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Abstract. Tools for analysing secure information flow are almost exclusively
based on ideas going back to Denning’s work from the 70’s. This ajgprem-
bodies an imperfect notion of security which turns a blind eye to information
flows which are encoded in the termination behaviour of a program.dnagge

for this weakness many more programs are deemed "secure”, ceiitions
which are easy to check. Previously it was thought that such leaks atedim
to at most one bit per run. Recent work by Askarov et al (ESORI8Soffers
some bad news and some good news: the bad news is that for progtacis
perform output, the amount of information leaked by a Denning style aisaly

not bounded; the good news is that if secrets are chosen to be stiffidéege

and sufficiently random then they cannot be effectively leaked at adl.prbb-

lem addressed in this paper is that secrets cannot always be madesthffi
large or sufficiently random. Contrast, for example, an encryptionvkidly an
“hasHIV"-field of a patient record. In recognition of this we developation of
secret-sensitive noninterferenicewhich “small” secrets are handled more care-
fully than “big” ones. We illustrate the idea with a type system which combines
a liberal Denning-style analysis with a more restrictive system accorditigeto
nature of the secrets at hand.

1 Introduction

Most tools for analysing information flow in programs suclJ&§MZzZ +08] and Flow-
Caml [Sim03] build upon ideas going back to Denning’s woinfrthe 70's/[DD77].
These systems enforce an imperfect notion of informatiow fichich has become
known astermination-insensitive noninterferen¢€INI). Under this version of non-
interference, information leaks are permitted if they aamsmitted purely by the pro-
gram’s termination behaviour (i.e., whether it terminatesiot). This imperfection is
the price to pay for having a security condition which is tigkly liberal (e.g. allowing
while-loops whose termination may depend on the value o€efeand easy to check.

How bad is termination-insensitive noninterference? ety there have been in-
formal arguments that termination-insensitive nonirgeshce leaks at most one bit:
either a program terminates or it does not, so at most onef ifamation can be
encoded in the termination state. However, recent work byafms et al [AHSS08]
shows that for programs which perform output, an arbitranpant of information can
be leaked. The following program outputs an ascending seguef natural numbers
on a public channel until the secret has been output, at wdogtt it goes into a silent
loop:
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for i = 0 to maxNat (
out put i on public_channel
if (i = secret) then (while true do skip)

At the very least we can say that at each output step, the\adygerable to narrow
down the possible values of the secret. This program (iraklgtvariants) is accepted
as secure by state-of-the-art information flow analysidstsoich as Jif [MZZ 08],
FlowCaml [Sim03], and the SPARK Examiner [BB03,CHO04].

Askarovet al formalise the notion of termination-insensitive nonifeeence and
show that although termination-insensitive noninterfierecan leak an arbitrary amount
of information, it cannot do so any more efficiently than thewe example. The revised
intuition for programs performing public output is that thember of possible “term-
ination states” that can be used to encode information ie@btder of the number of
public outputs performed by the program — since the programdiverge after O out-
puts, after 1 output, after 2 outputs, etc. This means thiaton bits of information
the program needs to perfor2ft outputs.

For Denning-style analyses this means that if secrets #ieiently large and suffi-
ciently random then programs azemputationally secuna the sense that the probabil-
ity of the attacker guessing the secret after observing ynpahial number of outputs
(again, in the size of the secret) gives only a negligibleaatiyge over guessing the
secret without running the program.

What does this mean for information flow analysis in practiétereas previously
the imperfections of a Denning-style analysis were viewed aeasonable tradeoff
between ease of analysis versus degree of security, wevddhat in the light of
[AHSS08] we need a different perspective. The leak causeerbyination-insensitivity
is only acceptable for sufficiently large and random secBai$ secrets, in general, are
not always parametric: one cannot always freely choose teraasecret larger and
more random. For example, an application cannot decideatbetdit card CCV num-
ber should be made larger. An encryption key, on the othed haight be something
that the application can control, and decide to scale up.

