
Technical Report no. 2009-01

All Secrets Great and Small1

Delphine Demange2 David Sands

Department of Computing Science and Engineering
Chalmers University of Technology and Göteborg University

S-412 96 G̈oteborg, Sweden

Göteborg, March 2009

1. An abbreviated version of this article appears inProgramming Languages and
Systems, the 18th European Symposium on Programming, ESOP 2009.

2. Author’s address: University of Rennes 1, France

Technical Report in Computing Science at
Chalmers University of Technology and Göteborg University

Technical Report no. 2004-06
ISSN: 1650-3023

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 G̈oteborg, Sweden

Göteborg, Sweden, 2004

Table of Contents

1 Introduction 4
2 A Refined Multilevel Lattice 5
3 Secret-Sensitive Noninterference 6

3.1 Characterising SSNI 10
3.2 Computational Security 12

4 Secret-Sensitive Noninterference by Typing 13
4.1 Type system 13
4.2 Type Soundness 16

5 Correlation Leaks 22
6 Conclusions 23

Abstract

Tools for analysing secure information flow are almost exclusively based on ideas going
back to Denning’s work from the 70’s. This approach embodiesan imperfect notion of
security which turns a blind eye to information flows which are encoded in the termi-
nation behaviour of a program. In exchange for this weaknessmany more programs are
deemed ”secure”, using conditions which are easy to check. Previously it was thought
that such leaks are limited to at most one bit per run. Recent work by Askarov et al
(ESORICS’08) offers some bad news and some good news: the badnews is that for
programs which perform output, the amount of information leaked by a Denning style
analysis is not bounded; the good news is that if secrets are chosen to be sufficiently
large and sufficiently random then they cannot be effectively leaked at all. The prob-
lem addressed in this paper is that secrets cannot always be made sufficiently large or
sufficiently random. Contrast, for example, an encryption key with an “hasHIV”-field
of a patient record. In recognition of this we develop a notion of secret-sensitive non-
interferencein which “small” secrets are handled more carefully than “big” ones. We
illustrate the idea with a type system which combines a liberal Denning-style analysis
with a more restrictive system according to the nature of thesecrets at hand.

1 Introduction

Most tools for analysing information flow in programs such asJif [MZZ+08] and Flow-
Caml [Sim03] build upon ideas going back to Denning’s work from the 70’s [DD77].
These systems enforce an imperfect notion of information flow which has become
known astermination-insensitive noninterference(TINI). Under this version of non-
interference, information leaks are permitted if they are transmitted purely by the pro-
gram’s termination behaviour (i.e., whether it terminatesor not). This imperfection is
the price to pay for having a security condition which is relatively liberal (e.g. allowing
while-loops whose termination may depend on the value of a secret) and easy to check.

How bad is termination-insensitive noninterference? Previously there have been in-
formal arguments that termination-insensitive noninterference leaks at most one bit:
either a program terminates or it does not, so at most one bit of information can be
encoded in the termination state. However, recent work by Askarov et al [AHSS08]
shows that for programs which perform output, an arbitrary amount of information can
be leaked. The following program outputs an ascending sequence of natural numbers
on a public channel until the secret has been output, at whichpoint it goes into a silent
loop:

for i = 0 to maxNat (
output i on public_channel
if (i = secret) then (while true do skip)

)

At the very least we can say that at each output step, the observer is able to narrow
down the possible values of the secret. This program (in suitable variants) is accepted
as secure by state-of-the-art information flow analysis tools such as Jif [MZZ+08],
FlowCaml [Sim03], and the SPARK Examiner [BB03,CH04].

Askarovet al formalise the notion of termination-insensitive noninterference and
show that although termination-insensitive noninterference can leak an arbitrary amount
of information, it cannot do so any more efficiently than the above example. The revised
intuition for programs performing public output is that thenumber of possible “termi-
nation states” that can be used to encode information is of the order of the number of
public outputs performed by the program – since the program can diverge after 0 out-
puts, after 1 output, after 2 outputs, etc. This means that toleakn bits of information
the program needs to perform2n outputs.

For Denning-style analyses this means that if secrets are sufficiently large and suffi-
ciently random then programs arecomputationally securein the sense that the probabil-
ity of the attacker guessing the secret after observing a polynomial number of outputs
(again, in the size of the secret) gives only a negligible advantage over guessing the
secret without running the program.

What does this mean for information flow analysis in practice?Whereas previously
the imperfections of a Denning-style analysis were viewed as a reasonable tradeoff
between ease of analysis versus degree of security, we believe that in the light of
[AHSS08] we need a different perspective. The leak caused bytermination-insensitivity
is only acceptable for sufficiently large and random secrets. But secrets, in general, are
not always parametric: one cannot always freely choose to make a secret larger and

5

more random. For example, an application cannot decide thata credit card CCV num-
ber should be made larger. An encryption key, on the other hand, might be something
that the application can control, and decide to scale up.

In this paper we consider the information flow problem in an arbitrary multi-level
security lattice. We present a way (Section 2) of refining each security level in an
information-flow lattice into two levels:big secrets, that are sufficiently large and ran-
domized to abide some leakage, andsmall secrets, for which even slow leakage is unac-
ceptable. Then, we define a two-level noninterference (Section 3), following Askarov et
al’s recent work, which combines the demands of termination-insensitive noninterfer-
ence (for big secrets) with the stricter requirements of termination-sensitive noninterfer-
ence (for small secrets). A type system is provided (Section4) that ensures this notion
of noninterference. Additional novelties of the system area somewhat more liberal
treatment of small secrets than found in previous termination-sensitive type systems.
Section 5 describes a strengthening of the definition of security to eliminate leakage
correlations between big and small secrets.

2 A Refined Multilevel Lattice

In [AHSS08] a definition of termination-insensitive noninterference (TINI) was intro-
duced which is suitable for programs with outputs, assumingonly two security levels
low andhigh. They proved that, even if programs verifying this condition can leak more
than a bit of information, the attacker cannot reliably (i.ein a single run) learn a secret in
polynomial time in the size of the secret. They also proved that, for programs satisfying
TINI, if secrets are uniformly distributed, then a particular observation of a computation
represents only a negligible hint for the attacker (Theorem3).

The basic idea in this work is to refine the notion ofhigh into two pointsbhighand
shigh. These will correspond to “big” secrets and “small” secretsrespectively. We will
define a notion of secret-sensitive noninterference which allows a low user to learn a
little about big secrets, and nothing at all about small secrets (relative to the notion of
observation that we model).

How are big and small secrets related? A key point here is thatdata labelledbhigh
will depend only onbhighor low data sources, whereas data labelledshighmight also
depend onshighdata sources. Thus the labelbhigh does not mean that the datais a
large secret – it just means that it does not depend on (contain any information about)
a small secret. We can then see that the resulting refined security lattice is as given in
Figure 1.

Now we generalise this refinement to the case of an arbitrary multi-level lattice
of information levels [Den76]. Denning’s lattice model of information considers an
arbitrary complete lattice〈L,⊑L,⊔L,⊓L,⊥L〉 whereL is the set of securityclearance
levels(henceforth justlevels, ranged over byi, j), and⊑L is the ordering relation which
determines when one level is higher than another. The idea isthat a principal with a
clearance leveli is permitted to see data which is classified at leveli or below according
to the partial ordering. Information from any levels may be combined, in which case the
classification for the resulting data is given deterministically by the least-upper-bound
operation⊔L.

6

To refine this general case we note that we must split each level i ∈ L, with the
exception of the bottom level⊥L (which can always be thought of as public data)
into two points, corresponding to the big secrets (labelledb) and the small (labelled
s). Thus any non-bottom elementi will be refined to(i, b) and (i, s). To define the
appropriate order between lattice elements we first note that (i, b) ⊑ (i, s) – with the
same motivation as given for the refined two-point lattice. Similarly, when comparing
secrets of the same kind we have(i, a) ⊑ (j, a) only wheni ⊑L j.

What about the relationship between two points(i, b)

Fig. 1.The refined 2-point
lattice

and(j, s) – when can information flow between these points?
The idea is that information at levelb is potentially leaked
via a covert channel, so that it may be leaked toany level.
Because of this we can only permit flow from(i, b) to
(j, s), and then only wheni ⊑L j. If we permitted a small
secret(i, s) to flow to any(j, b) for (j 6= i) then we would
be able to launder small secrets by first allowing them to
flow to a big secret and then leaking via the covert channel

from there. In summary, we define the refinement of a given security lattice:

Definition 1. LetS denote the 2-point lattice formed fromb ands under the ordering
b ⊑ s. We define therefinementof a security latticeL as thepartial productof L
and S, which is the standard product latticeL × S, quotiented by the equivalence
(⊥L, b) ≡ (⊥L, s) – and this bottom element will be simply denoted by⊥L.

