Technical Report no. 2009-01

All Secrets Great and Smaﬁ

Delphine Demang David Sands

CHALMERS | GOTEBORG UNIVERSITY

Department of Computing Science and Engineering
Chalmers University of Technology and@&borg University
S-412 96 Gteborg, Sweden

Goteborg, March 2009

1. An abbreviated version of this article appearsRrogramming Languages and
Systems, the 18th European Symposium on Program@8QP 2009.
2. Author’s address: University of Rennes 1, France

Technical Report in Computing Science at
Chalmers University of Technology and&borg University

Technical Report no. 2004-06
ISSN: 1650-3023

Department of Computing Science
Chalmers University of Technology and@borg University
SE-412 96 Gteborg, Sweden

Goteborg, Sweden, 2004

Table of Contents

1 INOAUCHON - . o s e e e e e e e e e e 4
2 ARefined Multilevel Lattice e 5
3 Secret-Sensitive NONINEITErENCEo vt 6
3.1 Characterising SSNI e 10
3.2 Computational SeCUrityt e 12
4 Secret-Sensitive Noninterference by Typing ... 13
A1 TYPE SYSIEM . oottt e e e 13
4.2 TYPE SOUNANESS .+ . o v e e et e et 16
5 COMTelation LEAKS ve ettt e e e 22
B CONCIUSIONS . . . oot e e e 23
Abstract

Tools for analysing secure information flow are almost esigiely based on ideas going
back to Denning’s work from the 70’s. This approach embodiesnperfect notion of
security which turns a blind eye to information flows whicle @ncoded in the termi-
nation behaviour of a program. In exchange for this weaknmess/ more programs are
deemed "secure”, using conditions which are easy to cheekidusly it was thought
that such leaks are limited to at most one bit per run. Recenk Wy Askarov et al
(ESORICS’08) offers some bad news and some good news: thadvesl is that for
programs which perform output, the amount of informaticakkd by a Denning style
analysis is not bounded; the good news is that if secretstargen to be sufficiently
large and sufficiently random then they cannot be effegtiletiked at all. The prob-
lem addressed in this paper is that secrets cannot alwaysbe sufficiently large or
sufficiently random. Contrast, for example, an encryptieg with an “hasHIV"-field
of a patient record. In recognition of this we develop a notid secret-sensitive non-
interferencein which “small” secrets are handled more carefully tharg"tmnes. We
illustrate the idea with a type system which combines a #ibBenning-style analysis
with a more restrictive system according to the nature ostwets at hand.

1 Introduction

Most tools for analysing information flow in programs sucll&§viZZ +08] and Flow-
Caml [Sim03] build upon ideas going back to Denning’s wounfrthe 70's/[DD77].
These systems enforce an imperfect notion of informatiow fichich has become
known astermination-insensitive noninterferen¢€INI). Under this version of non-
interference, information leaks are permitted if they aams$mitted purely by the pro-
gram’s termination behaviour (i.e., whether it terminatesot). This imperfection is
the price to pay for having a security condition which is tigkly liberal (e.g. allowing
while-loops whose termination may depend on the value o€eefeand easy to check.
How bad is termination-insensitive noninterference? idresly there have been in-

formal arguments that termination-insensitive nonirgegfice leaks at most one bit:
either a program terminates or it does not, so at most onef litfamation can be
encoded in the termination state. However, recent work byaAs/ et al [AHSS08]
shows that for programs which perform output, an arbitranpant of information can
be leaked. The following program outputs an ascending seguef natural numbers
on a public channel until the secret has been output, at wioatt it goes into a silent
loop:
for i = 0 to maxNat (

out put i on public_channel

if (i = secret) then (while true do skip)

At the very least we can say that at each output step, thearserable to narrow
down the possible values of the secret. This program (irblgtvariants) is accepted
as secure by state-of-the-art information flow analysidstsoch as Jif [MZZ 08],
FlowCaml [Sim03], and the SPARK Examiner [BB03,CHO04].

Askarovet al formalise the notion of termination-insensitive nonifieeence and
show that although termination-insensitive noninterfieeecan leak an arbitrary amount
of information, it cannot do so any more efficiently than thexae example. The revised
intuition for programs performing public output is that thember of possible “termi-
nation states” that can be used to encode information iseobtter of the number of
public outputs performed by the program — since the programdiverge after O out-
puts, after 1 output, after 2 outputs, etc. This means thiaton bits of information
the program needs to perfor2fi outputs.

For Denning-style analyses this means that if secrets #ieisntly large and suffi-
ciently random then programs azemputationally secura the sense that the probabil-
ity of the attacker guessing the secret after observing ynpabial number of outputs
(again, in the size of the secret) gives only a negligibleaatiyge over guessing the
secret without running the program.

What does this mean for information flow analysis in practié#ereas previously
the imperfections of a Denning-style analysis were viewediaeasonable tradeoff
between ease of analysis versus degree of security, wevddhat in the light of
[AHSS08] we need a different perspective. The leak causeerbyination-insensitivity
is only acceptable for sufficiently large and random secBai secrets, in general, are
not always parametric: one cannot always freely choose temasecret larger and

more random. For example, an application cannot decideathegdit card CCV num-
ber should be made larger. An encryption key, on the othed haight be something
that the application can control, and decide to scale up.

In this paper we consider the information flow problem in apitesiry multi-level
security lattice. We present a way (Section 2) of refininghesecurity level in an
information-flow lattice into two levelshig secretsthat are sufficiently large and ran-
domized to abide some leakage, andkll secretsfor which even slow leakage is unac-
ceptable. Then, we define a two-level noninterference (@#8), following Askarov et
al’s recent work, which combines the demands of terminaitisensitive noninterfer-
ence (for big secrets) with the stricter requirements ohieation-sensitive noninterfer-
ence (for small secrets). A type system is provided (Selt)ahat ensures this notion
of noninterference. Additional novelties of the system arsomewhat more liberal
treatment of small secrets than found in previous ternonasensitive type systems.
Section 5 describes a strengthening of the definition of rigcio eliminate leakage
correlations between big and small secrets.

2 A Refined Multilevel Lattice

In [AHSSO08] a definition of termination-insensitive norérference TINI) was intro-
duced which is suitable for programs with outputs, assuminly two security levels
low andhigh. They proved that, even if programs verifying this conditaan leak more
than a bit of information, the attacker cannot reliably ifi.e single run) learn a secret in
polynomial time in the size of the secret. They also proved, flor programs satisfying
TINI, if secrets are uniformly distributed, then a parteubbservation of a computation
represents only a negligible hint for the attacker (Theo8m

The basic idea in this work is to refine the notiorhigh into two pointsbhighand
shigh These will correspond to “big” secrets and “small” secretpectively. We will
define a notion of secret-sensitive noninterference whildwa a low user to learn a
little about big secrets, and nothing at all about smallesscfrelative to the notion of
observation that we model).

How are big and small secrets related? A key point here isdiat labelledhigh
will depend only orbhighor low data sources, whereas data labeib@jhmight also
depend orshighdata sources. Thus the lab@tigh does not mean that the dataa
large secret — it just means that it does not depend on (coatsi information about)
a small secret. We can then see that the resulting refinedityelettice is as given in
Figure 1.

