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Abstract
Dynamic information flow policies, such as declassification,
are essential for practically useful information flow control
systems. However, most systems proposed to date that han-
dle dynamic information flow policies suffer from a common
drawback. They build on semantic models of security which
are inherently flow insensitive, which means that many sim-
ple intuitively secure programs will be considered insecure.

In this paper we address this problem in the context of a
particular system, flow locks. We provide a new flow sen-
sitive semantics for flow locks based on a knowledge-style
definition (following Askarov and Sabelfeld), in which the
knowledge gained by an actor observing a program run is
constrained according to the flow locks which are open at
the time each observation is made. We demonstrate the ap-
plicability of the definition in a soundness proof for a simple
flow lock type system. We also show how other systems can
be encoded using flow locks, as an easy means to provide
these systems with flow sensitive semantics.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
gauges

General Terms Languages, Security

Keywords Information Flow Control, Declassification, Se-
curity Type System

1. Introduction
Information flow policies that evolve over time (including,
for example, declassification) are widely recognised as an
essential ingredient in useable information flow control sys-
tems.
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Such policies are only useful if we have a precise speci-
fication – a semantic model – of what we are trying to en-
force. A semantic model gives us insight into what a policy
actually guarantees, and defines the precise goals of any en-
forcement mechanism.

Unfortunately, semantic models of declassification – in
particular those that try to specify more that justwhat is
declassified – can be both inaccurate and difficult to under-
stand.

We address this problem for one specific but rather flexi-
ble information flow policy approach,flow locks.

The Flow Sensitivity Problem The most commonly used
semantic definition of secure information flow – at least in
the language-based setting – involves the comparison of two
runs of a system. The idea is to define security by comparing
any two runs of a system in environments that only differ
in their secrets (such environments are usually referred toas
beinglow equivalent). A system is secure ornoninterfering
if any two such runs are indistinguishable to an attacker.
These “two run” formulations relate to the classical notion
of unwindingin [GM82].

Many semantic models for declassification – in particular
those which have a “where” or “when” dimension [SS05] –
are built from adaptations of such a two-run noninterference
condition.1

Such adaptations are problematic. Consider the first point
in a run at which a declassification occurs. From this point
onwards, two runs may very well produce different observ-
able outputs. A declassification semantics must constrain the
difference at the declassification point in some way (this is
specific to the particular flavour of declassification at hand),
and further impose some constraint on the remainder of the
computation. So what constraint should be placed on the re-
mainder of the computation? The prevailing approach to give
meaning to declassification (e.g. [MS04, EP05, EP03, AB05,
Dam06, MR07, BCR08, LM08]) is to reset the environments

1 For the purposes of this paper it is useful to view declassification as a
particular instance of a dynamic information flow policy in which the infor-
mation flow policy becomes increasingly liberal as computation proceeds.
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of the systems so as to restore the low-equivalence of envi-
ronments at the point after a declassification.

We refer to this as theresetting approachto declassifica-
tion semantics.

The down-side of the resetting approach is that it isflow
insensitive. This implies that the security of a programP
containing a reachable subprogramQ requires thatQ be se-
cure independently ofP . For example, consider the program

declassifyh in {ℓ := h}; ℓ := h

whereh is a high security variable andℓ is low. In the seman-
tics of e.g. [BCR08] this would be deemed insecure because
of the insecure subprogramℓ := h – even though in all runs
this subprogram will behave equivalently to the obviously
secure programℓ := ℓ. Similar examples can be constructed
for all of the approaches cited above. Another instance of the
problem is that dead code can be viewed as semantically sig-
nificant, so that a program will be rejected because of some
insecure dead code. Note that flow insensitivity might be a
perfectly reasonable property for a particularenforcement
mechanism such as a type system – but in a sequential set-
ting it has no place as a fundamental semantic requirement.

The resetting approach is not without merits though. In
particular it is able to handle shared-variable concurrency
in a compositional way [MS04, AB05]. However, the use of
resetting for compositionality and its use for giving a seman-
tics to declassification are orthogonal, and the flow insensi-
tivity problem carries over to those parts of the environment
which are not shared across threads.

Overview In this paper we tackle the problem of providing
a semantics for “dynamic”2 information flow policies for
one particular approach,flow locks. Flow locks (reviewed in
Section 2) were introduced with the intention of providing a
core calculus for expressing dynamic flow policies. We can
encode a wide range of declassification mechanisms using
flow locks, which we have shown in [BS06a, BS06b].

The earlier semantic model for flow locks suffers from
the flow insensitivity problem described above. Perhaps due
to its generality it is also overly complex and unintuitive.
The key to recovering flow sensitivity and to drastically sim-
plifying the semantics is to follow the lead of Askarov and
Sabelfeld [AS07] who move away from a “two run” view
of security semantics, and focus instead on how an explicit
representation of the attacker’s knowledge evolves as com-
putation proceeds. This approach is reviewed in Section 2.