In this paper we consider the information flow problem in apiteairy multi-level
security lattice. We present a way (Section 2) of refininghesecurity level in an
information-flow lattice into two levelshig secretsthat are sufficiently large and ran-
domized to abide some leakage, anaall secretsfor which even slow leakage is unac-
ceptable. Then, we define a two-level noninterference (@#8), following Askarov et
al’s recent work, which combines the demands of terminaitisensitive noninterfer-
ence (for big secrets) with the stricter requirements ehieation-sensitive noninterfer-
ence (for small secrets). A type system is provided (Se@)dhat ensures this notion
of noninterference. Additional novelties of the system arsomewhat more liberal
treatment of small secrets than found in previous ternonasensitive type systems.
Section 5 describes a strengthening of the definition of rigcio eliminate leakage
correlations between big and small secrets.
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2 A Refined Multilevel Lattice

In [AHSS08] a definition of termination-insensitive norérference TINI ) was intro-
duced which is suitable for programs with outputs, assuroinly two security levels
low andhigh. They proved that, even if programs verifying this conditaan leak more
than a bit of information, the attacker cannot reliably ifi.ae single run) learn a secretin
polynomial time in the size of the secret. They also proved, flor programs satisfying
TINI, if secrets are uniformly distributed, then a parteubbservation of a computation
represents only a negligible hint for the attacker (Theo8m

The basic idea in this work is to refine the notiorhigh into two pointsbhighand
shigh These will correspond to “big” secrets and “small” secretpectively. We will
define a notion of secret-sensitive noninterference whildwa a low user to learn a
little about big secrets, and nothing at all about smallesscfrelative to the notion of
observation that we model).

How are big and small secrets related? A key point here isdéiat labelledhigh
will depend only orbhighor low data sources, whereas data labeib@yhmight also
depend orshighdata sources. Thus the lak@high does not mean that the dataa
large secret — it just means that it does not depend on (coatgi information about)
a small secret. We can then see that the resulting refinedityelettice is as given in

Figure 1.

shigh Now we generalise this refinement to the case of an
arbitrary multi-level lattice of information levels [De6}.
bhigh Denning’s lattice model of information considers an ar-

bitrary complete lattic€ L, C., L., Mg, Le) wherel is
the set of securitglearance level¢henceforth justevels
ranged over by, j), andC . is the ordering relation which
Fig. 1. The refined 2-point determines when one level is higher than another. The idea
lattice is that a principal with a clearance levieis permitted to

see data which is classified at lev@lr below according to
the partial ordering. Information from any levels may be bamed, in which case the
classification for the resulting data is given determindty by the least-upper-bound
operation,.

To refine this general case we note that we must split each dezeL, with the
exception of the bottom level » (which can always be thought of as public data)
into two points, corresponding to the big secrets (labeblednd the small (labelled
s). Thus any non-bottom elementwill be refined to(i,b) and (7, s). To define the
appropriate order between lattice elements we first note(ith@ C (i, s) — with the
same motivation as given for the refined two-point latticdenitarly, when comparing
secrets of the same kind we hakiea) C (4, a) only wheni C j.

What about the relationship between two poifit$) and(j, s) — when can infor-
mation flow between these points? The idea is that informattdevelb is potentially
leaked via a covert channel, so that it may be leakegihtplevel. Because of this we
can only permit flow from(s, b) to (j, s), and then only when C . j. If we permitted
a small secreti, s) to flow to any(j, b) for (j # i) then we would be able to launder
small secrets by first allowing them to flow to a big secret detieaking via the covert
channel from there. In summary, we define the refinement ofengecurity lattice:

low
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Definition 1. LetS denote the 2-point lattice formed frobrand s under the ordering
b C s. We define theefinementof a security latticel as thepartial productof £
and S, which is the standard product latticé x S, quotiented by the equivalence
(Lz,b) = (Lg,s)—and this bottom element will be simply denotedLy

Example Consider the example where = {secret, financial, medical, public} is
the set of the four security levels a program has to deal witthered according to the
Hasse diagram in Figure 2. Motivating a refinement of thé&ckatthere could be medical
data that is encrypted — or simply very large (e.g. high rgsmi image data) that could
be safely allowed to leak slowly, and other medical data #natto be handled with
more care, such as an “hasHIV” boolean flag in a patient reddre partial product of
lattices£ andS is presented in Figure 3.