Now we generalise this refinement to the case of an arbitrarli-tevel lattice
of information levels/[Den76]. Denning’s lattice model afférmation considers an
arbitrary complete latticeZ, T, U,, M., L ~) whereL is the set of securitglearance
levels(henceforth juskevels ranged over by, j), andC . is the ordering relation which
determines when one level is higher than another. The iddaatsa principal with a
clearance levelis permitted to see data which is classified at lévalbelow according
to the partial ordering. Information from any levels may benbined, in which case the
classification for the resulting data is given determindaty by the least-upper-bound
operation_ ..

To refine this general case we note that we must split each degel, with the
exception of the bottom level » (which can always be thought of as public data)
into two points, corresponding to the big secrets (labelednd the small (labelled
s). Thus any non-bottom elementwill be refined to(¢,b) and (7, s). To define the
appropriate order between lattice elements we first note(ith@) C (i, s) — with the
same motivation as given for the refined two-point latticenitrly, when comparing
secrets of the same kind we ha¥ea) C (4, a) only wheni C. j.

shigh What about the relationship between two poifitd)
and(j, s) —when can information flow between these points?
bhigh The idea is that information at leveis potentially leaked

via a covert channel, so that it may be leakednylevel.

Because of this we can only permit flow frofw b) to

(4, s), and then only when C . j. If we permitted a small

Fig. 1. The refined 2-point secret(s, s) to flow to any(j, b) for (j # i) then we would

lattice be able to launder small secrets by first allowing them to
flow to a big secret and then leaking via the covert channel

from there. In summary, we define the refinement of a givenrggdattice:

low

Definition 1. LetS denote the 2-point lattice formed frobrand s under the ordering
b C s. We define theefinementof a security latticel as thepartial productof £
and S, which is the standard product latticé x S, quotiented by the equivalence
(Lz,b) = (Lg,s)—and this bottom element will be simply denotedLhy

Example Consider the example where = {secret, financial, medical, public} is
the set of the four security levels a program has to deal witthered according to the
Hasse diagram in Figulre 2. Motivating a refinement of thé&cktthere could be medical
data that is encrypted — or simply very large (e.g. high &g image data) that could
be safely allowed to leak slowly, and other medical data #natto be handled with
more care, such as an “hasHIV” boolean flag in a patient reddrd partial product of
lattices andS is presented in Figure 3.

(secret,s)
secret
(finance,s) (medical,s)
medical
(finance,b) (medical,b)
public public
Fig. 2. ExampleL Fig. 3. The refinement of2

3 Secret-Sensitive Noninterference

In this section we define the security goal for programs cdimguover data labelled
with a refined lattice. This variant of the notion of nonifiégence,secret-sensitive

noninterferencecombines the demands of termination-insensitive norference for
b-data, and the stronger termination-sensitive noninteniee fors-data. Further, we
develop a bisimulation-style characterisatiorsetret-sensitive noninterferenagich
provides a convenient proof method.

Operational Semantics We keep our presentation language independent, but we as-
sume some basic structure for an operational semantics. ilMeowsider simple im-
perative computation modelled by a standard small-stepatipaal semantics defined
over configurations of the forfi\/, C') whereM is a memory (store) — a finite mapping
from variables to values — ar@ (C’, D etc.) is a command. Each variahlés assumed
to have a fixed policy denotel(z), which we take to be a member of the refinement
of some latticeC.

We assume an operational semantics consisting of detestinit@ibelled transitions
between configurations, where a labés either (i) an observable outpif), meaning

that a valuev is output on a channel observable at level £ or above, or (ii) a silent

action labelledr. We write e.g (M, C) " (M7,).

On top of the basic labelled transitions we define a familyrahsition systems
labelled by a particular level:

Definition 2 (i-observable transitions) We can define the transition relatioss;, i €
L as:

e o ey e
(M,C) 5 (M',C")
(M,Cy % (M',C"Y u=rTo0ru=j(n)wherej Z, i
(M,C) 5 (M, C")

Thus thei-observable transitions are obtained from the raw tramsstby filtering out
(replacing byr) all output actions that are not visible at levelNote that the non-
T transitions are just the value which is observed and not tiammel on which it is
observed.

Now we define the “big step” transitiodd/, C) =, (M’,C") as follows

(M,C) Z; (M',C"y & (M,C) 5, (M',C")
(M,C) =; (M',C"y 2 (M,C) 5, %, (M',C")

We also define the multi-step observatidig, C) gi (M',C") with T = vyvg -+ vy
as follows:

(M,C) 2, (My,C1) B (Mo, Co) 2 - 5" (My,_1,Cy) 225 (M, C")

for some sequence of intermediate configuratigh, C;). We define the multi-step
reduction for the empty vector to be synonymous with

Attacker's knowledge Our presentation follows the style of Askareval [AHSSO08]
closely. The definition of noninterference developed heii@b on the concept ct-
tacker knowledgevhich is what an attacker (an observer of a given clearanas 1¢
can deduce about the initial values of variables based omteydar observation of a
program run.

The attackef knows the initial low part of the memory. The low part of themmy
from the perspective of a given levels all variables with policy(i, s) or lower - and
observes some output tragehat is not necessarily maximal, knows the program and
is able to make perfect deductions about the semantics girdggram. For a memory
M we letM* denote the low part of the memory from the perspective of @enler at
leveli, i.e. the part of the memory that he can see.

Definition 3 (Observations).Given a progranC and a low memory/?, thei-observa-
tions is the set of all possible sequences of observablautsutpat could arise from a
run of C' with a memory compatible with/?. It is defined:

Obs;(C, M*) = {#|(N,C) =, (N',C"), N'= M}

Definition 4 (Attacker’s knowledge).Given a progrant, an initial choiceM’ of the
low part of the memory (for levé) and a trace of-observable outputg, the attacker’s
knowledge gained from this observation is the set of all iptsssnemories that could
have lead to this observation.

ki(C, M', %) = {N|(N,C) £, (N",C"), N'=M'}

Note that increase in knowledge corresponds to a decredise @ize of the knowledge
set. Knowledge increases with outputs: the more outputattheker observes, the more
precise is his knowledge [AS07]:

YC, M 5,v. ki(C, M, o) C ki(C, M*, %)

In order to distinguish between what is learnt about the™bégrets (variables at levels
(z,b)) from what is learnt about the “small secrets” (variableleegls (i, s)) we define
the projections of knowledge sets to theands-parts.

Definition 5 (b- and s-restricted memories). Given a memoryM, and a security
sizea € S, we defineM |’ to be the restriction of\/ to those variables: such that
I'(z) = (j,a),j £ i—i.e. the "a-secrets” fromi’s perspective. We extend the definition
pointwise to sets of memories.

Definition 6 (b- and s-restricted knowledge).Given a progranC', a security size €
S and an initial choiceM/? of the low part of the memory and a trace of outpgjthea-
restricted knowledge of the attackiemrittenk?(C, M*, ¥) is defined k;(C, M*, 7)) |%.

Informally, the restricted knowledge' (C, M*, 7) is i's knowledge about the-secrets
(fromi’s perspective) after having observédrom initial memory M.