Using this approach we craft our new semantics (Section
3) and discuss some of the basic properties of the definition
(Section 4) from the declassification perspective [SS05].

We go on to show that the definition is useable by apply-
ing it to a concrete instance and a simple type system for
flow lock security (Section 5).

2 For the purposes of this paper we use dynamic to refer to a policy which
varies at runtime. Other notions of dynamic policy not considered in this
work include, for example, runtime principals [TZ04] or labels [ZM07].

Finally we discuss encodings of other systems, and in par-
ticular we show (Section 6) that Askarov and Sabelfeld’s ba-
sic gradual releaseproperty is soundly and completely rep-
resented by the flow locks encoding of simple declassifica-
tion [BS06a].

2. Preliminaries
In this section we review the basic flow locks idea, some of
the issues with its previous semantic model, and outline the
knowledge-based alternative style of semantics that we will
use to provide a new semantic model.

Flow locks: the basic idea Suppose we have a program
which deals with twoactors, a vendor and a customer. The
program has access to the vendor’s secret data – a software
activation key – which should not be permitted to flow to the
customer unless the customer has paid for the software. To
model the payment act we have a special boolean flag called
a lock. Let us call this particular lock “Paid ”.

The Paid lock, and locks in general, are used solely to
specify when information may flow from storage locations
to actors. The lock is a special variable in the sense that the
only interaction between the program and the lock is via the
instructions toopenor closethe lock. In this way locks can
be seen as a purely compile-time entity used to specify the
information flow policy.

In the case of the program we would need to associate
the opening of thePaid lock with the actual confirmation of
payment in the code.

The idea is that security policies are associated with the
storage locations in a program. In the case of a software key,
the policy would then be written as

{vendor ;Paid ⇒ customer}

The data contained in a storage location with this policy may
flow freely to the vendor, but should not flow to the customer
until the paid lock is open.

If at some later point the lock was closed again, perhaps
because the customer’s access to the software key was only
for a limited period of time, the data should no longer be ac-
cessible to the customer, though they would not be required
to forget what they have already learnt.

Note that flow locks is an information flow policyspeci-
ficationmechanism – it allows the programmer to specify a
flow policy in a program, and get guarantees that the pro-
gram correctly conforms to the policy as stated. Flow locks
makes no attempts to address the issue of whether the policy
itself is correctly stated, i.e., that the opening and closing of
locks is done in the right places, and that data is labelled with
the proper policies. This is largely an orthogonal problem
handled by external analyses and verification mechanisms.

Flow Lock Encodings One aim of the flow locks approach
is to provide a general language into which a variety of in-
formation flow mechanisms can be encoded. As a simple ex-
ample of such an encoding from [BS06a], consider a system
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with data marked with ”high” or ”low”, and a single state-
mentℓ := declassify(h) taking high data inh and down-
grading it to low variableℓ. We can encode this using flow
locks by letting low variables be marked with{high; low}
(readable by actorshigh and low ). High variables would
then be given the policy{high ;Decl ⇒ low}, and the state-
mentℓ := declassify(h) can be encoded with the sequence
of statements

open Decl ; ℓ := h; close Decl

Let us consider one further example of a policy relating
to dynamic change of an information flow lattice. Consider
Figure 1 which depicts three information-flow lattices.

Figure 1. Example Dynamic Policy

In the leftmost lattice Alice is the top element. While
Alice is “boss” all information may flow to her. If she is
demoted, however, then the information flow lattice changes
to the central figure. From there either Bob or Alice can
be promoted to be the boss. Let us consider how to encode
this intended scenario with flow locks. A semantics for this
policy is then provided by the flow locks semantics presented
in the remainder of the paper.

To represent this dynamic flow policy with flow locks we
begin, not surprisingly, by assuming three actors:Alice, Bob,
andJoe. To model the transitions between policies we use
two locks:promoteAandpromoteB. The events of promo-
tion and demotion are modelled by the respective opening
and closing of these locks. WhenpromoteAis open then Al-
ice is boss. ClosingpromoteA(respectively,promoteB) cor-
responds to demoting Alice (resp. Bob).

To complete the picture we need to describe the corre-
sponding policies for the data to be associated with Alice,
Bob, and Joe. Joe is the simplest case, and his data has pol-
icy {Joe;Alice;Bob} – i.e. it is readable by everyone at all
times. Alice’s data has policy{Alice; promoteB ⇒Bob}
and Bob has the symmetric policy{promoteA⇒Alice;Bob}.
For Bob this means that his data is readable by Alice only
when Alice has been promoted. Note that if both locks are
open then we have a situation not modelled in the figure:
Alice and Bob become equivalent from an information flow
perspective. If we want to rule this out we cannot do so us-
ing the policy on data. We must enforce this via an invariant
property of the locks themselves.

Problems with the Flow Lock Security In our previous
work we introduced a definition of what it means for a
program to be secure with respect to a given assignment

of flow-lock policies to variables. Here we highlight some
additional issues with this semantics. We will not introduce
the definition in its full and gory detail, referring insteadto
[BS06b] which provides a lengthy stepwise development of
the definition.