(secret,s)
secret
(finance,s) (medical,s)
medical
(finance,b) (medical,b)
public public
Fig. 2. Examplel Fig. 3. The refinement of

3 Secret-Sensitive Noninterference

In this section we define the security goal for programs cdmmguover data labelled
with a refined lattice. This variant of the notion of nonifiéeence,secret-sensitive
noninterferencecombines the demands of termination-insensitive norference for
b-data, and the stronger termination-sensitive noninteniee fors-data. Further, we
develop a bisimulation-style characterisatiorsetret-sensitive noninterferenagich
provides a convenient proof method.

Operational Semantics We keep our presentation language independent, but we as-
sume some basic structure for an operational semantics. ilMeowsider simple im-
perative computation modelled by a standard small-stepatipeal semantics defined
over configurations of the forfi\/, C') whereM is a memory (store) — a finite mapping
from variables to values — ar@ (C’, D etc.) is a command. Each variahlés assumed
to have a fixed policy denoteH(z), which we take to be a member of the refinement
of some latticeC.

We assume an operational semantics consisting of detestinitabelled transitions
between configurations, where a lahés either (i) an observable outpifv), meaning
that a valuev is output on a channel observable at level £ or above, or (ii) a silent

action labelled-. We write e.g(M, C) ) (M',C").
On top of the basic labelled transitions we define a familyrahsition systems
labelled by a particular level:
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Definition 2 (i-observable transitions) We can define the transition relatiors;, i €
L as: _
(M, 0V o ony G
(M, C) =i (M',C")
(M,C) % (M',C"Y  w=T1o0ru=j(n)wherej Z. i

<M7 C> l’l <MI7 C/>
Thus thei-observable transitions are obtained from the raw tramsstby filtering out
(replacing byr) all output actions that are not visible at levelNote that the non-
T transitions are just the value which is observed and not tiammel on which it is

observed.
Now we define the “big step” transitiodd/, C) =, (M’,C") as follows

(M,C) Z; (M',C"Y & (M,C) 5
<M7C> :1)}1 <M/7C/> £ <M7C> l)

Y

We also define the multi-step observatidig, C')
as follows:

(M, C) =, (My,Ch) =, (My, Cy) =, "'vgli (Mp—1,Cpn_1) e (M',C")

i (M, C"y with ¥ = vivg - - v,

for some sequence of intermediate configuratighg, C;). We define the multi-step
reduction for the empty vector to be synonymous with

Attacker’s knowledge Our presentation follows the style of Askareval [AHSS0§]
closely. The definition of noninterference developed herikdb on the concept at-
tacker knowledgevhich is what an attacker (an observer of a given clearanes 1¢
can deduce about the initial values of variables based omteydar observation of a
program run.

The attackei knows the initial low part of the memory. The low part of thenmaay
from the perspective of a given levéls all variables with policy(z, s) or lower - and
observes some output tragehat is not necessarily maximal, knows the program and
is able to make perfect deductions about the semantics gfrdiggram. For a memory
M we let M denote the low part of the memory from the perspective of @enter at
leveli, i.e. the part of the memory that he can see.

Definition 3 (Observations).Given a progranC and a low memory/?, thei-observa-
tions is the set of all possible sequences of observablaitauthat could arise from a
run of C' with a memory compatible with/?. It is defined:

Obs:(C, M) = {#|(N,C) 2, (N',C"), N'=M'}

Definition 4 (Attacker’s knowledge).Given a progranC, an initial choiceM® of the
low part of the memory (for leve) and a trace of-observable outputsg, the attacker’s
knowledge gained from this observation is the set of all iptessnemories that could
have lead to this observation.

ki(C, M, %) = {N|(N,C) &, (N",C"), N'=M'}
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Note that increase in knowledge corresponds to a decredise #ize of the knowledge
set. Knowledge increases with outputs: the more outputattheker observes, the more
precise is his knowledge [AS07]:

YO, M, T, v, ki(C,M*,ov) C k;i(C, M*, %)
In order to distinguish between what is learnt about the™bégrets (variables at levels
(1,0)) from what is learnt about the “small secrets” (variableleatls (i, s)) we define
the projections of knowledge sets to theands-parts.

