(in the lattice in Figure 1). Somewhat surpris-
ingly the programoutputlow(b == s) is secret-sensitive noninterfering (note though
that it is not typeable). This is because the low observer cansay nothing about the value
of e.g.s in isolation. The problem is that although the observer cannot deduce anything
about the individual kinds of secret, he can deduce information about theircorrelation
(in this example whether they are equal or not).

To eliminate the possibility of learning something about the correlation of big and
small secrets we need to demand that the knowledge learnt about big and small secrets
together is the same as for the combined knowledge learnt about them independently.
To express this precisely we need some additional notation.

In the definitions of secret-sensitive noninterference we have dealt with knowledge
as sets of projections of memories. We say that a memoryM is full if dom(M) is the
set of all variables. In order to easily compare and combine knowledge sets we need
to work with full memories. DefineM⋆ to be the set of full memories obtainable by
completingM :

M⋆ = {N | N |dom(M) = M,N is full}.

Now lift ·⋆ to sets of memoriesK in the natural way by defining

K⋆ =
⋃

M∈K

M⋆

14 Demange & Sands, ESOP’09

Definition 12 (Correlation Freedom).A programC is Correlation Freeif for all ~v ∈
Obsi(C,M i), we havekbs

i (C,M i, ~v)⋆ = kb
i (C,M i, ~v)⋆ ∩ ks

i (C,M i, ~v)⋆, where
kbs

i (C,M i, ~v) = {M |i | M ∈ ki(C,M i, ~v)} andM |i is the complement ofM i – i.e.,
the projection ofM to the variablesnot visible at leveli.

In the case thatC is secret-sensitive noninterfering we can show that this condition
is equivalent tokbs

i (C,M i, ~v)⋆ = kb
i (C,M i, ~v)⋆, which says that nothing more is learnt

about the big and small secrets together than can be deduced from the big secrets alone.

Conjecture 1 Well-typed programs are correlation free.

We leave the proof of this conjecture to further work; the intuition here is that any
“correlation information” will always be typed ass-level data, and hence cannot be
leaked at all.

6 Conclusions

In this article we provided a way to refine an arbitrary complex security lattice in order
to distinguish two levels of secret, the big secretsb and the small oness. Big secrets
can be handled more liberally on the grounds that they can be made sufficiently large
and random for slow leakage to be tolerable. We introduced anaccompanying notion
of secret-sensitive noninterference which combines the relative merits of termination-
sensitive and termination-insensitive noninterference.We illustrated the use of the defi-
nition in the soundness argument for a simple type system forverifying secret-sensitive
noninterference.

Related Work As mentioned previously, the starting point of this work is [AHSS08].
Our interpretation of the results there is that we need to treat different kinds of secrets in
different ways, and to our knowledge this paper is the first todo so in a noninterference
setting. It is, however, relatively common to give a specialtreatment to cryptographic
keys as compared to other kinds of secret – e.g. [AHS06] – but usually the goal here is
to deal with integrity (a key cannot be modified using a low value) or freshness (a key
cannot be used more than once).

Our type system is essentially a fusion of a type-based version of Denning’s sys-
tem [VSI96], and a stricter system based on [BC01]. The latter system is stricter than
a Denning-style analysis for quite a different purpose: to deal with multi-threaded pro-
grams. Our system, in a sequential setting, improves on [BC01] by additionally tracking
whether a program is terminating.

Further Work A natural and interesting next step would be to combine such atype sys-
tem with cryptographic primitives (e.g. [Vol00][LV05][AHS06]). The notion of “big”
and “small” secrets have a natural interpretation in the cryptographic setting, since “big”
secrets correspond to e.g. cryptographic keys. In such a setting it might also be im-
portant to handle “size integrity”, so that one could know that a variable is not only
independent of small secrets, but that itis a big secret.

All Secrets Great and Small 15

AcknowledgementsThanks to Andrei Sabelfeld for pointing out the correlation problem dis-
cussed in Section 5, and to Niklas Broberg, David Pichardie, Thomas Jensen and the anonymous
referees for very helpful comments on an earlier draft. This work was partly supported by grants
from the Swedish funding agencies SSF, Vinnova (The Swedish Governmental Agency for Inno-
vation Systems), VR, and by the European IST-2005-015905 MOBIUSproject.

References

AHS06. A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows. InProc.
Symp. on Static Analysis, LNCS, pages 353–369. Springer-Verlag, August 2006.

AHSS08. A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninter-
ference leaks more than just a bit. InESORICS 2008, 13th European Symposium on
Research in Computer Security, volume 5283 ofLNCS. Springer Verlag, 2008.

AS07. A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption
and key release policies. InProc. IEEE Symp. on Security and Privacy, pages 207–
221, May 2007.

BB03. J. Barnes and JG Barnes.High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2003.

BC01. G. Boudol and I. Castellani. Noninterference for concurrentprograms. InProc.
ICALP’01, volume 2076 ofLNCS, pages 382–395. Springer-Verlag, July 2001.

CH04. R. Chapman and A. Hilton. Enforcing security and safety models with an information
flow analysis tool.ACM SIGAda Ada Letters, 24(4):39–46, 2004.

DD77. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Comm. of the ACM, 20(7):504–513, July 1977.

Den76. D. E. Denning. A lattice model of secure information flow.Comm. of the ACM,
19(5):236–243, May 1976.

DS09. D. Demange and D. Sands. All secrets great and small. Technical report, Chalmers
University of Technology, Sweden, 2009. Extended Version.

LV05. P. Laud and V. Vene. A type system for computationally secure information flow. In
Proc. Fundamentals of Computation Theory, volume 3623 ofLNCS, pages 365–377,
August 2005.

MZZ+08. A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java informa-
tion flow. Software release. Located athttp://www.cs.cornell.edu/jif ,
July 2001–2008.

Sim03. V. Simonet. The Flow Caml system. Software release. Located at
http://cristal.inria.fr/ ˜ simonet/soft/flowcaml/ , July 2003.

Smi01. G. Smith. A new type system for secure information flow. InProc. IEEE Computer
Security Foundations Workshop, pages 115–125, June 2001.

Vol00. D. Volpano. Secure introduction of one-way functions. InCSFW ’00: Proceedings of
the 13th IEEE workshop on Computer Security Foundations, page 246, Washington,
DC, USA, 2000. IEEE Computer Society.

VS97. D. Volpano and G. Smith. Eliminating covert flows with minimum typings.Proc.
IEEE Computer Security Foundations Workshop, pages 156–168, June 1997.

VSI96. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
J. Computer Security, 4(3):167–187, 1996.

http://www.cs.cornell.edu/jif
http://cristal.inria.fr/~simonet/soft/flowcaml/

	Introduction
	A Refined Multilevel Lattice
	Secret-Sensitive Noninterference
	Characterising SSNI
	Computational Security

	Secret-Sensitive Noninterference by Typing
	Type system
	Type Soundness

	Correlation Leaks
	Conclusions