In common with many of the approaches cited above,
flow lock security is defined using a resetting approach based
on a flow insensitive version of noninterference calledstrong
securityintroduced by Sabelfeld and Sands [SS00]. This is
based on the idea of a bisimulation between any two runs
which differ only on the initial values of secrets. Programs
P andQ are bisimilar if whenever they are given attacker-
equivalent memory states the next computation step ofP

will be matched byQ and result in low-equivalent states, and
the resulting programs will also be bisimilar. This embodies
an “aggressive” resetting in that it quantifies over all pairs of
low equivalent memories at each step of the bisimulation.

A number of complications in the flow-lock semantics
are due to the underlying flow-insensitivity. In particularthe
definition built in two concepts:future sensitivityandpast
awareness. The notion of future sensitivity required that at
each step of the bisimulation the security condition had to
ensure that any changes to memories would be safe inall
possiblefuture lock states, even though there is always one
specific lock state that would be sufficient to discover such
problems. While future sensitivity catches “bad flows” that
might happen in the future,past awarenessdeals with per-
mitting “good flows” from the past even though they might
appearbad at some point in the future. The past-awareness
problem forced us to adopt a non-standard semantics where
data from control-flow branch points had to be remembered,
so that certain programs were not incorrectly flagged as in-
secure. We will not go into further details of the previous
definition here, referring instead to [BS06b]. By recover-
ing flow-sensitivity, our revised definition will simplify the
notion of future sensitivity and eliminate the need for past
awareness altogether.

A Knowledge-based Approach One of the fundamental
difficulties in the bisimulation-style definition is that itbuilds
on a comparison between two runs of a system. While this is
fairly intuitive for standard noninterference, in the presence
of policy changes such as the opening or closing of locks (in
our work) or declassification (in other work) it can be hard
to see how the semantic definition really relates to what we
can say about an attacker.

One recent alternative to defining the meaning of declas-
sification is to use a more explicit attacker model whereby
one reasons about what an attacker learns about the initial
inputs to a system as computation progresses [AS07]. The
formulation we use here will be closest to [AHSS08].

The basic idea builds on a notion of noninterference de-
scribed by [DEG06] and can be explained when considering
the simple case of noninterference between an initial mem-
ory state, which is considered secret, and public outputs. The
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model assumes that the attacker knows the program itselfP .
Now suppose that the attacker has observed some (possibly
empty) trace of public outputst. In such a case the attacker
can, at best, deduce that the possible initial state is one ofthe
following:

K1 = {N | RunningP onN can yield tracet }

Now suppose that after observingt the attacker observes the
further outputu. Then the attacker knowledge is

K2 = {N | RunningP onN can yield tracet followed byu }

We will call K1 andK2 knowledge sets, and order knowl-
edge sets byK ⊑ K ′ ⇐⇒ K ′ ⊆ K. Note that in
the aboveK1 ⊑ K2: the attackers knowledge increases as
the computation proceeds. However, for the program to be
considered noninterfering, in all such cases we must have
K1 = K2, since we require the knowledge to not increase at
all throughout the program execution.

This style of definition is the key to our new flow lock
semantics. The core idea will be to determine what part of
the knowledge must remain constant on observing the output
u by viewing the trace from the perspective of the lock-state
in effect at that time.

3. Flow Lock Security
In this section we motivate our flow sensitive definition of
flow-lock security. The definition is phrased in terms of a
labelled transition system where labels represent observable
events. We assume an imperative computation model involv-
ing commands and stores (memories), but the definition is
otherwise not specific to a particular programming language.

3.1 Preliminaries

We begin by recalling the precise language of policies and
introduce the base assumptions about the operational seman-
tics of the language.

Policies In general apolicyp is a set ofclauses, where each
clause of the formΣ⇒α states the circumstances (Σ) under
which actorα may view the data governed by this policy.
Σ is a set of locks which we name theguardof the clause,
and interpret it as a conjunction. Thus for the guard to be
satisfied, all the locksσ ∈ Σ must be open.

In concrete examples we will often simplify the notation,
so that for example we will write (as we did in the introduc-
tion) {vendor ;Paid ⇒ customer} instead of

{∅⇒ vendor ; {Paid} ⇒ customer} .