Example Consider the example whereL = {secret, financial,medical, public} is
the set of the four security levels a program has to deal with,ordered according to the
Hasse diagram in Figure 2. Motivating a refinement of the lattice, there could be medical
data that is encrypted – or simply very large (e.g. high resolution image data) that could
be safely allowed to leak slowly, and other medical data thatare to be handled with
more care, such as an “hasHIV” boolean flag in a patient record. The partial product of
latticesL andS is presented in Figure 3.

Fig. 2.ExampleL Fig. 3.The refinement ofL

3 Secret-Sensitive Noninterference

In this section we define the security goal for programs computing over data labelled
with a refined lattice. This variant of the notion of noninterference,secret-sensitive

7

noninterference, combines the demands of termination-insensitive noninterference for
b-data, and the stronger termination-sensitive noninterference fors-data. Further, we
develop a bisimulation-style characterisation ofsecret-sensitive noninterferencewhich
provides a convenient proof method.

Operational Semantics We keep our presentation language independent, but we as-
sume some basic structure for an operational semantics. We will consider simple im-
perative computation modelled by a standard small-step operational semantics defined
over configurations of the form〈M,C〉whereM is a memory (store) – a finite mapping
from variables to values – andC (C ′, D etc.) is a command. Each variablex is assumed
to have a fixed policy denotedΓ (x), which we take to be a member of the refinement
of some latticeL.

We assume an operational semantics consisting of deterministic labelled transitions
between configurations, where a labelu is either (i) an observable outputi(v), meaning
that a valuev is output on a channel observable at leveli ∈ L or above, or (ii) a silent

action labelledτ . We write e.g.〈M,C〉
i(v)
→ 〈M ′, C ′〉.

On top of the basic labelled transitions we define a family of transition systems
labelled by a particular level:

Definition 2 (i-observable transitions).We can define the transition relations
u
→i, i ∈

L as:

〈M,C〉
j(v)
→ 〈M ′, C ′〉 j ⊑L i

〈M,C〉
v
→i 〈M

′, C ′〉

〈M,C〉
u
→ 〈M ′, C ′〉 u = τ or u = j(n) wherej 6⊑L i

〈M,C〉
τ
→i 〈M

′, C ′〉

Thus thei-observable transitions are obtained from the raw transitions by filtering out
(replacing byτ) all output actions that are not visible at leveli. Note that the non-
τ transitions are just the value which is observed and not the channel on which it is
observed.

Now we define the “big step” transitions〈M,C〉
u
⇒i 〈M

′, C ′〉 as follows

〈M,C〉
τ
⇒i 〈M

′, C ′〉 , 〈M,C〉
τ
→

∗

i 〈M
′, C ′〉

〈M,C〉
v
⇒i 〈M

′, C ′〉 , 〈M,C〉
τ
→

∗

i

v
→i〈M

′, C ′〉

We also define the multi-step observations〈M,C〉
~v
⇒i 〈M

′, C ′〉 with ~v = v1v2 · · · vn

as follows:

〈M,C〉
v1⇒i 〈M1, C1〉

v2⇒i 〈M2, C2〉
v3⇒i · · ·

vn−1

⇒ i 〈Mn−1, Cn−1〉
vn⇒i 〈M

′, C ′〉

for some sequence of intermediate configurations〈Mi, Ci〉. We define the multi-step
reduction for the empty vector to be synonymous with

τ
⇒i.

8

Attacker’s knowledge Our presentation follows the style of Askarovet al [AHSS08]
closely. The definition of noninterference developed here builds on the concept ofat-
tacker knowledgewhich is what an attacker (an observer of a given clearance level i)
can deduce about the initial values of variables based on a particular observation of a
program run.

The attackeri knows the initial low part of the memory. The low part of the memory
from the perspective of a given leveli is all variables with policy(i, s) or lower - and
observes some output trace~v that is not necessarily maximal, knows the program and
is able to make perfect deductions about the semantics of theprogram. For a memory
M we letM i denote the low part of the memory from the perspective of an observer at
level i, i.e. the part of the memory that he can see.

Definition 3 (Observations).Given a programC and a low memoryM i, thei-observa-
tions is the set of all possible sequences of observable outputs that could arise from a
run ofC with a memory compatible withM i. It is defined:

Obsi(C,M i) = {~v|〈N,C〉
~v
⇒i 〈N

′, C ′〉, N i = M i}

Definition 4 (Attacker’s knowledge).Given a programC, an initial choiceM i of the
low part of the memory (for leveli) and a trace ofi-observable outputs~v, the attacker’s
knowledge gained from this observation is the set of all possible memories that could
have lead to this observation.

ki(C,M i, ~v) = {N |〈N,C〉
~v
⇒i 〈N

′, C ′〉, N i = M i}

Note that increase in knowledge corresponds to a decrease inthe size of the knowledge
set. Knowledge increases with outputs: the more outputs theattacker observes, the more
precise is his knowledge [AS07]:

∀C,M i, ~v, v. ki(C,M i, ~vv) ⊆ ki(C,M i, ~v)

In order to distinguish between what is learnt about the “big” secrets (variables at levels
(i, b)) from what is learnt about the “small secrets” (variables atlevels(i, s)) we define
the projections of knowledge sets to theb- ands-parts.

Definition 5 (b- and s-restricted memories). Given a memoryM , and a security
sizea ∈ S, we defineM |ia to be the restriction ofM to those variablesx such that
Γ (x) = (j, a), j 6⊑ i – i.e. the ”a-secrets” fromi’s perspective. We extend the definition
pointwise to sets of memories.

Definition 6 (b- and s-restricted knowledge).Given a programC, a security sizea ∈
S and an initial choiceM i of the low part of the memory and a trace of outputs~v, thea-
restricted knowledge of the attackeri, writtenka

i (C,M i, ~v) is defined(ki(C,M i, ~v))|ia.

Informally, the restricted knowledgeka
i (C,M i, ~v) is i’s knowledge about thea-secrets

(from i’s perspective) after having observed~v from initial memoryM i.
The idea of “i’s secrets” can be illustrated using the lattice presented in Figure 3.

For example, the projectionM |finance
s restrictsM to just those variables with classifi-

cations(medical , s) or (secret , s). Thefinance-perspective on the lattice is illustrated

9

Fig. 4.Thefinance-perspective on the example refined lattice

in Figure 4, where theb-secrets ands-secrets are marked. The low part of the lattice,
from the finance perspective, is also marked.

The s-restricted knowledge for an attacker at levelfinance is thus the knowledge
that can be deduced about thes-secret part of the memory.

Noninterference Several kinds of noninterference can be defined from the notion of
knowledge. Here we adapt the definition of termination-(in)sensitive noninterference
that was proposed in [AHSS08] and then propose a definition ofa two-levelled nonin-
terference.

Definition 7 (Termination-Sensitive Noninterference (TSNI)). A programC satis-
fies TSNI if for alli, whenever~vv ∈ Obsi(C,M i) then

ki(C,M i, ~v) = ki(C,M i, ~vv).

TSNI means that at each step of output, nothing new about the high memory is learnt
by the attacker.

Definition 8 (Termination-Insensitive Noninterference (TINI)). A programC satis-
fies TINI if for all i, whenever~vv ∈ Obsi(C,M i) then

ki(C,M i, ~vv) =
⋃

v′

ki(C,M i, ~vv′).

TINI allows leakage at each low output step, but only throughthe fact that there issome
output step. The knowledge leaked by one output is the same asfor any other.

In order to deal with our two different kinds of secret (b ands), the idea is here to
combine both TSNI and TINI: although we only accept TSNI fors-data which must be
handled with more care, we allow TINI forb-data, that abide some leakage since they
are randomized and large enough.