Definition 5 (b- and s-restricted memories). Given a memoryM, and a security
sizea € S, we defineM |’ to be the restriction of\/ to those variables: such that
I'(z) = (j,a),j £ i—i.e. the "a-secrets” fromi’s perspective. We extend the definition
pointwise to sets of memories.

Definition 6 (b- and s-restricted knowledge).Given a progrant', a security size, €
S and an initial choiceM/? of the low part of the memory and a trace of outpijtthea-
restricted knowledge of the attackiemrittenk?(C, M*, ¥) is defined k;(C, M*, 7)) %

Fig. 4. The finance-perspective on the example refined lattice

Informally, the restricted knowledge' (C, M*, ¥) is i’s knowledge about the-secrets
(from ¢’s perspective) after having observédrom initial memoryM .

The idea of %'s secrets” can be illustrated using the lattice presemeeigure 3.
For example, the projectiol/ |/inance restrictsM to just those variables with classifi-
cations(medical, s) or (secret, s). The finance-perspective on the lattice is illustrated
in Figurel 4, where thé-secrets and-secrets are marked. The low part of the lattice,
from the finance perspective, is also marked.

The s-restricted knowledge for an attacker at leylance is thus the knowledge
that can be deduced about theecret part of the memaory.

Noninterference Several kinds of noninterference can be defined from thenaif
knowledge. Here we adapt the definition of terminationg@msitive noninterference
that was proposed in [AHSS08] and then propose a definitiantaf-levelled nonin-
terference.
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Definition 7 (Termination-Sensitive Noninterference (TSN)). A program(C' satis-
fies TSNI if for alli, whenevewv € Obs;(C, M*) then

ki(C, M, %) = k;(C, M*, %v).

TSNI means that at each step of output, nothing new aboutigfrerhemory is learnt
by the attacker.

Definition 8 (Termination-Insensitive Noninterference (TINI)). A programC' satis-
fies TINI if for all i, wheneveiv € Obs;(C, M*) then

ki(C, M i) = | ki(C M, ).

TINI allows leakage at each low output step, but only throthghfact that there isome
output step. The knowledge leaked by one output is the sarioe agy other.

In order to deal with our two different kinds of secrétands), the idea is here to
combine both TSNI and TINI: although we only accept TSNIdatata which must be
handled with more care, we allow TINI férdata, that abide some leakage since they
are randomized and large enough.

Definition 9 (Secret-Sensitive Noninterference (SSNI)A program(' satisfies SSNI
if for all 4, wheneveiv € Obs;(C, M*) then the following two properties hold:

ks (C, M, o) = ki (C, M*, %) (s-TSNI)
k2 (C, M vv) =, k2(C, M%,5v')  (b-TINI)

3.1 Characterising SSNI

The knowledge based definitions are (in our opinion) lucidase they give a clear
attacker perspective on the problem. However, for reagaaidout secret-sensitive non-
interference we find it convenient to work with a more coni@mdl characterisation in
terms of bisimulation relations. Here we develop this alive characterisation, which
we will employ in Section 4 in order to prove that the type eystthere guarantees
secret-sensitive noninterference.

The basic idea is to establish the two components of SSNwegdrms of bisim-
ulation relations between configurations.

Definition 10 (Termination-sensitive:-bisimulation (:-TSB)). A symmetric relation
‘R on configurations is a termination-sensitibisimulation, if (M, CYR(N, D) im-
plies:

(i) M*=N'andM|; = N[, and
(i) whenever M, C) %, (M',C") then(N, D) =, (N', D") with (M', C"YR(N', D').

Two configurations are said to heTSB equivalent (denoted By;) if there exists a
i-TSB relating them.



8 Demange & Sands, ESOP’09

Here, the termination-sensitivity comes from the abil@yproduce the next output to-
gether with the symmetry of the relation.

Definition 11 (Termination-insensitive i-bisimulation (i-TIB)). We say that a con-
figuration (M, C) diverges fori, written (M, C)1;, if (M, C) cannot perform any i-
observable output transitiof;.

A symmetric relatiorR on configurations is defined to beermination-insensitive
i-bisimulationif whenever M, C)R(N, D) we have

() M*= N*and
(i) if (M, C) %, (M',C") then either N, D) =, (N', D") with (M, C"YR(N', D'),
or (N, D)T);.