The idea of %'s secrets” can be illustrated using the lattice presemeeigure 3.
For example, the projectiof/ |finance restrictsM to just those variables with classifi-
cations(medical, s) or (secret, s). The finance-perspective on the lattice is illustrated

Fig. 4. The finance-perspective on the example refined lattice

in Figurel 4, where thé-secrets and-secrets are marked. The low part of the lattice,
from the finance perspective, is also marked.

The s-restricted knowledge for an attacker at leylance is thus the knowledge
that can be deduced about thisecret part of the memory.

Noninterference Several kinds of noninterference can be defined from thenaif
knowledge. Here we adapt the definition of terminationg@msitive noninterference
that was proposed in [AHSS08] and then propose a definitiantaf-levelled nonin-
terference.

Definition 7 (Termination-Sensitive Noninterference (TSN)). A program(' satis-
fies TSNI if for alli, wheneveiiv € Obs;(C, M*) then

ki(C, M*, %) = k;(C, M*, %v).

TSNI means that at each step of output, nothing new aboutitfrerhemory is learnt
by the attacker.

Definition 8 (Termination-Insensitive Noninterference (TINI)). A programC' satis-
fies TINI if for alli, whenevetGv € Obs;(C, M?) then

ki(C, M wv) = | ki(C, M,).

TINI allows leakage at each low output step, but only throtighfact that there isome
output step. The knowledge leaked by one output is the sarfoe asy other.

In order to deal with our two different kinds of secrétands), the idea is here to
combine both TSNI and TINI: although we only accept TSNIdfatata which must be
handled with more care, we allow TINI férdata, that abide some leakage since they
are randomized and large enough.

Definition 9 (Secret-Sensitive Noninterference (SSNI)A program(' satisfies SSNI
if for all 4, wheneveiiv € Obs;(C, M?) then the following two properties hold:

ki (C, M,) = ki (C, M, D) (s-TSNI)

k2 (C, MY vv) =, k2 (C, M?, 50") (b-TINI)

10

3.1 Characterising SSNI

The knowledge based definitions are (in our opinion) lucidase they give a clear
attacker perspective on the problem. However, for reagaaidout secret-sensitive non-
interference we find it convenient to work with a more coniamdl characterisation in
terms of bisimulation relations. Here we develop this aliive characterisation, which
we will employ in Section 4 in order to prove that the type eystthere guarantees
secret-sensitive noninterference.

The basic idea is to establish the two components of SSNiwagdrms of bisim-
ulation relations between configurations.

Definition 10 (Termination-sensitivei-bisimulation (i-TSB)). A symmetric relation
R on configurations is a termination-sensiti#isimulation, if (M, C)R(N, D) im-
plies:

() M'=N*andM|; = N|;, and
(i) whenever(M,C) -%; (M’,C") then(N, D) =%, (N, D'} with (M’,C"YR(N', D').

Two configurations are said to heTSB equivalent (denoted By;) if there exists a
i-TSB relating them.

Here, the termination-sensitivity comes from the abilt@yproduce the next output to-
gether with the symmetry of the relation.

Definition 11 (Termination-insensitive i-bisimulation (i-TIB)). We say that a con-
figuration (M, C) diverges fori, written (M, C)1;, if (M, C) cannot perform any i-
observable output transitiof,.

A symmetric relatiorR on configurations is defined to baermination-insensitive
i-bisimulationif whenever M, C)R(N, D) we have

() M*= N?and
(i) if (M, C) %, (M',C") then either N, D) =, (N', D") with (M', C"YR(N', D'),
or (N, D)T);.

Two configurations are said to beTIB equivalent (denoted by,) if there exists a
1-TIB relating them.

Note that the notion of “divergence” used here is purely ftbmperspective of a remote
observer who sees only the outputs on channels. We could thiskaore conventional
if we made program termination an observable event for edlite We have chosen not
to do so, but the technical development in this paper doedemménd in a crucial way
on this fact.

Before we show these relations in Definitions 10[and 11 afe#rit to characterise
SSNI, we need the following lemmas abeéuiSB andi-TIB.

Lemma 1. = .
If (M,C) =; (N,D) and (M,C) =; (M’',C") then (N,D) =, (N’,D') with
(M',C"y =, (N',D").

11

Proof. We proceed by induction on the number of outputs (lengtf),odind in the base
case by induction on the length of the raw transition segeilenc

— Base casei has length 0 so every transition is silent. We proceed bydtido on

the numbem of silent steps:

e Base case: trivial fon = 0.

e Induction: here, we have the following + 1-step computatiofM, C') 5,
(My,Co) 5y .. (M, C) D3 (Myyq,Crir) = (M',C"). Applying the in-
duction hypothesis on the first steps, we have thdtV, D) =; (N,,, D,,)
with (M,,, C,,) =; (N, Dyy). But (M,,, Cp,) i (M, 41, Cry1), SO by defini-
tion of ani-TSB, we have thatN,,, D,,,) = (N’, D"} with (M,, 1, Cy, 1) =4
(N’, D). We conclude concatenating computatiofd’; D) =; (N,,, D,,) =

N',D").
- Indu<ctidn: s>uppose§' has lengtht + 1. This can be written
(M,C) 225, (M,,,,Cy,) == (M, ,,Ch,.,). Applying the induction hy-
pothesis on thé first output multisteps, we obtain
<N7 D> %L <Nmk;Dmk> with <Mnk70nk> = <NmkaDmk>-
But (M, , C,,) makes an output multiste%%i. We conclude applying the defi-
nition of ani-TSB as many times as there are silent steps before is output. O

Lemma 2.
If (M,C) ~; (N, D) and{
"and

—

, C) 2, (M',C") then(N, D) 2 (N', D’) for somev’
such that eithef = v ,

M,
(M',C"y ~; (N',D'), or v/ is a prefix ofd and (N’, D')1;.

Proof. Similar to Lemma 1. O

The following propositions state that SSNI can be couchdtiérbisimulation set-
ting. To symplify notations, we will denote b¥,L’...the low projectionsM/® of a
memory M from the perspective of, wheni is clear from the context. Similarly, we
will respectively denote by, B’. .. andS,S’. . . the restrictiond/ |} and)M|%. The triple
LBS will denote the necessarily unique memadysuch thatV/* = L, M|; = B and
M|i=S.

Proposition 1.

Suppose that for all levels and all memoriesM and N such thatM? = N* and
M| = N[i we have(M, C) =; (N, C). Then for alli, wheneveiwv € Obs;(C, M*)
thenks (C, M*,ov) = k3 (C, M*, 7).

Proof. Here we just focus on the inclusian sinceC comes from the monotonicity of
knowledge.

Supposev € Obs;(C, L) and for allL,B,S andS’ we have(LBS, C) =, (LBS’,C').
Let Sy be an element of (C, L, ¥). We have to show thefy € £{(C, L, vv) (nothing
is learned from the output).

Sincev € Obs;(C, L), there existB,S such that(LBS,C) =, (L'B'S",C").
But we also havéLBS,C) =, (LBSy,C). Thanks to Lemmall we then have that
(LBS,,C) 2, (L"B"S},C"), which means tha$, € k;(C, L, o).

O

12

Proposition 2.
Suppose that for all levelsand all M, N such that\? = N* we have thatM, C) ~;
(N, C). Thendv € Obs;(C, M;) impliesk?(C, M*, 5v) =, kY (C, M*, 5v").