Definition 9 (Secret-Sensitive Noninterference (SSNI)).A programC satisfies SSNI
if for all i, whenever~vv ∈ Obsi(C,M i) then the following two properties hold:

ks
i (C,M i, ~vv) = ks

i (C,M i, ~v) (s-TSNI)
kb

i (C,M i, ~vv) =
⋃

v′ kb
i (C,M i, ~vv′) (b-TINI)

10

3.1 Characterising SSNI

The knowledge based definitions are (in our opinion) lucid because they give a clear
attacker perspective on the problem. However, for reasoning about secret-sensitive non-
interference we find it convenient to work with a more conventional characterisation in
terms of bisimulation relations. Here we develop this alternative characterisation, which
we will employ in Section 4 in order to prove that the type system there guarantees
secret-sensitive noninterference.

The basic idea is to establish the two components of SSNI via two forms of bisim-
ulation relations between configurations.

Definition 10 (Termination-sensitivei-bisimulation (i-TSB)). A symmetric relation
R on configurations is a termination-sensitivei-bisimulation, if〈M,C〉R〈N,D〉 im-
plies:

(i) M i = N i andM |ib = N |ib, and
(ii) whenever〈M,C〉

u
→i 〈M

′, C ′〉 then〈N,D〉
u
⇒i 〈N

′,D′〉with 〈M ′, C ′〉R〈N ′,D′〉.

Two configurations are said to bei-TSB equivalent (denoted by∼=i) if there exists a
i-TSB relating them.

Here, the termination-sensitivity comes from the ability to produce the next output to-
gether with the symmetry of the relation.

Definition 11 (Termination-insensitive i-bisimulation (i-TIB)). We say that a con-
figuration 〈M,C〉 diverges fori, written 〈M,C〉⇑i, if 〈M,C〉 cannot perform any i-
observable output transition

v
→i.

A symmetric relationR on configurations is defined to be atermination-insensitive
i-bisimulationif whenever〈M,C〉R〈N,D〉 we have

(i) M i = N i and
(ii) if 〈M,C〉

u
→i 〈M

′, C ′〉 then either〈N,D〉
u
⇒i 〈N

′,D′〉 with 〈M ′, C ′〉R〈N ′,D′〉,
or 〈N,D〉⇑i.

Two configurations are said to bei-TIB equivalent (denoted by≃i) if there exists a
i-TIB relating them.

Note that the notion of “divergence” used here is purely fromthe perspective of a remote
observer who sees only the outputs on channels. We could makethis more conventional
if we made program termination an observable event for all levels. We have chosen not
to do so, but the technical development in this paper does notdepend in a crucial way
on this fact.

Before we show these relations in Definitions 10 and 11 are sufficient to characterise
SSNI, we need the following lemmas abouti-TSB andi-TIB.

Lemma 1.
If 〈M,C〉 ∼=i 〈N,D〉 and 〈M,C〉

~v
⇒i 〈M

′, C ′〉 then 〈N,D〉
~v
⇒i 〈N

′,D′〉 with
〈M ′, C ′〉 ∼=i 〈N

′,D′〉.

11

Proof. We proceed by induction on the number of outputs (length of~v), and in the base
case by induction on the length of the raw transition sequence.

– Base case:~v has length 0 so every transition is silent. We proceed by induction on
the numbern of silent steps:
• Base case: trivial forn = 0.
• Induction: here, we have the followingn + 1-step computation〈M,C〉

τ
→i

〈M2, C2〉
τ
→i . . . 〈Mn, Cn〉

τ
→i 〈Mn+1, Cn+1〉 = 〈M ′, C ′〉. Applying the in-

duction hypothesis on then first steps, we have that〈N,D〉
τ
⇒i 〈Nm,Dm〉

with 〈Mn, Cn〉 ∼=i 〈Nm,Dm〉. But 〈Mn, Cn〉
τ
→i 〈Mn+1, Cn+1〉, so by defini-

tion of ani-TSB, we have that〈Nm,Dm〉
τ
⇒ 〈N ′,D′〉 with 〈Mn+1, Cn+1〉 ∼=i

〈N ′,D′〉. We conclude concatenating computations :〈N,D〉
τ
⇒i 〈Nm,Dm〉

τ
⇒

〈N ′,D′〉.
– Induction: suppose~v has lengthk + 1. This can be written
〈M,C〉

v1...vk====⇒i 〈Mnk
, Cnk

〉
vk+1

===⇒i 〈Mnk+1
, Cnk+1

〉. Applying the induction hy-
pothesis on thek first output multisteps, we obtain
〈N,D〉

v1...vk====⇒i 〈Nmk
,Dmk

〉 with 〈Mnk
, Cnk

〉 ∼=i 〈Nmk
,Dmk

〉.
But 〈Mnk

, Cnk
〉makes an output multistep

vk+1

===⇒i. We conclude applying the defi-
nition of ani-TSB as many times as there are silent steps beforevk+1 is output.2

Lemma 2.

If 〈M,C〉 ≃i 〈N,D〉 and〈M,C〉
~v
⇒i 〈M

′, C ′〉 then〈N,D〉
~v′

⇒i 〈N
′,D′〉 for some~v′

such that either~v = ~v′ and〈M ′, C ′〉 ≃i 〈N
′,D′〉, or ~v′ is a prefix of~v and〈N ′,D′〉⇑i.

Proof. Similar to Lemma 1. 2

The following propositions state that SSNI can be couched inthe bisimulation set-
ting. To symplify notations, we will denote byL,L′. . . the low projectionsM i of a
memoryM from the perspective ofi, wheni is clear from the context. Similarly, we
will respectively denote byB,B′. . . andS,S′. . . the restrictionsM |ib andM |is. The triple
LBS will denote the necessarily unique memoryM such thatM i = L, M |ib = B and
M |is = S.

Proposition 1.
Suppose that for all levelsi and all memoriesM and N such thatM i = N i and
M |ib = N |ib we have〈M,C〉 ∼=i 〈N,C〉. Then for alli, whenever~vv ∈ Obsi(C,M i)
thenks

i (C,M i, ~vv) = ks
i (C,M i, ~v).

Proof. Here we just focus on the inclusion⊇, since⊆ comes from the monotonicity of
knowledge.

Suppose~vv ∈ Obsi(C,L) and for allL,B,S andS′ we have〈LBS,C〉 ∼=i 〈LBS′, C〉.
Let S0 be an element ofks

i (C,L,~v). We have to show thatS0 ∈ ks
i (C,L,~vv) (nothing

is learned from the outputv).

Since~vv ∈ Obsi(C,L), there existB,S such that〈LBS,C〉
~vv
⇒i 〈L

′B′S′, C ′〉.
But we also have〈LBS,C〉 ∼=i 〈LBS0, C〉. Thanks to Lemma 1 we then have that

〈LBS0, C〉
~vv
⇒i 〈L

′′B′′S′
0, C

′′〉, which means thatS0 ∈ ks
i (C,L,~vv).

2

12

Proposition 2.
Suppose that for all levelsi and allM , N such thatM i = N i we have that〈M,C〉 ≃i

〈N,C〉. Then~vv ∈ Obsi(C,Mi) implieskb
i (C,M i, ~vv) =

⋃
v′ kb

i (C,M i, ~vv′).

Proof. Let i ∈ L. Suppose~vv ∈ Obsi(C,L). Then,〈LBS,C〉
~vv
⇒i 〈L2B2S2, C2〉. We

decompose this computation as follows:〈LBS,C〉
~v
⇒i 〈L1B1S1, C1〉

v
⇒i 〈L2B2S2, C2〉.

Letv′ andB0 such thatB0 ∈ kb
i (C,L,~vv′). We have to show thatB0 ∈ kb

i (C,L,~vv)
(what is learned fromv is the same as from the outputv′).

SinceB0 is inkb
i (C,L,~vv′), we have〈LB0S0, C〉

~v
⇒i 〈L

′B′
0S

′
0, C

′〉
v′

⇒i 〈L
′′B′′

0 S′′
0 , C ′′〉

for someS0.
By hypothesis, we have that〈LBS,C〉 ≃i 〈LB0S0, C〉.
Thanks to Lemma 2, we have that〈L1B1S1, C1〉 ≃i 〈L

′B′
0S

′
0, C

′〉. By definition

of a i-TIB, becauseC ′ does not diverge starting fromL′B′
0S

′
0 (since〈L′B′

0S
′
0, C

′〉
v′

⇒i

〈L′′B′′
0 S′′

0 , C ′′〉), then the output value is the same :v = v′.