A policy p is less restrictivethan a policyq, writtenp ⊑ q,
if for every clauseΣ ⇒ α in q there is a clauseΣ′ ⇒ α in
p whereΣ′ ⊆ Σ. For example,{vendor ; customer} is less
restrictive than{vendor ;Paid ⇒ customer} which in turn
is less restrictive than{vendor}. We use the distinguished

value⊥ to denote the least restrictive policy, for variables
that all actors can see at all times. The opposite is the pol-
icy ⊤, which is simply the empty set of clauses, meaning no
actor could ever see the data of a variable marked with that
policy. To join two policies means combining their respec-
tive clauses. We define

p1 ⊔ p2 ≡ {Σ1 ∪ Σ2 ⇒α|Σ1 ⇒α ∈ p1, Σ2 ⇒α ∈ p2}

It should be intuitively clear that the join of two policies
is at least as restrictive as each of the two operands, i.e.
p ⊑ p ⊔ p′ for all p, p′. In contrast, forming the union of
two policies, i.e. the meet, corresponding to⊓, makes the
result less restrictive, so we havep ⊓ p′ ⊑ p for all p, p′.
Both⊓ and⊔ are clearly commutative and associative.

We also need the concept of a policy specialized (nor-
malized) to a particular lock state, denotedp(Σ), mean-
ing the policy that remains if we remove from all guards
the locks which are present inΣ. So for example, ifp is
{Paid ⇒ customer}, thenp({Paid}) = {customer}. For-
mally,p(Σ) = {(∆ \ Σ)⇒α | ∆⇒α ∈ p}.

Operational Semantics To keep our presentation reason-
ably concrete we will consider imperative computation mod-
elled by a standard small-step operational semantics defined
over configurations of the form〈Σ, c, M〉 wherec (c′, d etc.)
is a command,M is a memory (store) – a finite mapping
from variables to values, andΣ is the lock state – the set of
locks that are currently open.

We assume that each channel and variablex, y, . . . is
assigned a fixed policy, wherepol(x) denotes the policy of
x.

Transitions in the semantics are labelled〈Σ, c, M〉
ℓ
→

〈∆, d, N〉 whereℓ is either a distinguishedsilent actionτ ,
or an observableaction of the formx(v), wherex is a
channel andv is the value observed on that channel. We let
w, w′ etc range over observable actions, and~w a vector of
such. We assume the existence of commands which change
the lock state. The open and close commands used in the
concrete earlier work are sufficient, although other lock-state
changing commands are possible. We do, however, assume
that whenever the lock state changes then there is no output

or memory change, i.e. if〈Σ, c, M〉
ℓ
→ 〈∆, d, N〉 Σ 6= ∆

then we must haveM = N andℓ = τ . Given the labelled
transition system we define some auxiliary notions.

DEFINITION 3.1 (Visibility).

• We say thatx may be visible toα if Σ⇒α ∈ pol(x) for
someΣ; otherwise we say that it isnever visible.

• We say thatx is visible toα at ∆ if Σ⇒α ∈ pol(x) for
someΣ ⊆ ∆; otherwise we say that it isnot visible at∆.

We extend these definitions to outputsx(v) in the same way,
and we say that the silent outputτ is never visible.
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3.2 Motivating the security definition

To motivate our definition we will first look at some proper-
ties that we expect it to have. First we consider the case of
simple declassification from the introduction. Consider the
programℓ := declassify(h); ℓ := h, which would be en-
coded as as

open Decl ; ℓ := h; close Decl ; ℓ := h

The intended meaning of closing a lock isnot that an actor
should forget all they learned while the lock was open. Thus
we expect this program to be considered secure, since the
value of h is already known at the point of the second
assignment. In other words, as we argued in section 2, we
expect our definition to be flowsensitive, as opposed to
our previous, bisimulation-based definition. Practicallythis
means that our semantic definition cannot be a purely local
stepwise definition, but requires us to inspect all knowledge
gained by an attacker up to a certain assignment. Then we
must validate that assignment in the context of the attacker
having that knowledge.

Another feature to note is that our flow locks system
allows fine-grained flows, in which a secret may be leaked in
a series of unrelated steps. The following policy and program
exhibits this:

x : {{Day,Night}⇒α} y : {Night ⇒α} z : {α}

open Day ; y := x ; close Day; open Night ; z := y

Here (and in subsequent examples) we assume each assign-
ment generates an observable action – i.e. each variable is
viewed as an output channel. Here the secret contained inx

is leaked intoz via y. But at the point where the assignment
to z is made, the lockstate in effect does not allow a direct
flow fromx to z sinceDay is closed. In addition, at the point
where the assignment toy is made,y is not visible at the
current lockstate. To verify that this program is allowed, we
need to validate the flows at each ”level” that the secret flows
to, where a level corresponds to a certain set of locks guard-
ing a location from a given actor. We note that these levels
correspond to the points in the latticeActors × P(Locks).

This leads us to our formal attacker model:

DEFINITION 3.2 (Attacker).An attackerA is a pair of an
actorα and a set of locks∆, formally

A = (α, ∆) ∈ Actors × P(Locks)

We refer to the lockstate component of an attacker as his
capability, and assume thatA can observe locations guarded
from α only by locks in∆.

Intuitively we may think of an attacker as an actor who
may open the locks∆ at some point in the future, leading to
afuture-sensitivemodel3 that enables us to build secure com-
mands by sequential composition from secure commands
(see Section 4).

3 Future sensitivity is the one component of the original bisimulation-based
definition that is retained in this new semantics.