Proof. Leti € L. Supposeiv € Obs;(C, L). Then,(LBS,C) iﬁz (Lo B3 Ss, Co). We
decompose this computation as folloWwsB.S, C) =; (L, B1S;, C1) =; (L2B2Ss, Cs).

Letv’ andB, suchthatB, € k(C, L, 7v'). We have to show that, € kY (C, L, v)
(what is learned from is the same as from the outpuf).

SinceByisink?(C, L, #v'), we have(LByS, C) £, (L'B{S,, C) %% (L" By S, C"
for somes,.

By hypothesis, we have that BSS, C) ~; (LBSy, C).

Thanks to Lemmal2, we have th@t, B1S1,C,) ~; (L' B}Sj, C'). By definition

’
v,

of ai-TIB, becaus&’ does not diverge starting frofif B;.S;, (since(L' B(,S;, C") =;
(L"B{ Sy, C")), then the output value is the same = v’.

S0, (Lo BoSo, C) =, (L'B,S,, C") <, (L"BISY,C"), which means thaB, €
k2(C, L, vv).
O

Clearly, then, putting the propositions together we geteptechnique for SSNI:

Corollary 1. C satisfiesSSNI if, for all levelsi and all M, and N we have

e M'= N'implies(M,C) ~; (N,C), and
e M= N'andM|i = N|i implies(M,C) =, (N, C).

3.2 Computational Security

Definition[9 clearly enforces termination-sensitive ndeiference fors-data. Regard-
ing b-data, we can provide the computational security guarartEfAHSS08] to show
thatb-secrets, if chosen uniformly, cannot be leaked in polym@dtime in their size. To
argue this we can first reclassify all secret$-@ta (or equivalently assume that there
are nos-secrets). Then we are back in the standard security lattibwe simply need
to generalise the results of [AHSS08] from a two-point &ttio an arbitrary one. This
is, as usual, unproblematic since from the perspective di @aividual leveli there
are only two levels of interest: the levels which can be séentbe levels less than or
equal toi) and those which cannot. The main result is thatdfata is randomly chosen,
then an observer at levélearns a negligible amount of information (as a function of
the size of thé-data) about the data whic¢ltannot see. We will not further develop the
details of this argument in the present article. The diffiees from the development in
[AHSS08] would be minor.

13

4 Secret-Sensitive Noninterference by Typing

In this section, we describe a type system that enforcesathiaterference Definition) 9:
well-typed programs are secret-sensitive noninterfeiiidg study a classical determin-
istic while programming language defined with expressiorts@mmands.

ex=nl|xleope
cu=skip|x:= e|c; c|if ethen celse c |

while e do ¢ | for e do ¢ | output;(e)

Heren stands for any integer constamtfor any variable andp for any of the classical
binary arithmetical operators. Booleans are represengadtbgers the classical way
(0is false, and everything else i8-ue). We also assume that there are no exceptions
raised: all binary operators are totally defined.

Note that the language provides two types of lodps:loops are always termi-
nating, that is the guard expression is evaluated just deading to a constant that is
decreased each time the end of the loop body is reacheafzledoops are potentially
non terminating. The distinction will be used in the typetsysto good effect.

The language includes theutput, primitive method that writes the value of its
argument to a channel with level The operational semantics is standard and is given
in Figure 5. We denote by/(z) the value of the variable.

4.1 Type system

This type system is based on the combination of a standaraibgstyle analysis
(in type system form [VSI96]) for enforcing the terminatiorsensitive security fob-
secrets, and a more restrictive type system for handling-8exrets. One such termina-
tion-sensitive type system is that described|in [VS97], that system is extremely
restrictive: loops are only allowed if the guard does noereéd anything except data
at the lowest lattice level, and if there is a branch on seta& at any level then no
loops are allowed inside the branches. Instead we adapteancidimmon to the type
systems from [BCO1] and [SmiO1] for the termination-sewsipart. The idea is here
to allow high while loops (i.e. loops with high guards or aréiy while loops occurring
in a high context) so long as no assignment or output to ldvelisw the loop guards
follows them.

The form of the typing judgements follows the style [of [BC@i]that it handles
indirect information flows by recording the write effect ofammand (the lowest level
to which it writes data). This gives the same power as Dersmipgpular approach
which uses a “program counter” level.

Consider both lattice® and S, and let? be their partial product as previously
defined. A type is either an expression type denetedr, or a command type writ-
ten (7,0, d)emd, where bothr and o are inP, the set of security levels, and the
termination flags a member of the s€tl, T}, where we order the elemenits< 1.

Type judgments are of the form

I'-C:(r,0,6)emd

14

—F—W—E NST 7M(I) - nE VAR
(M,n)i}n-co S (M,z) I n
(M,er) | n1 (M, e2) | no mopnz=n_
(M, e1opez) | n)
(M,e) 4 n
o C-OUT
<M7 OUtPUti(e)> - <M7 Skip>
(M,e) 4 n
p= C-ASSIGN
(M, z:=e) — (M[x < n], skip)

(M,C1) = (M, Cr) st —
(M, Cy; Ca) 5 (M!,C}; Ca) (M, skip; C2) = (M, Ca)
(M,e)dn n#0 CF1 (M,e) 40 -

(M, if e then C; elseCy) = (M, Cy) (M, if e then C; elseCy) = (M, Cs)

C-WHILE

(M, while e do C) = (M, if e then (C; while e do C) else skip

(M,e) §n ni=|n|

C-FOR
(M, for edo C) = (M, if nq then (C;for n1 — 1 do C) else skip

Fig. 5. The labelled transition system

wherel is the typing environment i.e. a mapping from variables toalde types. In
the following, I" is kept implicit. The syntactic meaning of such a judgmenhat

— 7 is a lower bound on the security levels of variables that aségaed to irC.
— o is the least upper bound on the levels of (for, if, while) glsamccurring inC.
— ¢ is | if C contains no while loops, and isotherwise.

The semantic implication of these typings is that

— 7 is alower bound on the therite effectof the command —i.e., the command only
modifies variables of levet or above, and

— o is thetermination effectobserving thatC' produces some output (i.e. “termi-
nates”) give us knowledge about data at level at most

— § is atermination flagif 6 = | then the command always terminates.

With these intended meanings of o andd, there is a natural partial order on types
which is contravariant in the first component and covariarthe second and third:

(1,0,8)emd < (7/,0",8)emd if 7 Cp 7ando Cp o’ ands < &'

This relation is not used in the type system, but is used instaiement of e.g. the
subject reduction property below.

15

For elements of° (the first two components of a command type in particular) we
define the first and second projections in the obvious vigyi, a) = i andfst(Lp) =
Lr;snd(iya) =aandsnd(Llp) = Ls =h.

Rules of the security type system are displayed in Figure lerev we drop the
subscript for the relation_p.

Explicit flows are handled with rules for expressions, ruleASSIGN, and T-
OUT, while implicit flows are treated in T-IF, T-WHILE and TR which demand
that their body is at least as high as their guard level.