So,〈L0B0S0, C〉
~v
⇒i 〈L

′B′
0S

′
0, C

′〉
v
⇒i 〈L

′′B′′
0 S′′

0 , C ′′〉, which means thatB0 ∈
kb

i (C,L,~vv).
2

Clearly, then, putting the propositions together we get a proof technique for SSNI:

Corollary 1. C satisfiesSSNI if, for all levelsi and allM , andN we have

• M i = N i implies〈M,C〉 ≃i 〈N,C〉, and
• M i = N i andM |ib = N |ib implies〈M,C〉 ∼=i 〈N,C〉.

3.2 Computational Security

Definition 9 clearly enforces termination-sensitive noninterference fors-data. Regard-
ing b-data, we can provide the computational security guarantees of [AHSS08] to show
thatb-secrets, if chosen uniformly, cannot be leaked in polynomial time in their size. To
argue this we can first reclassify all secrets asb-data (or equivalently assume that there
are nos-secrets). Then we are back in the standard security lattice, and we simply need
to generalise the results of [AHSS08] from a two-point lattice to an arbitrary one. This
is, as usual, unproblematic since from the perspective of each individual leveli there
are only two levels of interest: the levels which can be seen (i.e. the levels less than or
equal toi) and those which cannot. The main result is that ifb-data is randomly chosen,
then an observer at leveli learns a negligible amount of information (as a function of
the size of theb-data) about the data whichi cannot see. We will not further develop the
details of this argument in the present article. The differences from the development in
[AHSS08] would be minor.

13

4 Secret-Sensitive Noninterference by Typing

In this section, we describe a type system that enforces the noninterference Definition 9:
well-typed programs are secret-sensitive noninterfering. We study a classical determin-
istic while programming language defined with expressions and commands.

e ::= n | x | e op e

c ::= skip | x := e | c ; c | if e then c else c |

while e do c | for e do c | outputi(e)

Heren stands for any integer constant,x for any variable andop for any of the classical
binary arithmetical operators. Booleans are represented by integers the classical way
(0 is false, and everything else istrue). We also assume that there are no exceptions
raised: all binary operators are totally defined.

Note that the language provides two types of loops:for loops are always termi-
nating, that is the guard expression is evaluated just once,leading to a constant that is
decreased each time the end of the loop body is reached, andwhile loops are potentially
non terminating. The distinction will be used in the type system to good effect.

The language includes theoutputi primitive method that writes the value of its
argument to a channel with leveli. The operational semantics is standard and is given
in Figure 5. We denote byM(x) the value of the variablex.

4.1 Type system

This type system is based on the combination of a standard Denning-style analysis
(in type system form [VSI96]) for enforcing the termination-insensitive security forb-
secrets, and a more restrictive type system for handling thes-secrets. One such termina-
tion-sensitive type system is that described in [VS97], butthat system is extremely
restrictive: loops are only allowed if the guard does not refer to anything except data
at the lowest lattice level, and if there is a branch on secretdata at any level then no
loops are allowed inside the branches. Instead we adapt an idea common to the type
systems from [BC01] and [Smi01] for the termination-sensitive part. The idea is here
to allow high while loops (i.e. loops with high guards or arbitrary while loops occurring
in a high context) so long as no assignment or output to levelsbelow the loop guards
follows them.

The form of the typing judgements follows the style of [BC01]in that it handles
indirect information flows by recording the write effect of acommand (the lowest level
to which it writes data). This gives the same power as Denning’s popular approach
which uses a “program counter” level.

Consider both latticesL andS, and letP be their partial product as previously
defined. A type is either an expression type denotede : τ , or a command type writ-
ten (τ, σ, δ)cmd, where bothτ andσ are inP, the set of security levels, andδ, the
termination flagis a member of the set{↓, ↑}, where we order the elements↓ ≤ ↑.

Type judgments are of the form

Γ ⊢ C : (τ, σ, δ)cmd

14

〈M, n〉 ⇓ n
E-CONST

M(x) = n

〈M, x〉 ⇓ n
E-VAR

〈M, e1〉 ⇓ n1 〈M, e2〉 ⇓ n2 n1 op n2 = n

〈M, e1 op e2〉 ⇓ n
E-BINOP

〈M, e〉 ⇓ n

〈M,outputi(e)〉
i(n)
→ 〈M, skip〉

C-OUT

〈M, e〉 ⇓ n

〈M, x:=e〉
τ

→ 〈M [x← n], skip〉
C-ASSIGN

〈M, C1〉
u

→ 〈M ′, C′
1〉

〈M, C1; C2〉
u

→ 〈M ′, C′
1; C2〉

C-SEQ1
〈M, skip; C2〉

τ

→ 〈M, C2〉
C-SEQ2

〈M, e〉 ⇓ n n 6= 0

〈M, if e then C1 elseC2〉
τ

→ 〈M, C1〉
C-IF1

〈M, e〉 ⇓ 0

〈M, if e then C1 elseC2〉
τ

→ 〈M, C2〉
C-IF2

〈M, while e do C〉
τ

→ 〈M, if e then (C; while e do C) else skip〉
C-WHILE

〈M, e〉 ⇓ n n1 = |n|

〈M, for e do C〉
τ

→ 〈M, if n1 then (C; for n1 − 1 do C) else skip〉
C-FOR

Fig. 5.The labelled transition system

whereΓ is the typing environment i.e. a mapping from variables to variable types. In
the following,Γ is kept implicit. The syntactic meaning of such a judgment isthat

– τ is a lower bound on the security levels of variables that are assigned to inC.
– σ is the least upper bound on the levels of (for, if, while) guards occurring inC.
– δ is ↓ if C contains no while loops, and is↑ otherwise.

The semantic implication of these typings is that

– τ is a lower bound on the thewrite effectof the command – i.e., the command only
modifies variables of levelτ or above, and

– σ is the termination effect: observing thatC produces some output (i.e. “termi-
nates”) give us knowledge about data at level at mostσ.

– δ is a termination flag: if δ = ↓ then the command always terminates.

With these intended meanings ofτ , σ andδ, there is a natural partial order on types
which is contravariant in the first component and covariant in the second and third:

(τ, σ, δ)cmd ≤ (τ ′, σ′, δ′)cmd if τ ′ ⊑P τ andσ ⊑P σ′ andδ ≤ δ′

This relation is not used in the type system, but is used in thestatement of e.g. the
subject reduction property below.

15

For elements ofP (the first two components of a command type in particular) we
define the first and second projections in the obvious way:fst(i, a) = i andfst(⊥P) =
⊥L; snd(i, a) = a andsnd(⊥P) = ⊥S = b.

Rules of the security type system are displayed in Figure 6, where we drop the
subscript for the relation⊑P .

Explicit flows are handled with rules for expressions, rulesT-ASSIGN, and T-
OUT, while implicit flows are treated in T-IF, T-WHILE and T-FOR which demand
that their body is at least as high as their guard level.

Most of the action takes place in the sequential compositionrules. The interesting
case is T-SEQ2 where the termination effectσ1 of C1 is ans-secret, andC1 is indeed
potentially nonterminating. This means that we cannot allow arbitrary assignments in
C2 since these might leak information about thes-secrets which affected the termina-
tion of C1. Thus the write effect ofC2 is constrained so that it does not write below
σ1, the termination effect ofC1. For rule T-SEQ1 we are more liberal, since either the
guards do not depend ons-secrets, orC1 is always terminating.

The same reasoning is applied to while and for loops – their execution may be a
sequential composition of the body of the loop and the loop itself.