Two configurations are said to beTIB equivalent (denoted by;) if there exists a
1-TIB relating them.

Note that the notion of “divergence” used here is purely ftbmperspective of a remote
observer who sees only the outputs on channels. We could thiskaore conventional
if we made program termination an observable event for edite We have chosen not
to do so, but the technical development in this paper doedeménd in a crucial way
on this fact.

Before we show how these relations are sufficient to chaiiaet8 SNI, we need the
following lemmas about-TSB andi-TIB.

Lemma 1. = .

If (M,C) =; (N,D) and (M,C) =, (M’',C') then (N,D) =, (N',D') with
(M',C") =, (N', D).

Lemma 2. B

If (M,C) ~; (N, D) and(M,C) =, (M',C") then(N, D) %, (N', D') for somev’
such that eitheff = v’ and (M’, C") ~; (N, D’), or v’ is a prefix of and (N’, D).

Proof. (Lemmas 1 and|2) By induction on the number of outputs (lewrdt), and in
the base case by induction on the length of the raw transsgguience. O

Proposition 1.

Suppose that for all levels and all memoriesM and N such thatM? = N’ and
M]|; = N|i we have(M,C) =, (N,C). Then for alli, wheneveriv € Obs;(C, M*)
thenks (C, M*,ov) = k3 (C, M*, 7).

Proof. See technical report [DS09]. O

A similar proposition can be stated about termination-is#é/e noninterference con-
cerningbhigh data.

Proposition 2.
Suppose that for all levels and all A and N, such thatM* = N’ we have that
(M,C) ~; (N,C). Theniiv € Obs,;(C, M;) impliesk?(C, M*, 5v) =, k(C, M*, 5v").
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Proof. See technical report [DS09]. a

Clearly, then, putting the propositions together we getofpiechnique for SSNI:
Corollary 1. C satisfiesSSNI if, for all levelsi and all M and N, we have

e M'= N'implies(M,C) ~; (N,C), and
e M= NiandM|; = N[ implies(M,C) =, (N,C).

3.2 Computational Security

Definition[9 clearly enforces termination-sensitive ndeiference fors-data. Regard-
ing b-data, we can provide the computational security guarameAHSS08] to show
thatb-secrets, if chosen uniformly, cannot be leaked in polyr@btirne in their size. To
argue this we can first reclassify all secret$-@ta (or equivalently assume that there
are nos-secrets). Then we are back in the standard security lastraewe simply need
to generalise the results of [AHSS08] from a two-point &ttio an arbitrary one. This
is, as usual, unproblematic since from the perspective di @aividual leveli there
are only two levels of interest: the levels which can be séentfe levels less than or
equal tor) and those which cannot. The main result is thatdfata is randomly chosen,
then an observer at levélearns a negligible amount of information (as a function of
the size of thé-data) about the data whic¢ltannot see. We will not further develop the
details of this argument in the present article. The diffees from the development in
[AHSS08] would be minor.

4 Secret-Sensitive Noninterference by Typing

In this section, we describe a type system that enforcesterfeérence Definition|9:
well-typed programs are secret-sensitive noninterfeiiidg study a classical determin-
istic while programming language defined with expressigrs@mmands.

ex=nl|xleope
cu=skip|x:= e|c; c|if ethen celse ¢|

while e do ¢ | for e do ¢ | output;(e)

Heren stands for any integer constantfor any variable andp for any of the classical
binary arithmetical operators. Booleans are represengddtbgers the classical way
(0is false, and everything else i8-ue). We also assume that there are no exceptions
raised: all binary operators are totally defined.

Note that the language provides two types of lodps:loops are always termi-
nating, that is the guard expression is evaluated just deading to a constant that is
decreased each time the end of the loop body is reachedytdledoops are potentially
non terminating. The distinction will be used in the typeteysto good effect.