Most of the action takes place in the sequential compositites. The interesting
case is T-SEQ2 where the termination effectof C; is ans-secret, and’; is indeed
potentially nonterminating. This means that we cannotwabobitrary assignments in
C> since these might leak information about theecrets which affected the termina-
tion of C. Thus the write effect of’; is constrained so that it does not write below
o1, the termination effect of’;. For rule T-SEQ1 we are more liberal, since either the
guards do not depend arsecrets, or’; is always terminating.

The same reasoning is applied to while and for loops — theication may be a
sequential composition of the body of the loop and the losglfit

I'(xz) = 7 var
T-CONST ——F T-VAREXP
Fn:T Fx:T
Fe:7 TCr Fel:T Fey:T
T-SUBEXP T-BINOP
Fe:r Feiopex:T
Fe:r I'(z) =T var
. T-SKIP T-ASSIGN
Fskip: (Te, Lp,)emd Fz:=e:(r,1p,|l)emd

Fe:r fst(t) Cc i

t output,(e) : ((i,), Lp, l)cde_OUT

FCi: (74,04,0:)emd snd(o1) =b or & =1
FC1;C2 : (11 M 12,01 U oz, 61 L d2)emd

T-SEQ1

FCi: (75,04,0:)cmd o1 Cm snd(c1) = s 61 =1
FC1;Cz: (i M7, 01 |_|O'27T)Cmd

T-SEQ2

Fe:0 I—C’iz(n,ai,di)cmd 927’1 TIF
F if e then C elseCs : (Tl M12,01 Uo2 |_|9,61 uég)cmd i

Fe:0 FC:(r,0,0)emd 0C T snd(o)=s=0cLCT

Fwhile e do C : (1,0 U0, Temd TWHILE

Fe:6 FC:(r,0,0)cmd 0C T snd(o)zs/\ézTiaETT

FforedoC : (1,0,0)emd FOR

Fig. 6. The security type system

16

4.2 Type Soundness

In this section we prove some results about well typed progravith regard to the
type system in Figurie 6. The main proposition establishastte type system indeed
enforces the secret-sensitive noninterference propegtgtefined in Sectidn! 3.

The first property is the standard notionsafbject reductionvhich guarantees that
execution preserves types.

Theorem 1 (Subject reduction).If - C : (7,0, 8)emd and (M, C) = (M’,C"), then
FC: (7, 0,0 emd with (7', 0", 6")emd < (7, 0,0)emd.

Proof. We proceed by induction on the type derivation, and thendsge @nalysis on
the last rule of operational semantics.

— T-ASSIGN: Here,- z := e : (1,1,,l)cmd. On every memoni/, (M,z :=
e) = (M, skip). By T-SKIP,- skip : (Tp, Lp, |)emd. And (T p, Lp, L)emd <
(7, Ly, l)emd, because Cp T p for everyr.

— T-OUT: Here- output;(e) : ((4,s), Lp, |)emd. On every memon), we have
(M, output,(e)) = (M,skip). By T-SKIP, - skip : (Tp, Lp,|)emd. And
(Tp,Lp,L)emd < ((i,s), Ly, l)emd, becauséi, s) Cp T p for everyi.

- T'SEQ]. Here; 01;62 : (7'1 [M72,01 U 02,51 Ll 99 because- C; : (TZ‘,O'i,éi)Cmd
andsnd(oy) Cs bord; = |.

We distinguish two cases according to whether C-SEQ1 or QBE used to make
a step.

e C-SEQ1: Here{M,Cy;Cy) % (M',C4; Cy) becausg M, Cy) = (M',CY).
Applying induction hypothesis ofi';, we get ;- C} : (71,071, d])emd with
(11,01,8)emd < (11, 01,81)cmd. Moreover,snd(a}) Ebord) = |.

Now, applying rule T-SEQ1 ot} andCy, we get := C{; Cs : (11 M 12,0 U
09,07 U d2)emd. Now we can conclude :

*x We haver; M, C 7 M 7. By case analysis, becauseC 7.

*x We havers| Moy C oy Moy becauser] C o.

x Finally,0] U 02 C §; U 02 because < d;.

e C-SEQ2: Here(; is skip and (M, skip; Cy) = (M, Cs). We have- C :

(12, 09, d2)emd, and we can conclude since :
* T M7 E 7o
*x 09 Loy Uog
* 52 E (51 U (52

— T-SEQ2: Herel- C1;Cy : (11 M7, 01 Uoa, T)emd because- C; : (73,04, 6;)emd
ano; C 75 andsnd(oy) = s §; = 1. Only rule C-SEQ1 can be used, singe= 1.
Thus, (M, Cy; Co) % (M',C}; Co) becausg M, Cy) = (M’,C}). Applying in-
duction hypothesis o6, we get i+ C7 : (71, 07,971)emd with (71, 0,07)emd <
(11,01,01)cmd.

We distinguish two cases :

o If 57 = |, then we can apply T-SEQ1, obtainihgC}; Cy : (7] M 72,0} U

02,01 LU d2)emd. We again conclude by a case analysis as previously.

17

e If 67 = T, thenwe can apply T-SEQ2 becauseC oy C 7. We get- C1; C :
(71 M 72,07 Uos, I)emd and conclude as previously.

— T-IF: Here,l- if e then Cy elseCy : (11 M 712,01 U oo U 6,01 U d2)cmd because
Fe:fand- C; : (Ti,Ji,(Si)Cmd andf C ;.

Depending on whether C-IF1 or C-IF2 is used, there are twescas

e If C-IF1 is used,C; will be the next instruction, then we have to show that
(11,01,01)emd < (11 M 12,01 U oy U, 5 Udy)emd. We proceed simply by
definition of1 andu.

e Similarly if C-IF2 is used.

— T-FOR: Heret+ for e do C : (1,0,0)cmd becausé- e : 0, C : (1,0,d)cmd,
0 Crandsnd(c) =sAd=1=0cCr.

According to C-FOR, we have to typen, then C;for n; — 1 do C else skip
where(M, e) || nandn; = |n|. Butk C : (1,0,d)cmd andF for ny —1do C :
(1,0,0)cmd.

There are two cases to type the sequential composition :

e If § = |, then we use rule C-SEQ1 to get C; for n; —1do C : (7,0, 8)cmd.
We conclude using T-IF with - if ny then C;for n; — 1 do C else skip:
(1,0,0)cemd (becausé ny : Lp).

e If § = T, then we can use T-SEQ?2 : in fagtC 7 by the side condition of
T-FOR becausend(c) = s (otherwise, we would use T-SEQ1) afd= 1.
We get :+ C;for ny — 1do C : (7,0, T)emd. We conclude using T-IF rule,
obtaining - if ny then C;for n; — 1 do C else skip: (7,0, d)cmd.

— T-WHILE: Here - while e do C' : (7,0 U 6, T)cmd because- e : 6, C
(r,0,0)cmd, @ C 7 andsnd(c) = s = o C 7. According to C-WHILE, we
have to typef e then (C;while e do C) else skip Butt- C' : (7,0,0)cmd and
Fwhile edo C : (1,0 U6, T)emd.

We have two cases for typir@; while e do C.

e If snd(c) Cp b, we can use rule T-SEQ1. Thus,C;while edo C : (7,0 U
6, 1)emd. Using rule T-IF, we get i if e then (C; while e do C') else skip:
(1,010, T)emd.

e If snd(c) = s then, by the side condition of T-WHILE, we have C 7.
Applying T-SEQ2, we getl: C;whileedo C : (7,00, T)emd. By rule T-IF,
we conclude with t if e then (C; while e do C) else skip: (7,0 U6, T)emd.