⊢ n : τ
T-CONST

Γ (x) = τ var

⊢ x : τ
T-VAREXP

⊢ e : τ ′ τ ′ ⊑ τ

⊢ e : τ
T-SUBEXP

⊢ e1 : τ ⊢ e2 : τ

⊢ e1 op e2 : τ
T-BINOP

⊢ skip : (⊤P ,⊥P , ↓)cmd
T-SKIP

⊢ e : τ Γ (x) = τ var

⊢ x := e : (τ,⊥P , ↓)cmd
T-ASSIGN

⊢ e : τ fst(τ) ⊑L i

⊢ output
i
(e) : ((i, s),⊥P , ↓)cmd

T-OUT

⊢ Ci : (τi, σi, δi)cmd snd(σ1) = b or δ1 = ↓

⊢ C1; C2 : (τ1 ⊓ τ2, σ1 ⊔ σ2, δ1 ⊔ δ2)cmd
T-SEQ1

⊢ Ci : (τi, σi, δi)cmd σ1 ⊑ τ2 snd(σ1) = s δ1 = ↑

⊢ C1; C2 : (τ1 ⊓ τ2, σ1 ⊔ σ2, ↑)cmd
T-SEQ2

⊢ e : θ ⊢ Ci : (τi, σi, δi)cmd θ ⊑ τi

⊢ if e then C1 elseC2 : (τ1 ⊓ τ2, σ1 ⊔ σ2 ⊔ θ, δ1 ⊔ δ2)cmd
T-IF

⊢ e : θ ⊢ C : (τ, σ, δ)cmd θ ⊑ τ snd(σ) = s⇒ σ ⊑ τ

⊢ while e do C : (τ, σ ⊔ θ, ↑)cmd
T-WHILE

⊢ e : θ ⊢ C : (τ, σ, δ)cmd θ ⊑ τ snd(σ) = s ∧ δ = ↑ ⇒ σ ⊑ τ

⊢ for e do C : (τ, σ, δ)cmd
T-FOR

Fig. 6.The security type system

16

4.2 Type Soundness

In this section we prove some results about well typed programs with regard to the
type system in Figure 6. The main proposition establishes that the type system indeed
enforces the secret-sensitive noninterference property we defined in Section 3.

The first property is the standard notion ofsubject reductionwhich guarantees that
execution preserves types.

Theorem 1 (Subject reduction).If ⊢ C : (τ, σ, δ)cmd and〈M,C〉
u
→ 〈M ′, C ′〉, then

⊢ C ′ : (τ ′, σ′, δ′)cmd with (τ ′, σ′, δ′)cmd ≤ (τ, σ, δ)cmd.

Proof. We proceed by induction on the type derivation, and then by case analysis on
the last rule of operational semantics.

– T-ASSIGN: Here,⊢ x := e : (τ,⊥p, ↓)cmd. On every memoryM , 〈M,x :=

e〉
τ
→〈M ′, skip〉. By T-SKIP,⊢ skip : (⊤P ,⊥P , ↓)cmd. And (⊤P ,⊥P , ↓)cmd ≤

(τ,⊥p, ↓)cmd, becauseτ ⊑P ⊤P for everyτ .
– T-OUT: Here,⊢ outputi(e) : ((i, s),⊥p, ↓)cmd. On every memoryM , we have
〈M,outputi(e)〉

τ
→ 〈M, skip〉. By T-SKIP, ⊢ skip : (⊤P ,⊥P , ↓)cmd. And

(⊤P ,⊥P , ↓)cmd ≤ ((i, s),⊥p, ↓)cmd, because(i, s) ⊑P ⊤P for everyi.
– T-SEQ1: Here,⊢ C1;C2 : (τ1 ⊓ τ2, σ1 ⊔ σ2, δ1 ⊔ δ2 because⊢ Ci : (τi, σi, δi)cmd

andsnd(σ1) ⊑S b or δ1 = ↓.
We distinguish two cases according to whether C-SEQ1 or C-SEQ2 is used to make
a step.

• C-SEQ1: Here,〈M,C1;C2〉
u
→ 〈M ′, C ′

1;C2〉 because〈M,C1〉
u
→ 〈M ′, C ′

1〉.
Applying induction hypothesis onC1, we get :⊢ C ′

1 : (τ ′
1, σ

′
1, δ

′
1)cmd with

(τ ′
1, σ

′
1, δ

′
1)cmd ≤ (τ1, σ1, δ1)cmd. Moreover,snd(σ′

1) ⊑ b or δ′1 = ↓.
Now, applying rule T-SEQ1 onC ′

1 andC2, we get :⊢ C ′
1;C2 : (τ ′

1 ⊓ τ2, σ
′
1 ⊔

σ2, δ
′
1 ⊔ δ2)cmd. Now we can conclude :

∗ We haveτ1 ⊓ τ2 ⊑ τ ′
1 ⊓ τ2. By case analysis, becauseτ1 ⊑ τ ′

1.
∗ We haveσ′

1 ⊓ σ2 ⊑ σ1 ⊓ σ2 becauseσ′
1 ⊑ σ1.

∗ Finally,δ′1 ⊔ δ2 ⊑ δ1 ⊔ δ2 becauseδ′1 ≤ δ1.

• C-SEQ2: Here,C1 is skip and 〈M, skip;C2〉
τ
→ 〈M,C2〉. We have⊢ C2 :

(τ2, σ2, δ2)cmd, and we can conclude since :
∗ τ1 ⊓ τ2 ⊑ τ2

∗ σ2 ⊑ σ1 ⊔ σ2

∗ δ2 ⊑ δ1 ⊔ δ2

– T-SEQ2: Here,⊢ C1;C2 : (τ1 ⊓ τ2, σ1 ⊔ σ2, ↑)cmd because⊢ Ci : (τi, σi, δi)cmd

anσ1 ⊑ τ2 andsnd(σ1) = s δ1 = ↑. Only rule C-SEQ1 can be used, sinceδ1 = ↑.
Thus,〈M,C1;C2〉

u
→ 〈M ′, C ′

1;C2〉 because〈M,C1〉
u
→ 〈M ′, C ′

1〉. Applying in-
duction hypothesis onC1, we get :⊢ C ′

1 : (τ ′
1, σ

′
1, δ

′
1)cmd with (τ ′

1, σ
′
1, δ

′
1)cmd ≤

(τ1, σ1, δ1)cmd.
We distinguish two cases :

• If δ′1 = ↓, then we can apply T-SEQ1, obtaining⊢ C ′
1;C2 : (τ ′

1 ⊓ τ2, σ
′
1 ⊔

σ2, δ
′
1 ⊔ δ2)cmd. We again conclude by a case analysis as previously.

17

• If δ′1 = ↑, then we can apply T-SEQ2 becauseσ′
1 ⊑ σ1 ⊑ τ2. We get⊢ C ′

1;C2 :
(τ ′

1 ⊓ τ2, σ
′
1 ⊔ σ2, ↑)cmd and conclude as previously.

– T-IF: Here,⊢ if e then C1 elseC2 : (τ1 ⊓ τ2, σ1 ⊔ σ2 ⊔ θ, δ1 ⊔ δ2)cmd because
⊢ e : θ and⊢ Ci : (τi, σi, δi)cmd andθ ⊑ τi.
Depending on whether C-IF1 or C-IF2 is used, there are two cases :
• If C-IF1 is used,C1 will be the next instruction, then we have to show that

(τ1, σ1, δ1)cmd ≤ (τ1 ⊓ τ2, σ1 ⊔ σ2 ⊔ θ, δ1 ⊔ δ2)cmd. We proceed simply by
definition of⊓ and⊔.

• Similarly if C-IF2 is used.
– T-FOR: Here⊢ for e do C : (τ, σ, δ)cmd because⊢ e : θ, ⊢ C : (τ, σ, δ)cmd,

θ ⊑ τ andsnd(σ) = s ∧ δ = ↑ ⇒ σ ⊑ τ .
According to C-FOR, we have to typeif n1 then C; for n1 − 1 do C else skip
where〈M, e〉 ⇓ n andn1 = |n|. But ⊢ C : (τ, σ, δ)cmd and⊢ for n1 − 1 do C :
(τ, σ, δ)cmd.
There are two cases to type the sequential composition :

• If δ = ↓, then we use rule C-SEQ1 to get :⊢ C; for n1−1 do C : (τ, σ, δ)cmd.
We conclude using T-IF with :⊢ if n1 then C; for n1 − 1 do C else skip :
(τ, σ, δ)cmd (because⊢ n1 : ⊥P).

• If δ = ↑, then we can use T-SEQ2 : in factσ ⊑ τ by the side condition of
T-FOR becausesnd(σ) = s (otherwise, we would use T-SEQ1) andδ = ↑.
We get :⊢ C; for n1 − 1 do C : (τ, σ, ↑)cmd. We conclude using T-IF rule,
obtaining :⊢ if n1 then C; for n1 − 1 do C else skip: (τ, σ, δ)cmd.

– T-WHILE: Here ⊢ while e do C : (τ, σ ⊔ θ, ↑)cmd because⊢ e : θ, ⊢ C :
(τ, σ, δ)cmd, θ ⊑ τ andsnd(σ) = s ⇒ σ ⊑ τ . According to C-WHILE, we
have to typeif e then (C; while e do C) else skip. But ⊢ C : (τ, σ, δ)cmd and
⊢ while e do C : (τ, σ ⊔ θ, ↑)cmd.
We have two cases for typingC; while e do C.