The language includes theatput,; primitive method that writes the value of its
argument to a channel with level The operational semantics is standard and is given
in the technical report [DS09].
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4.1 Type system

This type system is based on the combination of a standaraibgistyle analysis
(in type system form [VSI96]) for enforcing the terminatiorsensitive security fob-
secrets, and a more restrictive type system for handling-8exrets. One such termina-
tion-sensitive type system is that described in [VS97], that system is extremely
restrictive: loops are only allowed if the guard does noereéd anything except data
at the lowest lattice level, and if there is a branch on seta& at any level then no
loops are allowed inside the branches. Instead we adapteancidmmon to the type
systems from [BCO1] and [SmiO1] for the termination-sewsipart. The idea is here
to allow high while loops (i.e. loops with high guards or aréiy while loops occurring
in a high context) so long as no assignment or output to ldwelisw the loop guards
follows them.

The form of the typing judgements follows the style [of [BC@d]that it handles
indirect information flows by recording the write effect ofammand (the lowest level
to which it writes data). This gives the same power as Dersmipgpular approach
which uses a “program counter” level.

Consider both lattice€ and S, and letP be their partial product as previously
defined. A type is either an expression type denetedr, or a command type writ-
ten (7,0, d)emd, where bothr and o are inP, the set of security levels, and the
termination flags a member of the s€tl, T}, where we order the elemenits< 1.

Type judgments are of the form

I'-C:(r,0,0)cmd

where!" is the typing environment i.e. a mapping from variables toalde types. In
the following, I" is kept implicit. The syntactic meaning of such a judgmerthét

— 7 is a lower bound on the security levels of variables that as@gaed to irC'.
— o is the least upper bound on the levels of (for,if,while) gisanccurring inC'.
— ¢ is | if C contains no while loops, and isotherwise.

The semantic implication of these typings is that

— 7 is alower bound on the therite effectof the command —i.e., the command only
modifies variables of levet or above, and

— o is thetermination effectobserving thatC' produces some output (i.e. “termi-
nates”) give us knowledge about data at level at most

— § is atermination flagif 6 = | then the command always terminates.

With these intended meanings of o andd, there is a natural partial order on types
which is contravariant in its first component and covariarits second and third:

(1,0,8)emd < (7/,0",8 )emd if 7/ Cp 7 ando Cp o’ ands < &'

This relation is not used in the type system, but is used instaeement of e.g. the
subject reduction property below.

For elements ofP (the first two components of a command type in particular) we
define the first and second projections in the obvious Viidyi, a) = ¢ andfst(Lp) =
Lr;snd(i,a) = aandsnd(Lp) = Ls =b.
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Rules of the security type system are displayed in Figlre Herev we drop the
subscript for the relatiofp.

Explicit flows are handled with rules for expressions, rileASSIG, and T-OUT,
while implicit flows are treated in T-IF, T-WHILE and T-FOR veh demand that
their body is at least as high as their guard level.

Most of the action takes place in the sequential compositites. The interesting
case is T-SEQ2 where the termination effectof C'; is ans-secret, and’; is indeed
potentially nonterminating. This means that we cannowabobitrary assignments in
Cs since these might leak information about theecrets which affected the termina-
tion of C,. Thus the write effect of’, is constrained so that it does not write below
o1, the termination effect of’;. For rule T-SEQ1 we are more liberal, since either the
guards do not depend arsecrets, or’ is always terminating.

The same reasoning is applied to while and for loops — theiceton may be a
sequential composition of the body of the loop and the losglfit

I'(z) = 7 var
T-CONST ——FFF T-VAREXP
Fn:T Fx:T
Fe:7 7T Fei:T Fey:T
T-SUBEXP T-BINOP
Fe:r Felopex:T
Fe:r I'(z) = 7 var
: T-SKIP T-ASSIG
Fskip: (Tp, Lp,l)emd Fz:=c:(r,L1p,|)emd

Fe:r fst(t) Crd

Foutput, (¢) : ((4,5), Lp, Lemd "

FCi: (7,04,0:)cmd snd(o1)=b or & =1
FC1;Cy: (11 M2, 01 Uog, 61 L d2)emd

T-SEQ1

I CZ . (Ti,ai,éi)cmd g1 E T2 snd(ol) =S 51 = T
FC1;Co i (11 M72,01 Uoa, emd

T-SEQ2

}—6:0 |‘C¢:(T¢,O’i,5i)cmd QETZ TIF
+if e then C; elseCy : (11 M7, 01 Uoa LUB,6, Uda)emd