We define attacker visibility as a natural extension of
actor visibility, by saying thatx is visible toA = (α, ∆)
iff x is visible toα at∆.

For each attacker we then define theA-observable transi-
tion 〈Σ, c, M〉

w
→A 〈∆, d, N〉 by absorbing transitions which

are not visible to attackerA.

DEFINITION 3.3 (A-observable transitions).We can define
the transition relation

w
→A as the least relation satisfying the

following rules:

〈Σ, c, M〉
w
→ 〈∆, d, N〉 w is visible toA

〈Σ, c, M〉
w
→A 〈∆, d, N〉

〈Σ, c, M〉
ℓ
→ 〈Σ′, c′, M ′〉 ℓ is not visible toA
〈Σ′, c′, M ′〉

w
→A 〈∆, d, N〉

〈Σ, c, M〉
w
→A 〈∆, d, N〉

We now define some useful compoundA-transitions. Firstly
define〈Σ, c, M〉=⇒A 〈∆, d, N〉 if there is a sequence of zero
or more transitions from〈Σ, c, M〉 to 〈∆, d, N〉 with labels
not visible toA. Now we define the multi-stepA-observable

transitions
~w

=⇒A for some sequence of output labels~w by
equating

ε
=⇒A with =⇒A (whereε denotes the empty vector),

and by inductively defining

〈Σ, c, M〉
~w

=⇒A 〈Σ′, c′, M ′〉
w
→A 〈∆, d, N〉

〈Σ, c, M〉
~ww
=⇒A 〈∆, d, N〉

We use the notation〈Σ, c, M〉
~w

=⇒A as a shorthand for

∃∆, d, N. 〈Σ, c, M〉
~w

=⇒A 〈∆, d, N〉, i.e. when we don’t care
what the resulting configuration is.

To reason about attacker knowledge we need to be able to
focus on the parts of a memory which are visible to a given
attacker.

DEFINITION 3.4 (A-low memory,A-equivalence).
Memory L is A-low for some attackerA if dom(L) =
{x | x is visible toA}. We say that two memoriesM andN

are A-equivalent, writtenM ∼
A

N if their A-low projec-
tions are identical – i.e. they agree on all variables thatA

can see.

We will adopt the convention thatM and N will range
over total memories (i.e. their domain will be the set of all
variables). With this we can formalize the notion of attacker
knowledgeas follows:

DEFINITION 3.5 (Attacker knowledge).
The knowledge gained by an attackerA = (α, ∆) from
observing a sequence of outputs~w of a programc starting
with aA-low memoryL writtenkA(~w, c, L), is defined to be
the set of all possible starting memories that could have lead
to that observation:

kA(~w, c, L) = {M |M ∼A L, 〈Σ, c, M〉
~w

=⇒A}
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3.3 Flow Lock Security

With this attacker model in hand, we can now formalise
our security requirement. Intuitively, for a program to be
flow lock secure we must consider the perspective of each
possible attackerA, and how his knowledge of the initial
memory evolves as he observes successive outputs.

The requirement for each output thus observed is that
knowledge of the initial memory only increases if the at-
tacker’s inherent capabilities are weaker than the program
lockstate in effect at the time of the output. The intuition
here is that an attacker whose capability includes the pro-
gram lock state in effect should already be able to see the lo-
cations used when computing the value that is output. Thus
no knowledge should be gained by such an attacker. To for-
malize this intuition we first, for convenience, introduce the
notion of arun. A run is just an output trace together with
the lockstate in effect at the time of the last output in the
sequence.

DEFINITION 3.6 (Runs).The set of all runs of a commandc

starting with lock stateΣ and with a starting memory whose
A-low projection isL, are defined

RunA(Σ, c, L) = {(~ww, ∆) | M ∼A L,

〈Σ, c, M〉
~w

=⇒A 〈Σ′, c′, M ′〉
w
→A 〈∆, d, N〉}

We can now define our security requirement in terms of
runs as follows:

DEFINITION 3.7 (Σ Flow Lock Security).A program c is
said to beΣ-flow lock secure, writtenFLS(Σ, c), iff for all
attackersA = (α, ∆), all A-low memoriesL, and all runs
(~ww, Ω) ∈ RunA(Σ, c, L) such thatΩ ⊆ ∆ we have

kA(~ww, c, L) = kA(~w, c, L)

This definition directly captures the intuition that we started
out with. An attacker whose capabilities includes the current
lockstate in effect at the time of the output should learn
nothing new when observing that output. Attackers who do
not fulfill this criterion have no constraint on what they may
learn at this step. But note that this cannot lead to unchecked
flows because we quantify overall attackers including, in
particular, those with sufficient capabilities.

At the top level we can define security for a self-contained
program, i.e. one that doesn’t assume any locks are open
before it starts:

DEFINITION 3.8 (Top-level Flow Lock Security).A pro-
gram c is said to be flow lock secure, writtenFLS(c), iff
the program is∅-flow lock secure, i.e.FLS(∅, c).