O

The following lemmas (using the terminology from [VSI96Yrdirm that the infor-
mal definitions we gave about both components of a commaradityBection 4.1 are
enforced by the type system.

Lemma 3 (Simple security).If - e : 7 then every variable occurring ia has type
7" var wherer’ C 7.

Lemma4 (Confinement).If = C : (7,0,d)cmd, then every variable assigned to in
programC' has type var with 7 C 6.

18

Lemma5 (Guard safety).If - C : (7, o, d)cmd, then every while loop or conditional
guard in programC' has type var with 6§ C o.

Lemma 6 (Termination). If - C' : (7,0, l)cmd, thenC terminates on all memories.

The proofs of these four lemmas are straightforward induaston the respective typing
derivations; the details are omitted.

In the formal development that follows for simplicity’s sake only treat the case of
the three point lattice in Figure 1. The following results &@ extended to the general
case: for a given clearance leviein £, as was depicted in the example fofance’s
perspective in Figure 4, the refinementbtan be rethought of as a three point lattice
- low level, bhighandshighsecrets.

Recall that the three point lattice is the partial producfiofv, high} and.S, which
yields the three ordered poinisw Cp (high,b) Cp (high, s). In the following we
write bhigh and shighfor the latter two points. A command is said to beshighor
bhighif there existsr ando such that- C' : (7, 0, §)emd with respectivelyr = shigh
orbhigh C 7.

In order to further lighten the notation, we first introdube hotion ofa-equivalence
on memories, for eachin the three point-lattice, as follows:

Definition 12 (Memory a-equivalence).
Leta be in{low, bhigh, shigh}. Two memoried/ and N are said to be:-equivalent,
denoted by\/ =, N if for all variablesx, I'(x) C a = M (x) = N(x).

The goal in the type soundness proof is to build for eaali-TSB and:-TIB over
configurations of the formiM, C) and(N, C'), whereC'is typeable. The following two
propositions identify classes of configurations that caedmaly shown to be bisimilar.

Proposition 3 (-TSBisimilarity of shigh commands).
The relation{((M, C), (N, D))|M =, N;C, D areshigh} is al-TSB.

Proof. The relation is symmetric by definition. Létand D be twoshighcommands,
and M, N be two memories such thatl =, N, so we have thal/ =; N. Suppose
we have(M,C) %, (M’,C"). SinceC is shigh, then the transition is silent, hence
we can match the step GW, D) =, (N, D). The two resulting configurations stay in
the relation, becausghigh-ness is preserved along the executio@'qdl.emma 1), and
M' =, N becausé!’ =, M (by Lemma 4 andhigh-ness ofC).

|
Proposition 4 (I-TIBisimilarity of bhigh commands).

The relation defined{((M, C), (N, D))|M =, N;C, D bhigh} is al-TIB.

Proof. Similar to Proposition 3, by matching with the empty traiosi.]

We also need the following lemma that states tttoe b-equivalence of memories
is preserved along the execution of a typeable command deyeon its termination
effecto.

19

Lemma 7.
If - C : (1,low,8)emd and M =; N then(M,C) %, (M',C") implies (N, C) %,
(N',C"y with M’ =; N'.

If = C : (7,bhigh,d)emd and M =, N then (M,C) %, (M’,C") implies
(N,C) %, (N',C")y with M" =, N'.

Proof. By induction on the type derivatian C : (7, o, §)cmd. We only prove the first
part, the other one is similar.

— C =z :=candk e : 7 with I'(z) = 7. Then,C’ = skip. If 7 = low then
by Lemmd 3 the variables inmust all be low, and hence evaluatiagn M or N
yields the same value so the resulting memories ktayequivalent. Otherwise, if
T # low thenz cannot be a low variable and thus low-equivalence of meradsie
trivially preserved by this command.

— C = output;,(e). If i = low then, the same value is output during the computation
step. Now ifi is greater, then this is a silent transition dhand N. Here, memories
are not modified and stay triviallpw-equivalent.

— C = (C1;C5. Only rule T-SEQ1 can be used, 50Cy : (71,01,91)emd and
F Cy @ (12,09, 02)cmd with 01 = 09 = low. If the transition is taken by mean of
rule C-SEQL, thew’ = C}; Cy with (M, C1) =, (M’, C4). Induction hypothesis
on C, gives that(N, C;) %, (N, C?) with M’ =; N’. We conclude by applying
rule C-SEQ1 on this transition.

Now if rule C-SEQ?2 is used, thefi; = skip and there is no output. We again
apply induction hypothesis afi; and rule C-SEQ2.

— C = if e then C else C5. Here, we have that ¢ : [. But M =; N so the same
branch is executed starting either fravhor N, in a silent transition. Memories are
not modified and hence stayw-equivalent.

— C = while e do D andC = for e do D. Same as conditional.

Now we can state the main result.

Proposition 5 (Noninterference of well typed commands).
If a command” is typable, i.e.l- C' : (7,0, d)cmd, thenC satisfies SSNI.

Proof. We use the proof technique provided by Corollary 1. The §itsp is to show
thatt C : (7,0,d)cmd implies (C, M) =, (C, N) for all levels:, to have the s-TSNI
property of Definition 9.

The case = high is vacuous: memories and commands are in this case equal. The
interesting case is= low.

We show that- C : (7,0, d)cmd implies (C, M) =, (C, N) for all M andN that
are equal on their low and bhigh parts, defining a relafan (M, C)R1 (N, D) if and
only if C and D are typableM' = N' and M|, = N|! , and one of the following
holds:

(i) C andD areshigh

20

(i) =D
(lll) C = Cl; Cy, D= Dl; C5 with <M, Cl>R1 <N, D1> and(Cs is Shlgh
(iv) Cisshigh D = Dy; Dy with (M, skip)R (N, D;) andDs is shigh

We have to show thaR; is al-TSB. Suppose we hav@/, C)R (N, D). By defi-
nition of R;, we have thafi/ =; N. Now we have to show that {f\/, C) %, (M’,C")
then(N, D) =, (N’, D) with (M',C"YR,(N’, D'). We proceed by induction on the
definition of R,. The reflexivity of the relatiorR; is clear, except for the clause (iv) in
which it will be treated.

(i) Here we simply use Proposition 3.
(i) Here,C = D. We proceed by induction on the structuretaf

e C =z :=c.lIf I'(x) C b, then we havéM,e) || n and(N,e) | n by the
simple security lemma becausé =, N. So the transitionM, C) 5 (M [z «
n],skip) is matched by(N,C) =, (N[z « n],skip). We also have that
Mz «— n] =, N[z < n] and we stay in clause (ii). I (x) = shigh and
evaluatinge in M andN does not yield the same value (which is the interesting
case), we match by the same step, since memories remain Gnedrning
theirbhigh (or lower) parts.

e (' = output,(e). There are two cases depending on whetherl or not. In
the former case, sinckl =, N (M,e) || n and(N,e) || n so the same value
is output. We stay again in clause (ii) because the memoréerat modified.
If i« = high, then the transition is silent, and computations stay togyegince
the memories are not modified.

e (' =if ethen (] else (.