• If snd(σ) ⊑P b, we can use rule T-SEQ1. Thus,⊢ C; while e do C : (τ, σ ⊔
θ, ↑)cmd. Using rule T-IF, we get :⊢ if e then (C; while e do C) else skip:
(τ, σ ⊔ θ, ↑)cmd.

• If snd(σ) = s then, by the side condition of T-WHILE, we haveσ ⊑ τ .
Applying T-SEQ2, we get :⊢ C; while e do C : (τ, σ⊔θ, ↑)cmd. By rule T-IF,
we conclude with :⊢ if e then (C; while e do C) else skip: (τ, σ ⊔ θ, ↑)cmd.

2

The following lemmas (using the terminology from [VSI96]) confirm that the infor-
mal definitions we gave about both components of a command type in Section 4.1 are
enforced by the type system.

Lemma 3 (Simple security).If ⊢ e : τ then every variable occurring ine has type
τ ′ var whereτ ′ ⊑ τ .

Lemma 4 (Confinement).If ⊢ C : (τ, σ, δ)cmd, then every variable assigned to in
programC has typeθ var with τ ⊑ θ.

18

Lemma 5 (Guard safety).If ⊢ C : (τ, σ, δ)cmd, then every while loop or conditional
guard in programC has typeθ var with θ ⊑ σ.

Lemma 6 (Termination). If ⊢ C : (τ, σ, ↓)cmd, thenC terminates on all memories.

The proofs of these four lemmas are straightforward inductions on the respective typing
derivations; the details are omitted.

In the formal development that follows for simplicity’s sake we only treat the case of
the three point lattice in Figure 1. The following results can be extended to the general
case: for a given clearance leveli in L, as was depicted in the example offinance ’s
perspective in Figure 4, the refinement ofL can be rethought of as a three point lattice
- low level,bhighandshighsecrets.

Recall that the three point lattice is the partial product of{low , high} andS, which
yields the three ordered pointslow ⊑P (high, b) ⊑P (high, s). In the following we
write bhigh andshigh for the latter two points. A commandC is said to beshighor
bhigh if there existsτ andσ such that⊢ C : (τ, σ, δ)cmd with respectivelyτ = shigh
or bhigh ⊑ τ .

In order to further lighten the notation, we first introduce the notion ofa-equivalence
on memories, for eacha in the three point-lattice, as follows:

Definition 12 (Memory a-equivalence).
Leta be in{low, bhigh, shigh}. Two memoriesM andN are said to bea-equivalent,
denoted byM =a N if for all variablesx, Γ (x) ⊑ a⇒M(x) = N(x).

The goal in the type soundness proof is to build for eachi a i-TSB andi-TIB over
configurations of the form〈M,C〉 and〈N,C〉, whereC is typeable. The following two
propositions identify classes of configurations that can beeasily shown to be bisimilar.

Proposition 3 (l-TSBisimilarity of shigh commands).
The relation{(〈M,C〉, 〈N,D〉)|M =b N ;C,D areshigh} is a l-TSB.

Proof. The relation is symmetric by definition. LetC andD be twoshighcommands,
andM , N be two memories such thatM =b N , so we have thatM =l N . Suppose
we have〈M,C〉

u
→l 〈M

′, C ′〉. SinceC is shigh, then the transition is silent, hence
we can match the step by〈N,D〉

τ
⇒l 〈N,D〉. The two resulting configurations stay in

the relation, becauseshigh-ness is preserved along the execution ofC (Lemma 1), and
M ′ =b N becauseM ′ =b M (by Lemma 4 andshigh-ness ofC).

2

Proposition 4 (l-TIBisimilarity of bhigh commands).
The relation defined :{(〈M,C〉, 〈N,D〉)|M =l N ;C,D bhigh} is a l-TIB.

Proof. Similar to Proposition 3, by matching with the empty transition. 2

We also need the following lemma that states thel or b-equivalence of memories
is preserved along the execution of a typeable command depending on its termination
effectσ.

19

Lemma 7.
If ⊢ C : (τ, low, δ)cmd andM =l N then〈M,C〉

u
→l 〈M

′, C ′〉 implies〈N,C〉
u
→l

〈N ′, C ′〉 with M ′ =l N ′.
If ⊢ C : (τ, bhigh, δ)cmd and M =b N then 〈M,C〉

u
→l 〈M

′, C ′〉 implies
〈N,C〉

u
→l 〈N

′, C ′〉 with M ′ =b N ′.

Proof. By induction on the type derivation⊢ C : (τ, σ, δ)cmd. We only prove the first
part, the other one is similar.

– C = x := e and⊢ e : τ with Γ (x) = τ . Then,C ′ = skip. If τ = low then
by Lemma 3 the variables ine must all be low, and hence evaluatinge in M or N

yields the same value so the resulting memories staylow-equivalent. Otherwise, if
τ 6= low thenx cannot be a low variable and thus low-equivalence of memories is
trivially preserved by this command.

– C = outputi(e). If i = low then, the same value is output during the computation
step. Now ifi is greater, then this is a silent transition onM andN . Here, memories
are not modified and stay triviallylow-equivalent.

– C = C1;C2. Only rule T-SEQ1 can be used, so⊢ C1 : (τ1, σ1, δ1)cmd and
⊢ C2 : (τ2, σ2, δ2)cmd with σ1 = σ2 = low. If the transition is taken by mean of
rule C-SEQ1, thenC ′ = C ′

1;C2 with 〈M,C1〉
u
→l 〈M

′, C ′
1〉. Induction hypothesis

on C1 gives that〈N,C1〉
u
→l 〈N

′, C ′
1〉 with M ′ =l N ′. We conclude by applying

rule C-SEQ1 on this transition.
Now if rule C-SEQ2 is used, thenC1 = skip and there is no output. We again
apply induction hypothesis onC2 and rule C-SEQ2.

– C = if e then C1 else C2. Here, we have that⊢ e : l. But M =l N so the same
branch is executed starting either fromM or N , in a silent transition. Memories are
not modified and hence staylow-equivalent.

– C = while e do D andC = for e do D. Same as conditional.

2

Now we can state the main result.

Proposition 5 (Noninterference of well typed commands).
If a commandC is typable, i.e.,⊢ C : (τ, σ, δ)cmd, thenC satisfies SSNI.

Proof. We use the proof technique provided by Corollary 1. The firststep is to show
that⊢ C : (τ, σ, δ)cmd implies〈C,M〉 ∼=i 〈C,N〉 for all levelsi, to have the s-TSNI
property of Definition 9.

The casei = high is vacuous: memories and commands are in this case equal. The
interesting case isi = low.

We show that⊢ C : (τ, σ, δ)cmd implies〈C,M〉 ∼=l 〈C,N〉 for all M andN that
are equal on their low and bhigh parts, defining a relationR1: 〈M,C〉R1〈N,D〉 if and
only if C andD are typable,M l = N l andM |lb = N |lb , and one of the following
holds:

(i) C andD areshigh

20

(ii) C = D
(iii) C = C1;C2, D = D1;C2 with 〈M,C1〉R1〈N,D1〉 andC2 is shigh
(iv) C is shigh, D = D1;D2 with 〈M, skip〉R1〈N,D1〉 andD2 is shigh

We have to show thatR1 is a l-TSB. Suppose we have〈M,C〉R1〈N,D〉. By defi-
nition ofR1, we have thatM =l N . Now we have to show that if〈M,C〉

u
→l 〈M

′, C ′〉

then〈N,D〉
u
⇒l 〈N

′,D′〉 with 〈M ′, C ′〉R1〈N
′,D′〉. We proceed by induction on the

definition ofR1. The reflexivity of the relationR1 is clear, except for the clause (iv) in
which it will be treated.

(i) Here we simply use Proposition 3.
(ii) Here,C = D. We proceed by induction on the structure ofC.

• C = x := e. If Γ (x) ⊑ b, then we have〈M, e〉 ⇓ n and〈N, e〉 ⇓ n by the
simple security lemma becauseM =b N . So the transition〈M,C〉

τ
→l〈M [x←

n], skip〉 is matched by〈N,C〉
τ
→l 〈N [x ← n], skip〉. We also have that

M [x ← n] =b N [x ← n] and we stay in clause (ii). IfΓ (x) = shigh and
evaluatinge in M andN does not yield the same value (which is the interesting
case), we match by the same step, since memories remain equalconcerning
their bhigh (or lower) parts.