The above definitions are terminationsensitive, since they
require that no knowledge is gained by the simple observa-
tion that there is an output at all. Following [AHSS08] we
can define a terminationinsensitiveversion:

DEFINITION 3.9.
(Termination Insensitive Flow Lock Security)
A program c is said to be termination-insensitiveΣ-flow
lock secure, writtenTIFLS(Σ, c) iff for all attackersA =
(α, ∆), all A-low memoriesL, and any two runs(~ww, Ω)
and(~ww′, Ω′) in RunA(Σ, c, L) such thatΩ ⊆ ∆ we have
that

kA(~ww, c, L) = kA(~ww′, c, L)

In this variant we allow some knowledge to be gained by
the last step of the output, but no more than simply learning
that thereis an observable output. See [AHSS08] for more
details. Note that by symmetry we compare the knowledge
sets under bothΩ andΩ′.

4. Basic Properties of Flow Lock Security
In this section we look at some basic properties of the defini-
tion of flow lock security. We inspect the basic properties of
the definition via theprinciples of declassificationas stated
by Sabelfeld and Sands [SS05], since flow locks are intended
to model various forms of declassification (or more generally
reclassification).

Conservativity The conservativity principle states that in
the absence of any declassification the security condition
should revert to noninterference. As noted in [BS06a], we
can model standard information-flow lattices by policies
which contain sets of unguarded actors, so that for exam-
ple in the two-point latticeLow ≤ High we would define
two actorslow andhigh, and thenLow data would be mod-
elled by the policy{∅⇒ low ; ∅⇒ high}, whereasHigh

would correspond to{∅⇒ high}. In the presence of such
unguarded policies it is straightforward to see that the no-
tion of flow lock security reduces to the knowledge-based
definition of noninterference from [AHSS08].

Monotonicity of release This principle states that adding
more declassification to a “secure” program should never
render it insecure. In the setting of flow locks, “adding more
declassification” is naturally interpreted asopening more
locks. A secure program which is modified to open more
locks (but is otherwise unchanged) will still be secure since
it is straightforward to see that the more locks are open in the
lockstate at any given point in a trace, the weaker the flow
lock security requirement at that point.

Formally we can state the principle of monotonicity as
follows:

PROPOSITION4.1 (Monotonicity of flow lock security).If
FLS(Σ, c) andΣ′ ⊇ Σ thenFLS(Σ′, c).

The proof can be found in the appendix.

Semantic consistency This states that the notion of secu-
rity should be preserved by any semantics-preserving trans-
formations to a program, and this is true for the semantics
we define. One such example is dead code elimination. As
mentioned in the introduction, lack of flow sensitivity makes
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security definitions sensitive to dead code. Here the defini-
tion of flow lock security can never be sensitive to dead code
since it only quantifies over possible traces of a system – and
these, by definition, are insensitive to dead code.

It is worth noting that semantic consistency is relative to
a particular semantics; in the concrete example that we con-
sider in the next section we assume a semantics in which
the effect of assignments are directly observable (to an ap-
propriate attacker), something which does not hold for the
usual operational semantics. This is referred to as asemantic
anomaly[SS05], and is common to many security definitions
which are phrased in terms of sequences of assignments.

Non-occlusion The non-occlusion principle is the most
vague. It tries to capture the requirement that one declas-
sification operation should not be able to mask an arbitrary
amount of future insecure information flow. In our system
we can argue for non-occlusion as follows. In our defini-
tion each assignment is considered in isolation, and the pre-
sumed knowledge gained from observing an assignment is
exact. Therefore any further knowledge gained by observ-
ing any future assignment must still be subject to the same
constraints (modulo the knowledge gained by the earlier as-
signment) with respect to the lock state and policies in force
at that time. Adding declassifications therefore cannot mask
future unintended flows.

Hookup Properties for Sequential Composition In addi-
tion to the basic principles, it is useful to study composition
principles (sometimes calledhook-upproperties [McC87]):
when can we build secure programs from secure compo-
nents.

Here we briefly consider the most basic composition prin-
ciple corresponding to sequential composition. Let us sup-
pose that we have a sequential composition operator (either
directly or encodable) with the usual semantics (see the next
section for example).

The termination sensitive condition has a technical prob-
lem that prevents it from composing sequentially: a program
which ends in a silent loop is indistinguishable from one
which terminates. This difference is revealed by composing
the program with one which performs output. Termination
insensitive flow lock security would consider the above com-
position secure, but still suffers from a problem, though for
a different class of programs. A program that either silently
terminates or produces one last output before termination is
considered secure, since the silent termination is for all pur-
poses equivalent to a silent loop. Composing such a program
with one that performs an output again reveals the difference,
and causes the previous output to be considered insecure.

To obtain secure composition, the concrete semantics
used may thus not have silent termination, i.e. all programs
must produce a distinguished visible output if and only if
they terminate. We say that such programs havevisible ter-
mination. Our security definition from the previous section
is agnostic as to whether visible termination is used or not.