If e : 7 with 7 C b, then evaluating on M or N yields the same value be-
causel =;, N. The transition matchingM, C) 5, (M, C;) is thus(N, C) =,
(N, C;) and we stay in clause (ii).

Now if - e : s, according to the typing rulé, C; : (s, o, d)cmd. So, even if the
branching is different depending on whetldéis run onM or N, both config-
urations remain related, since memories are unchangedy@hdcommands
areshigh(clause (i)).

e C = while e do €’ andC = for e do C". Here we proceed as in conditional
case.

e (' = (C1;Cs. Depending on which transition rule is used, we have twosase

1. If C-SEQ1 is used, we hence hay&l, C; Co) % (M',C4; Co) with

(M, Cy) 5 (M',C}). We distinguish two cases wheth€s is shighor

not.

(@) IfF Cy : (72,092,d02)emd with 5 C b, only rule T-SEQ1 can be
used. Ther- Cy : (11, 01,01)cmd with o1 C b soC; does not con-
tain ashighguard. Using Lemmal7, we havev, C;) %, (N’,C})
with M’ =, N’. Applying rule C-SEQ1 gives thatV, C;; Cy)
(N’,C1; Co). We stay again in clause (ii).

(b) If Cy is shigh Applying the induction hypothesis ofi; gives that
(N,Cy) 2, (N, CY) with M’ =, N" and(M’, C})R(N', CY'). We
then obtain by rule C-SEQ1 thalv, Cy; Cs) =%, (N, CY;Cs). We
finally have that M’, C1; C2)R1(N', CY; Co) by clause (iii).

21

2. If C-SEQ2 is used, thet, skip; Cy) —; (M, Cy). The maching step
is simply (N, skip; Cs) —; (N, Cs) and the configuration are related by
clause (ii).

(lll) C = Cl; Cg, D = Dl; CQ with <M, 01>R1 <N, D1> andC'2 is Shlgh

1. IfC-SEQ1isused, thefd, Cy; Cy) -5 (M, CY; Co) and(M, C1)= (M, C1).
Applying the induction hypothesis aB; leads to(N, D;) =; (N’, D}) with
M’ =, N'. We then apply rule C-SEQ1 and stay in clause (iii).

2. If C-SEQ?2 is used, thef?; = skip and (M, skip; Cy) =, (M, C5). The
matching move is theN, D) =; (N, D). We have thatM, C3)R (N, D)
by clause (iv) becausé; is shighand (M, skip)R1 (N, Dy).

(iv) Here,C isshigh D = Dy; Do, with (M, skip)R1 (N, D) and D, is shigh

1. Suppose we hawg\l, C) =, (M’,C"). C'is shigh soM =, M’ andu = .
The matching step is thefiV, D) =; (N, D) and we stay in clause (iv).

2. Suppose now we haveV, D) %, (N’, D'). If rule C-SEQL is used, then
(N, Dy) %, (N’, D}) and applying the induction hypothesis @n gives us
(M, skip) =; (M’,C"). The only transition fronskip is itself soM’ = M
andC” = skip. It gives us also that = 7. We can thus match the transition
with (M, C) =, (M, C) and we stay in clause (iv).

If rule C-SEQ2 is used, theP; = skip and(N, D) %; (N, D,). Sou = 7.

The matching step is hence agdi, C) =; (M, C) and we conclude using

clause (i) becausP®s is shigh

R is al-TSB. By clause (ii) and Proposition 1, sindé =, N impliesM! = N
and M|, = N|! , we have that in a well typed program, there is no flow frefigh
data tobhigh andlow data.

The next step is to prove that the type system ensures TINdezaing thebhigh-
data.

We proceed a similar way, providinglal IB R over configurations. The relation
R is defined:(M, C)Ro (N, D) if and only if C and D are typable)} =; N, and one
of the following holds:

(i) C andD arebhigh
(i) =D
(i) (M,C)YR'5(N, D), the relatioriR’s being defined inductively as follows :

C, D bhigh (M,C) Ry (N, D)
(M,C;C"Y R'3 (N, D;C" IN,C;0" Rl (N, D; C"
We now have to prove thaks is al-TIB. We will use the property thaRs is pre-
served by sequential compositiar,. (M, C)Ro (N, D) implies(M, C; C"YR2 (N, D; C”).
This result can be easily proved by case analysis on the tiefirdf the relation. The
relationR, is clearly symmetric. Suppose we haild, C)R- (N, D). By definition of
R, we have thafl/ =; N. Now we have to show that i\, C') %, (M’, C’) then ei-
ther (N, D) =, (N', D') with (M’,C"YRo(N', D') or (N, D)f};. We proceed by case
analysis on the definition d®5.

>R2

22

(i) Here we simply use Proposition 4.
(i) C = D.We proceed by induction on the structureaf
e (' = (C1;Cs. Depending on the semantic rule that is used, we have tw@ccase
1. C-SEQ1: We have th&d1, Cy; Co) -5 (M',C; Cy) becauséM, C),
(M, C1). Applying the induction hypothesis @iy, (N, C1) = (N', CY)
with (M, C7)Ro(N', C7). ButR, is preserved by sequential composition,
SO(M, C1; Co)Ro(N', CY; Co).
2. C-SEQ2: Here(’; = skip and (M,C) 5, (M, C5). We simply have
that (N, C) 5, (N, C,) and the configurations stay together thanks to the
clause (ii).
e Other cases are similar to those of the relafion
(iii) We proceed by induction on the definition & .
e R1: Here,C = C1;C, D = Dy1;Cy andC4, D, arebhigh Here, only rule
C-SEQ1 can be used, singkip cannot be typed asté&igh command.
We thus have thatV, C'; Cy) % (M', Cy; Cy) becauséM, C1) =, (M', C}).
But C; is bhigh sou = 7, M =; M’ and(is bhigh We can match this step
by (N, D1; Cy) = (N, Dy; Cy). Configurations are in the relation by rule R1.
e R2: Note that only rule C-SEQ1 can be usedCif = skip, it cannot be
related toD, sinceR’s only relates sequential compositions. Then, we have
that (M, Cy; Co) 5 (M, C}; Cy) becauséM, Cy) %, (M',C}). But we have
(M, C1) R'5 (N, Dy), so by induction hypothesis an; :

* If (N, D) =, (N', D}), we match using rule C-SEQ1 B\, Dy; Cy) =5,
(N', D}; C) and we can conclude by rule R2.

x If (N, D1)1); then sinceD; cannot beskip (from the definition ofR’5) we
know that(N, D;) 5, (N’, D}) for someN’, D). By the symmetry of
relationR’, and induction hypothesis, we get tHat’, C,) =, (M",CY')
with (N’ D})Ro(M",CY) or (M, Cy) 1. Thus, by rule C-SEQ1, the
transition we had originally to match is a silent one, and wae match it
by (N, Dy; Cy) 5, (N', D}; Cy). Configurations stay related by rule R2.

R, is thus a-TIB, and by clause (ii) and Propositibn 2, we have the TINigarty
of well typed programs concerning theéii:gh-data: there is no flow frorbhigh data
to low data except via the termination channel. |

5 Correlation Leaks

In this section we mention a weakness in the definition ofesesnsitive noninterfer-
ence which allows the attacker to obseoagrelationsbetween big and small secrets.
We show how the definition can be strengthened to remove sarcblations, and con-
jecture that the type system guarantees correlation-dreegithout need for modifica-
tion.