Fe:0 FC:(r,0,0)cmd 0C T snd(c) =s=o0LC

T
Fwhile e do C': (7,0 U6, T)emd TWHILE

Fe:0 FC:(r,0,0)cmd OC T snd(a):5A5=T:>aE7'T
FforedoC : (1,0,8)cmd ’

FOR

Fig. 5. The security type system

4.2 Type Soundness

In this section we prove some results about well typed prograith regard to the
type system in Figurle 5. The main proposition establishasttie type system indeed
enforces the secret-sensitive noninterference propegtgiefined in Sectidn 3.
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Proofs of the following results are only sketched here. Avatsion of the proofs
can be found in the technical report corresponding to thegmtepaper [DS09].

The first property is the standard notionsafbject reductionvhich guarantees that
execution preserves types.

Theorem 1 (Subject reduction).If - C : (7, 0,8)emd and (M, C) = (M’,C"), then
FC: (7, 0,0" ) emd with (7', ', 6" )emd < (7, 0,0)emd.

Proof. We proceed by induction on the typing derivation, and theodse analysis on
the last rule of the operational semantics. O

We need some preliminary lemmas in order to prove the SSNreament. The follow-
ing lemmas (using the terminology from [VSI96]) confirm thiae informal definitions
we gave about both components of a command type in Sécticard dnforced by the
type system.

Lemma 3 (Simple security).If = e : 7 then every variable occurring ia has type
7" var wherer’ C 7.

Lemma4 (Confinement).If - C : (r,0,d)cmd, then every variable assigned to in
programC' has type) var with  C 6.

Lemma5 (Guard safety).If - C : (7, 0, d)cmd, then every while loop or conditional
guard in programC' has typ&) var with 6 C o.

Lemma 6 (Termination). If - C : (7, 0, l)emd, thenC terminates on all memories.

These four lemmas can be easily proved by induction on thadygerivation.

In the formal development that follows for simplicity’s sake only treat the case of
the three point lattice in Figure 1. The following results &@ extended to the general
case: for a given clearance leviein £, as was depicted in the example fofance’s
perspective in Figure 4, the refinementbtan be rethought of as a three point lattice
- low level, bhighandshighsecrets.

Proposition 3 (Noninterference of well typed commands).
If a command” is typable, i.e.l- C : (7,0, d)cmd, thenC satisfies SSNI.

Proof. (Sketch; see technical repart [DS09] for details) We useptoof technique

provided by Corollary L. In the construction of the specifigifnulations we adapt the

proof from [BCO1]. The first step is to show thatC : (7, o, §)emd implies(C, M) =,

(C, N) for all levelsi, to have the s-TSNI property of Definition 9. The interestiage

isi = low sincei = high is vacuous (memories and commands are in this case equal).
A commandC' is said to beshigh or bhigh if there existsr and ¢ such that+

C : (7,0,0)cmd with respectivelyr = shighor bhigh T 7. We show that- C' :

(1,0,0)cmd implies (C, M) =, (C, N) for all M and N that are equal on their low

and bhigh parts. To do this we define a relation: (M, C)R4 (N, D) iff C andD are

typable,M' = N' andM |, = N|! , and one of the following four conditions holds:

(i) CandD areshigh (i) C =D
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(lll) C = Cl; Cg, D = Dl; CQ with <M, 01>R1 <N, D1> andC'2 is Shlgh
(iv) Cisshigh D = Dy; Dy with (M, skip)R4 (N, D,) andDs is shigh

We then show thaR; is al-TSB by induction on the definition dR,, and conclude
using Proposition /1. By Clause (ii) and Proposition 1, weehtat in well typed pro-
grams, there is no flow fromhigh data tobhigh andiow data.

The next step is to prove that the type system ensures TINdezaimg thebhigh
data. We proceed in a similar way, providing-alB R, over configurations. The rela-
tion R, is defined:(M, C)R2(N, D) iff C and D are typable M’ = N', and one of
the following holds:

(i) C'andD arebhigh (i) C =D
(i) (M,C)R'2(N, D), where the relatiofR’; is defined inductively as:
C, D bhigh (M,C) R (N, D)
(M,C;C Rl5 (N, D; O " (N,C;C"Y R'5 (N, D; C")
By Clause (ii) and Propositidn 2, we then have the TINI propefwell typed programs

concerning theibhigh data: there is no flow fromhigh data tolow data except via
the termination channel. |

R2

5 Correlation Leaks

In this section we mention a weakness in the definition ofetesnsitive noninterfer-
ence which allows the attacker to obseoagrelationsbhetween big and small secrets.
We show how the definition can be strengthened to remove sarcblations, and con-
jecture that the type-system guarantees correlatiorémreenithout need for modifica-
tion.