The second minor obstacle to secure sequential compo-
sition is the lock state component. For this let us introduce
Hoare-like triples{Σ}c{Σ′}, which state that if any compu-
tation ofc begins with at least locksΣ open, on termination
at least locksΣ′ will be open.

PROPOSITION4.2. The following proof rule is sound, as-
suming the concrete semantics uses visible termination:

FLS(Σ, c1) {Σ}c1{Σ
′} FLS(Σ′, c2)

FLS(Σ, c1; c2)

5. Applicability: A Sound Type System
In this section we will illustrate our definition of flow lock
security to a specific language and type system, and prove
that the type system guarantees flow lock security as given
by the definition in the previous section. For the sake of
brevity we treat just a simple while-language, but in princi-
ple we can apply the same approach to the higher-order lan-
guage and type system in the style of that studied in [BS06a].

5.1 Language

〈n, M〉 ⇓ n 〈x, M〉 ⇓ M [x]

〈e1, M〉 ⇓ v1 〈e2, M〉 ⇓ v2

〈e1 ⊕ e2, M〉 ⇓ v1 ⊕ v2

〈Σ, open σ, M〉
τ
→ 〈Σ ∪{σ}, skip, M〉

〈Σ, close σ, M〉
τ
→ 〈Σ \{σ}, skip, M〉

〈e, M〉 ⇓ v

〈Σ, x := e, M〉
x(v)
→ 〈Σ, skip, M [x 7→ v]〉

〈e, M〉 ⇓ v v ∈ {true, false}

〈Σ, if e then ctrue else cfalse, M〉
τ
→ 〈Σ, cv, M〉

〈Σ, while (e) c, M〉
τ
→

〈Σ, if e then c; while (e) c else skip, M〉

〈Σ, c1, M〉
ℓ
→ 〈Σ′, c′1, M

′〉

〈Σ, c1; c2, M〉
ℓ
→ 〈Σ′, c′1; c2, M

′〉

〈Σ, skip; c2, M〉
τ
→ 〈Σ, c2, M〉

Figure 2. Operational Semantics

The simple while language presented in Figure 2 will
serve as the basis of our presentation. The only two non-
standard features are statementsopen σ andclose σ for
manipulating the program’s lock state.σ here ranges over
single locks. The notion of observable action is defined (as
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discussed in the previous section) as the action of assigning
to a variable.

5.2 Type System

⊢ n : ⊥ ⊢ x : pol(x)

⊢ e1 : r1 ⊢ e2 : r2

⊢ e1 ⊕ e2 : r1 ⊔ r2

Σ ⊢ open σ ; ⊤, Σ ∪ {σ} Σ ⊢ close σ ; ⊤, Σ \ {σ}

Σ ⊢ skip ; ⊤, Σ

⊢ e : r r(Σ) ⊑ pol(x)

Σ ⊢ x := e ; pol(x), Σ

⊢ e : r Σ ⊢ ci ; wi, Σi r ⊑ w1 ⊓ w2

Σ ⊢ if e then c1 else c2 ; w1 ⊓ w2, Σ1 ∩ Σ2

⊢ e : r Σ ∩ Σ′ ⊢ c ; w, Σ′ r ⊑ w

Σ ⊢ while (e) c ; w, Σ′ ∩ Σ

Σ ⊢ c1 ; w1, Σ1 Σ1 ⊢ c2 ; w2, Σ2

Σ ⊢ c1; c2 ; w1 ⊓ w2, Σ2

Σ ⊢ c ; w, Σ′

Σ ⊢ c
(Top level judgement)

Figure 3. Flow Lock Type System

The type system we use can be found in figure 3. To sim-
plify the presentation we use only int as base type for expres-
sions, and commands have no base type, so we can restrict
ourselves to only the flow locks aspects of the system. How-
ever, for convenience we use the boolean valuesfalse and
true as shorthands for the value0, and any valuev 6= 0,
respectively.

For expressions we have judgements of the form⊢ e : p

where the policyp, called theread effect, is the join of the
policies on all variables whose contents are used to produce
its result.

For commands the main judgements have the formΣ ⊢
c ; p, Σ′. HereΣ is an assumption about what locks will be
open before execution ofc. The policyp is the so calledwrite
effectof a command, which is the union of the policies on all
variables whose contents might be changed when executing
the command. This plays a similar role to the “PC” level in
many information flow type systems. The final component
Σ′ is a safe approximation (i.e. an underestimation) of the
locks that will be open after execution ofc.

Since the rules typically mention a number of different
policies, we user andw to range over read effect and write
effect policies respectively, to simplify the presentation.