Suppose thatis bhighands is shigh(in the lattice in Figure1). Somewhat surpris-
ingly the progranmoutput,,,, (b == s) is secret-sensitive noninterfering (note though
that it is not typeable). This is because the low observesagmothing about the value
of e.g.sin isolation. The problem is that although the observer cadeduce anything

23

about the individual kinds of secret, he can deduce infdonatbout theicorrelation
(in this example whether they are equal or not).

To eliminate the possibility of learning something abowt torrelation of big and
small secrets we need to demand that the knowledge learat blgpand small secrets
together is the same as for the combined knowledge learnit &hem independently.
To express this precisely we need some additional notation.

In the definitions of secret-sensitive noninterference aetdealt with knowledge
as sets of projections of memories. We say that a memoiig full if dom (M) is the
set of all variables. In order to easily compare and combimawedge sets we need
to work with full memories. Definel/* to be the set of full memories obtainable by
completingM:

M* = {N | N|gom(ry = M, N is full}.

Now lift -* to sets of memorie&’ in the natural way by defining

K* = U M*
MeK

Definition 13 (Correlation Freedom). A program(' is Correlation Freéf for all ¥ €
Obs;(C, M?), we havek?s(C, M',v)* = kY(C,M*,¥)* N ki(C,M* ©)*, where
kY (C, M%) = {M|* | M € k;(C, M, %)} and M|" is the complement df/* —i.e.,
the projection ofM/ to the variableshotvisible at level.

In the case that’ is secret-sensitive noninterfering we can show that thiglitimn
is equivalent ta:?* (C, M*, ¥)* = kb(C, M, %)*, which says that nothing more is learnt
about the big and small secrets together than can be deducedife big secrets alone.

Conjecture 1 Well-typed programs are correlation free.

We leave the proof of this conjecture to further work; theuition here is that any
“correlation information” will always be typed aslevel data, and hence cannot be
leaked at all.

6 Conclusions

In this article we provided a way to refine an arbitrary comecurity lattice in order

to distinguish two levels of secret, the big secriend the small ones. Big secrets

can be handled more liberally on the grounds that they candmkeraufficiently large

and random for slow leakage to be tolerable. We introducedcaompanying notion

of secret-sensitive noninterference which combines tlative merits of termination-

sensitive and termination-insensitive noninterferenéésillustrated the use of the def-
inition in the soundness argument for a simple type systeweiifying secret-sensitive
noninterference.

24

Related Work As mentioned previously, the starting point of this workAs[SS08].
Our interpretation of the results there is that we need tt tifferent kinds of secret in
different ways, and to our knowledge this paper is the firstd@o in a noninterference
setting. It is, however, relatively common to give a spetriehtment to cryptographic
keys as compared to other kinds of secret — e.g. [AHS06] —sully the goal here is
to deal with integrity (a key cannot be modified using a lowuedlor freshness (a key
cannot be used more than once).

Our type system is essentially a fusion of a type-basedaeisi Denning’s sys-
tem [VSI96], and a stricter system based lon [BCO1]. Thedatgstem is stricter than
a Denning-style analysis for quite a different purpose:dalavith multi-threaded pro-
grams. Our system, in a sequential setting, improves on [BBYadditionally tracking
whether a program is terminating.

Further Work A natural and interesting next step would be to combine suigpeasys-

tem with cryptographic primitives (e.g. [Vol00][LVO05][AB06]). The notion of “big”

and “small” secrets have a natural interpretation in thpttrgraphic setting, since “big”
secrets correspond to e.g. cryptographic keys. In suchtiagét might also be im-

portant to handle “size integrity”, so that one could knowtth variable is not only
independent of small secrets, but thasia big secret.

AcknowledgementsThanks to Andrei Sabelfeld for pointing out the correlation problem dis-
cussed in Sectidn 5, and to Niklas Broberg, Josef Svenningsson, Biabiardie, Thomas Jensen
and the anonymous referees for very helpful comments on an edndier This work was partly
supported by grants from the Swedish funding agencies SSF, Vinitva fwedish Govern-
mental Agency for Innovation Systems), VR, and by the Europear2(085-015905 MOBIUS
project.

25

References

AHS06. A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographicallgstked flows. IrProc.
Symp. on Static AnalysisNCS, pages 353-369. Springer-Verlag, August 2006.

AHSSO08. A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Terminatisensitive noninter-
ference leaks more than just a bit. ESBORICS 2008, 13th European Symposium on
Research in Computer Securityolume 5283 oL NCS Springer Verlag, 2008.

ASO7. A. Askarov and A. Sabelfeld. Gradual release: Unifying dssifi@ation, encryption
and key release policies. Proc. IEEE Symp. on Security and Privapages 207—
221, May 2007.

BBO3. J. Barnes and JG Barnéfigh Integrity Software: The SPARK Approach to Safety and
Security Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,200

BCO1. G. Boudol and I. Castellani. Noninterference for concurpgagrams. InProc.
ICALP’01, volume 2076 oLNCS pages 382—-395. Springer-Verlag, July 2001.

CHO4. R. Chapman and A. Hilton. Enforcing security and safety modiéhsam information
flow analysis tool ACM SIGAda Ada Letter24(4):39-46, 2004.

DD77. D. E. Denning and P. J. Denning. Certification of programs deuge information
flow. Comm. of the ACM20(7):504-513, July 1977.

Den76. D. E. Denning. A lattice model of secure information flo@omm. of the ACM
19(5):236-243, May 1976.

LVO5. P. Laud and V. Vene. A type system for computationally secu@imétion flow. In
Proc. Fundamentals of Computation Theorglume 3623 0. NCS pages 365-377,
August 2005.

MZZ%08. A.C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. NystrdifnJava informa-
tion flow. Software release. Located ttp://www.cs.cornell.eduljif ,
July 2001-2008.

Sim03. V. Simonet. The Flow Caml system. Software release. Located at
http://cristal.inria.fr/ ~ simonet/soft/flowcaml/ , July 2003.

Smi0l. G. Smith. A new type system for secure information flowPioc. IEEE Computer
Security Foundations Workshgpages 115-125, June 2001.

\ol00. D. Wolpano. Secure introduction of one-way functionsCBFW '00: Proceedings of
the 13th IEEE workshop on Computer Security Foundatipage 246, Washington,
DC, USA, 2000. IEEE Computer Society.

VS97. D. Volpano and G. Smith. Eliminating covert flows with minimum typingsoc.
IEEE Computer Security Foundations Workshpages 156—-168, June 1997.

VSI96. D. Volpano, G. Smith, and C. Irvine. A sound type system fouseflow analysis.
J. Computer Security}(3):167-187, 1996.

http://www.cs.cornell.edu/jif
http://cristal.inria.fr/~simonet/soft/flowcaml/

	Introduction
	A Refined Multilevel Lattice
	Secret-Sensitive Noninterference
	Characterising SSNI
	Computational Security

	Secret-Sensitive Noninterference by Typing
	Type system
	Type Soundness

	Correlation Leaks
	Conclusions