• C = outputi(e). There are two cases depending on whetheri ⊑ l or not. In
the former case, sinceM =b N 〈M, e〉 ⇓ n and〈N, e〉 ⇓ n so the same value
is output. We stay again in clause (ii) because the memories are not modified.
If i = high, then the transition is silent, and computations stay together since
the memories are not modified.

• C = if e then C1 else C2.
If ⊢ e : τ with τ ⊑ b, then evaluatinge on M or N yields the same value be-
causeM =b N . The transition matching〈M,C〉

τ
→l 〈M,Ci〉 is thus〈N,C〉

τ
→l

〈N,Ci〉 and we stay in clause (ii).
Now if ⊢ e : s, according to the typing rule,⊢ Ci : (s, σ, δ)cmd. So, even if the
branching is different depending on whetherC is run onM or N , both config-
urations remain related, since memories are unchanged, andboth commands
areshigh(clause (i)).

• C = while e do C ′ andC = for e do C ′. Here we proceed as in conditional
case.

• C = C1;C2. Depending on which transition rule is used, we have two cases :
1. If C-SEQ1 is used, we hence have〈M,C1;C2〉

u
→l 〈M

′, C ′
1;C2〉 with

〈M,C1〉
u
→l 〈M

′, C ′
1〉. We distinguish two cases whetherC2 is shighor

not.
(a) If ⊢ C2 : (τ2, σ2, δ2)cmd with τ2 ⊑ b, only rule T-SEQ1 can be

used. Then⊢ C1 : (τ1, σ1, δ1)cmd with σ1 ⊑ b soC1 does not con-
tain a shigh guard. Using Lemma 7, we have〈N,C1〉

u
→l 〈N

′, C ′
1〉

with M ′ =b N ′. Applying rule C-SEQ1 gives that〈N,C1;C2〉
u
→l

〈N ′, C ′
1;C2〉. We stay again in clause (ii).

(b) If C2 is shigh. Applying the induction hypothesis onC1 gives that
〈N,C1〉

u
⇒l 〈N

′, C ′′
1 〉 with M ′ =b N ′ and〈M ′, C ′

1〉R1〈N
′, C ′′

1 〉. We
then obtain by rule C-SEQ1 that〈N,C1;C2〉

u
⇒l 〈N

′, C ′′
1 ;C2〉. We

finally have that〈M ′, C ′
1;C2〉R1〈N

′, C ′′
1 ;C2〉 by clause (iii).

21

2. If C-SEQ2 is used, then〈M, skip;C2〉
τ
→l 〈M,C2〉. The maching step

is simply 〈N, skip;C2〉
τ
→l 〈N,C2〉 and the configuration are related by

clause (ii).
(iii) C = C1;C2, D = D1;C2 with 〈M,C1〉R1〈N,D1〉 andC2 is shigh.

1. If C-SEQ1 is used, then〈M,C1;C2〉
u
→l〈M

′, C ′
1;C2〉 and〈M,C1〉

u
→l〈M

′, C ′
1〉.

Applying the induction hypothesis onD1 leads to〈N,D1〉
u
⇒l 〈N

′,D′
1〉 with

M ′ =b N ′. We then apply rule C-SEQ1 and stay in clause (iii).
2. If C-SEQ2 is used, thenC1 = skip and 〈M, skip;C2〉

τ
→l 〈M,C2〉. The

matching move is then〈N,D〉
τ
⇒l 〈N,D〉. We have that〈M,C2〉R1〈N,D〉

by clause (iv) becauseC2 is shighand〈M, skip〉R1〈N,D1〉.
(iv) Here,C is shigh, D = D1;D2, with 〈M, skip〉R1〈N,D1〉 andD2 is shigh.

1. Suppose we have〈M,C〉
u
→l 〈M

′, C ′〉. C is shigh, soM =b M ′ andu = τ .
The matching step is then〈N,D〉

τ
⇒l 〈N,D〉 and we stay in clause (iv).

2. Suppose now we have〈N,D〉
u
→l 〈N

′,D′〉. If rule C-SEQ1 is used, then
〈N,D1〉

u
→l 〈N

′,D′
1〉 and applying the induction hypothesis onD1 gives us

〈M, skip〉
u
⇒l 〈M

′, C ′′〉. The only transition fromskip is itself soM ′ = M

andC ′′ = skip. It gives us also thatu = τ . We can thus match the transition
with 〈M,C〉

τ
⇒l 〈M,C〉 and we stay in clause (iv).

If rule C-SEQ2 is used, thenD1 = skip and〈N,D〉
u
→l 〈N,D2〉. Sou = τ .

The matching step is hence again〈M,C〉
τ
⇒l 〈M,C〉 and we conclude using

clause (i) becauseD2 is shigh.

R1 is a l-TSB. By clause (ii) and Proposition 1, sinceM =b N impliesM l = N l

andM |lb = N |lb , we have that in a well typed program, there is no flow fromshigh

data tobhigh andlow data.
The next step is to prove that the type system ensures TINI concerning thebhigh-

data.
We proceed a similar way, providing al-TIB R2 over configurations. The relation

R2 is defined:〈M,C〉R2〈N,D〉 if and only if C andD are typable,M =l N , and one
of the following holds:

(i) C andD arebhigh
(ii) C = D

(iii) 〈M,C〉R′
2〈N,D〉, the relationR′

2 being defined inductively as follows :

C,D bhigh

〈M,C;C ′〉 R′
2 〈N,D;C ′〉

R1
〈M,C〉 R′

2 〈N,D〉

〈N,C;C ′〉 R′
2 〈N,D;C ′〉

R2

We now have to prove thatR2 is a l-TIB. We will use the property thatR2 is pre-
served by sequential composition,i.e.〈M,C〉R2〈N,D〉 implies〈M,C;C ′〉R2〈N,D;C ′〉.
This result can be easily proved by case analysis on the definition of the relation. The
relationR2 is clearly symmetric. Suppose we have〈M,C〉R2〈N,D〉. By definition of
R2, we have thatM =l N . Now we have to show that if〈M,C〉

u
→l 〈M

′, C ′〉 then ei-
ther〈N,D〉

u
⇒l 〈N

′,D′〉 with 〈M ′, C ′〉R2〈N
′,D′〉 or 〈N,D〉⇑l. We proceed by case

analysis on the definition ofR2.

22

(i) Here we simply use Proposition 4.
(ii) C = D. We proceed by induction on the structure ofC.

• C = C1;C2. Depending on the semantic rule that is used, we have two cases:
1. C-SEQ1: We have that〈M,C1;C2〉

u
→l〈M

′, C ′
1;C2〉 because〈M,C1〉

u
→l

〈M ′, C ′
1〉. Applying the induction hypothesis onC1, 〈N,C1〉

u
⇒l 〈N

′, C ′′
1 〉

with 〈M,C ′
1〉R2〈N

′, C ′′
1 〉. ButR2 is preserved by sequential composition,

so〈M,C ′
1;C2〉R2〈N

′, C ′′
1 ;C2〉.

2. C-SEQ2: Here,C1 = skip and 〈M,C〉
τ
→l 〈M,C2〉. We simply have

that〈N,C〉
τ
→l 〈N,C2〉 and the configurations stay together thanks to the

clause (ii).
• Other cases are similar to those of the relationR1.

(iii) We proceed by induction on the definition ofR′
2.

• R1: Here,C = C1;C2, D = D1;C2 andC1, D1 arebhigh. Here, only rule
C-SEQ1 can be used, sinceskip cannot be typed as abhigh command.
We thus have that〈M,C1;C2〉

u
→l〈M

′, C ′
1;C2〉 because〈M,C1〉

u
→l〈M

′, C ′
1〉.

But C1 is bhigh, sou = τ , M =l M ′ andC ′
1 is bhigh. We can match this step

by 〈N,D1;C2〉
τ
⇒l 〈N,D1;C2〉. Configurations are in the relation by rule R1.