Suppose thatis bhighands is shigh(in the lattice in Figure 1). Somewhat surpris-
ingly the progranvutput;..,(b == s) is secret-sensitive noninterfering (note though
that it is not typeable). This is because the low observesagmothing about the value
of e.g.sinisolation. The problem is that although the observer cadeduce anything
about the individual kinds of secret, he can deduce infdonatbout theicorrelation
(in this example whether they are equal or not).

To eliminate the possibility of learning something abowt torrelation of big and
small secrets we need to demand that the knowledge learat blgoand small secrets
together is the same as for the combined knowledge learnitt dbem independently.
To express this precisely we need some additional notation.

In the definitions of secret-sensitive noninterference axetdealt with knowledge
as sets of projections of memories. We say that a membig full if dom (M) is the
set of all variables. In order to easily compare and combimamedge sets we need
to work with full memories. Define\/* to be the set of full memories obtainable by
completingM:

M* = {N | Nldom(M) =M,N is fU”}

Now lift -* to sets of memorie&’ in the natural way by defining

K* = U M*
MeK
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Definition 12 (Correlation Freedom). A program(' is Correlation Freéf for all ¥ €
Obs;(C, M?), we havek?s(C, M', v)* = kY(C,M*,¥)* N ki(C,M* ©)*, where
kY (C, M%) = {M|* | M € k;(C, M, %)} and M|" is the complement df/* —i.e.,
the projection ofM/ to the variableshotvisible at level.

In the case that’ is secret-sensitive noninterfering we can show that thislitimn
is equivalent ta:>* (C, M*, ¥)* = kP(C, M*, ¥)*, which says that nothing more is learnt
about the big and small secrets together than can be dedwuredfe big secrets alone.

Conjecture 1 Well-typed programs are correlation free.

We leave the proof of this conjecture to further work; theuition here is that any
“correlation information” will always be typed aslevel data, and hence cannot be
leaked at all.

6 Conclusions

In this article we provided a way to refine an arbitrary com@ecurity lattice in order

to distinguish two levels of secret, the big secriend the small ones. Big secrets

can be handled more liberally on the grounds that they candmeraufficiently large

and random for slow leakage to be tolerable. We introducedcaompanying notion

of secret-sensitive noninterference which combines tlative merits of termination-

sensitive and termination-insensitive noninterferei@e illustrated the use of the defi-
nition in the soundness argument for a simple type systeweidfying secret-sensitive
noninterference.

Related Work As mentioned previously, the starting point of this workA$4SS08].
Our interpretation of the results there is that we need &t ttdferent kinds of secrets in
different ways, and to our knowledge this paper is the firsldgo in a noninterference
setting. It is, however, relatively common to give a spetiehtment to cryptographic
keys as compared to other kinds of secret — e.g. [AHS06] —sully the goal here is
to deal with integrity (a key cannot be modified using a lowuedlor freshness (a key
cannot be used more than once).

Our type system is essentially a fusion of a type-basedaeisi Denning’s sys-
tem [VSI96], and a stricter system based lon [BCO1]. Thedatgstem is stricter than
a Denning-style analysis for quite a different purpose:daldavith multi-threaded pro-
grams. Our system, in a sequential setting, improves on [BBYadditionally tracking
whether a program is terminating.

Further Work A natural and interesting next step would be to combine sigpeasys-

tem with cryptographic primitives (e.g. [VolOO][LVO5][AB0E]). The notion of “big”

and “small” secrets have a natural interpretation in thetmgraphic setting, since “big”
secrets correspond to e.g. cryptographic keys. In suchtiagét might also be im-

portant to handle “size integrity”, so that one could knowtth variable is not only
independent of small secrets, but thasi& big secret.
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