• R2: Note that only rule C-SEQ1 can be used: ifC1 = skip, it cannot be
related toD, sinceR′

2 only relates sequential compositions. Then, we have
that〈M,C1;C2〉

u
→l 〈M

′, C ′
1;C2〉 because〈M,C1〉

u
→l 〈M

′, C ′
1〉. But we have

〈M,C1〉 R
′
2 〈N,D1〉, so by induction hypothesis onD1 :

∗ If 〈N,D1〉
u
⇒l 〈N

′,D′
1〉, we match using rule C-SEQ1 by〈N,D1;C2〉

u
⇒l

〈N ′,D′
1;C2〉 and we can conclude by rule R2.

∗ If 〈N,D1〉⇑l then sinceD1 cannot beskip (from the definition ofR′
2) we

know that〈N,D1〉
τ
→l 〈N

′,D′
1〉 for someN ′, D′

1. By the symmetry of
relationR′

2 and induction hypothesis, we get that〈M,C1〉
τ
⇒l 〈M

′′, C ′′
1 〉

with 〈N ′,D′
1〉R2〈M

′′, C ′′
1 〉 or 〈M,C1〉 ⇑l. Thus, by rule C-SEQ1, the

transition we had originally to match is a silent one, and we can match it
by 〈N,D1;C2〉

τ
→l 〈N

′,D′
1;C2〉. Configurations stay related by rule R2.

R2 is thus al-TIB, and by clause (ii) and Proposition 2, we have the TINI property
of well typed programs concerning theirbhigh-data: there is no flow frombhigh data
to low data except via the termination channel. 2

5 Correlation Leaks

In this section we mention a weakness in the definition of secret-sensitive noninterfer-
ence which allows the attacker to observecorrelationsbetween big and small secrets.
We show how the definition can be strengthened to remove such correlations, and con-
jecture that the type system guarantees correlation-freedom without need for modifica-
tion.

Suppose thatb is bhighands is shigh(in the lattice in Figure 1). Somewhat surpris-
ingly the programoutputlow(b == s) is secret-sensitive noninterfering (note though
that it is not typeable). This is because the low observer cansay nothing about the value
of e.g.s in isolation. The problem is that although the observer cannot deduce anything

23

about the individual kinds of secret, he can deduce information about theircorrelation
(in this example whether they are equal or not).

To eliminate the possibility of learning something about the correlation of big and
small secrets we need to demand that the knowledge learnt about big and small secrets
together is the same as for the combined knowledge learnt about them independently.
To express this precisely we need some additional notation.

In the definitions of secret-sensitive noninterference we have dealt with knowledge
as sets of projections of memories. We say that a memoryM is full if dom(M) is the
set of all variables. In order to easily compare and combine knowledge sets we need
to work with full memories. DefineM⋆ to be the set of full memories obtainable by
completingM :

M⋆ = {N | N |dom(M) = M,N is full}.

Now lift ·⋆ to sets of memoriesK in the natural way by defining

K⋆ =
⋃

M∈K

M⋆

Definition 13 (Correlation Freedom).A programC is Correlation Freeif for all ~v ∈
Obsi(C,M i), we havekbs

i (C,M i, ~v)⋆ = kb
i (C,M i, ~v)⋆ ∩ ks

i (C,M i, ~v)⋆, where
kbs

i (C,M i, ~v) = {M |i | M ∈ ki(C,M i, ~v)} andM |i is the complement ofM i – i.e.,
the projection ofM to the variablesnot visible at leveli.

In the case thatC is secret-sensitive noninterfering we can show that this condition
is equivalent tokbs

i (C,M i, ~v)⋆ = kb
i (C,M i, ~v)⋆, which says that nothing more is learnt

about the big and small secrets together than can be deduced from the big secrets alone.

Conjecture 1 Well-typed programs are correlation free.

We leave the proof of this conjecture to further work; the intuition here is that any
“correlation information” will always be typed ass-level data, and hence cannot be
leaked at all.

6 Conclusions

In this article we provided a way to refine an arbitrary complex security lattice in order
to distinguish two levels of secret, the big secretsb and the small oness. Big secrets
can be handled more liberally on the grounds that they can be made sufficiently large
and random for slow leakage to be tolerable. We introduced anaccompanying notion
of secret-sensitive noninterference which combines the relative merits of termination-
sensitive and termination-insensitive noninterferences. We illustrated the use of the def-
inition in the soundness argument for a simple type system for verifying secret-sensitive
noninterference.

24

Related Work As mentioned previously, the starting point of this work is [AHSS08].
Our interpretation of the results there is that we need to treat different kinds of secret in
different ways, and to our knowledge this paper is the first todo so in a noninterference
setting. It is, however, relatively common to give a specialtreatment to cryptographic
keys as compared to other kinds of secret – e.g. [AHS06] – but usually the goal here is
to deal with integrity (a key cannot be modified using a low value) or freshness (a key
cannot be used more than once).

Our type system is essentially a fusion of a type-based version of Denning’s sys-
tem [VSI96], and a stricter system based on [BC01]. The latter system is stricter than
a Denning-style analysis for quite a different purpose: to deal with multi-threaded pro-
grams. Our system, in a sequential setting, improves on [BC01] by additionally tracking
whether a program is terminating.

Further Work A natural and interesting next step would be to combine such atype sys-
tem with cryptographic primitives (e.g. [Vol00][LV05][AHS06]). The notion of “big”
and “small” secrets have a natural interpretation in the cryptographic setting, since “big”
secrets correspond to e.g. cryptographic keys. In such a setting it might also be im-
portant to handle “size integrity”, so that one could know that a variable is not only
independent of small secrets, but that itis a big secret.

AcknowledgementsThanks to Andrei Sabelfeld for pointing out the correlation problem dis-
cussed in Section 5, and to Niklas Broberg, Josef Svenningsson, DavidPichardie, Thomas Jensen
and the anonymous referees for very helpful comments on an earlierdraft. This work was partly
supported by grants from the Swedish funding agencies SSF, Vinnova (The Swedish Govern-
mental Agency for Innovation Systems), VR, and by the European IST-2005-015905 MOBIUS
project.

25

References

AHS06. A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows. InProc.
Symp. on Static Analysis, LNCS, pages 353–369. Springer-Verlag, August 2006.

AHSS08. A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninter-
ference leaks more than just a bit. InESORICS 2008, 13th European Symposium on
Research in Computer Security, volume 5283 ofLNCS. Springer Verlag, 2008.

AS07. A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption
and key release policies. InProc. IEEE Symp. on Security and Privacy, pages 207–
221, May 2007.

BB03. J. Barnes and JG Barnes.High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2003.

BC01. G. Boudol and I. Castellani. Noninterference for concurrentprograms. InProc.
ICALP’01, volume 2076 ofLNCS, pages 382–395. Springer-Verlag, July 2001.

CH04. R. Chapman and A. Hilton. Enforcing security and safety models with an information
flow analysis tool.ACM SIGAda Ada Letters, 24(4):39–46, 2004.

DD77. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Comm. of the ACM, 20(7):504–513, July 1977.

Den76. D. E. Denning. A lattice model of secure information flow.Comm. of the ACM,
19(5):236–243, May 1976.

LV05. P. Laud and V. Vene. A type system for computationally secure information flow. In
Proc. Fundamentals of Computation Theory, volume 3623 ofLNCS, pages 365–377,
August 2005.

MZZ+08. A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java informa-
tion flow. Software release. Located athttp://www.cs.cornell.edu/jif ,
July 2001–2008.

Sim03. V. Simonet. The Flow Caml system. Software release. Located at
http://cristal.inria.fr/ ˜ simonet/soft/flowcaml/ , July 2003.

Smi01. G. Smith. A new type system for secure information flow. InProc. IEEE Computer
Security Foundations Workshop, pages 115–125, June 2001.

Vol00. D. Volpano. Secure introduction of one-way functions. InCSFW ’00: Proceedings of
the 13th IEEE workshop on Computer Security Foundations, page 246, Washington,
DC, USA, 2000. IEEE Computer Society.

VS97. D. Volpano and G. Smith. Eliminating covert flows with minimum typings.Proc.
IEEE Computer Security Foundations Workshop, pages 156–168, June 1997.

VSI96. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
J. Computer Security, 4(3):167–187, 1996.

http://www.cs.cornell.edu/jif
http://cristal.inria.fr/~simonet/soft/flowcaml/

	Introduction
	A Refined Multilevel Lattice
	Secret-Sensitive Noninterference
	Characterising SSNI
	Computational Security

	Secret-Sensitive Noninterference by Typing
	Type system
	Type Soundness

	Correlation Leaks
	Conclusions