Looking more closely at some of the rules, we note that,
unsurprisingly,open andclose are the only commands di-
rectly affecting the lock state. In the rule for assignments, the
checkr(Σ) ⊑ pol(x) ensures that the assignment is valid
under the current lock stateΣ, thereby ruling out leaks from
direct flows. In the rule forif, the checkr ⊑ w1 ⊓ w2 en-

sures that no indirect flows leak information about a ”secret”
conditional expression to ”public” locations. Similarly for
the testr ⊑ w in thewhile rule.

For theif rule, to compute a safe approximation to the
locks that will be open it suffices to take the intersection
of the resulting lock states of the branches. Thewhile rule
needs to use a fix point for the resulting lock state since one
iteration of the loop may close locks that would then not be
open in subsequent iterations.

We note that there is a natural subtyping in the lock state
component of this type system. Formally

Σ ⊢ c ; w, Σ′ ∧ ∆ ⊇ Σ =⇒ ∆ ⊢ c ; w, ∆′ ∧ ∆′ ⊇ Σ′

This is easily proved by looking at all the uses of the lock
states in the rules, and in particular noting thatΣ is covariant
in r(Σ) ⊑ pol(x) in the rule for assignment.

Further, we can formalize our claim that the resulting lock
state in the type system is a safe approximation of running
the command as follows:

PROPOSITION5.1 (Lockstate Safety).Σ ⊢ c ; w, Σ′ im-
plies{Σ}c{Σ′}.

The proof of this is a straightforward induction over the typ-
ing derivations. We of course also want to prove soundness
with respect to progress and preservation. We have that

PROPOSITION5.2 (Progress).If Σ ⊢ c ; w, ∆ and c 6=

skip then〈Σ, c, M〉
ℓ
→ 〈Σ′, c′, M ′〉.

PROPOSITION5.3 (Preservation).If Σ ⊢ c ; w, ∆ and

〈Σ, c, M〉
ℓ
→ 〈Σ′, c′, M ′〉 thenΣ′ ⊢ c′ ; w′, ∆′ for some

w′ ⊒ w and∆′ ⊇ ∆.

Proof of Progress is a straightforward case on the syntax of
commands. Proof of Preservation is much more involved and
can be found in the appendix.

Finally we can state the main proposition of this section,
which is that the type system implies flow lock security. The
type system is formulated in a termination insensitive way,
in particular we allow low assignments after high loops, so
that is the formulation we will prove.

THEOREM 5.1 (Well typed programs are flow lock secure).
If Σ ⊢ c thenTIFLS(Σ, c).

The proof is given in the appendix.

6. Example Encodings
Many declassification ideas can now be encoded using flow
locks – see [BS06b] for some examples. By such an encod-
ing we now obtain a weaker flow-sensitive semantics for the
corresponding declassification mechanism.

6.1 Delimited Non-Disclosure

As a simple example let us take a more recent declassifi-
cation mechanism,delimited non-disclosure[BCR08]. In its
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simplest form we have variables of eitherHigh orLow secu-
rity levels, and a local block-structured declassificationcom-
manddeclassify h in c which allows a local weakening
of the policy so thath is treated as low for the computation
of commandc. This is a variable-centric variant of Almeida
Matos and Boudol’s nondisclosure construct [AB05].

To encode this idea using flow locks we need to use
one lockDeclh per high variableh. Then we assign the
policy pol(ℓ) = {high, low} for each low variableℓ, and
pol(h) = {high,Declh ⇒ low} for each high variableh.
The encoding ofdeclassify h in c is then the obvious

open Declh; c; close Declh

For this encoding we need to assume that there are no nested
declassifications over the same variable. This is not a real re-
striction since the inner declassification would be redundant
in that case.

The semantics of delimited non-disclosure is bisimulation-
based with memory resetting, so suffers from flow insensi-
tivity (see the example in Section 2). We conjecture that our
encoding gives a strictly weaker semantics, but that encoded
programs typable in our simple type system are also typable
in the system given in [BCR08]. This is because our type
system is too simple to take advantage of flow sensitivity.

6.2 Gradual Release

A more interesting example is provided by theGradual Re-
leaseproperty from [AS07]. This is interesting because the
style of definition used there was the inspiration for our ap-
proach. Surprisingly we are able to show that, when spe-
cialised to the case of simple declassification, our definition
coincides exactly with gradual release.

We will begin by presenting their core operational seman-
tics, as well as the Gradual Release security requirement for
programs. We will then present a simple encoding of their
language using flow locks, and show that for the class of
flow locks programs conforming to the encoding, the two
operational semantics and security requirements are equiva-
lent. We will also show that their type system is equivalent to
the type system given for the example language in Section 5,
for that same class of programs.

The language used in [AS07] is a simple while language
similar to the one presented in section 5. It uses a simple
two-level latticeL = {Low, High} with Low ⊑ High and
High 6⊑ Low. As expected data may flow freely from loca-
tions marked with Low to locations marked with High, but
not the other way around. The specialdeclassify com-
mand allows a program to leak data from High to Low.

The relevant parts of the operational semantics for this
language can be found in Figure 4. There should be no
surprises apart from the outputs arising from assignments
and declassifications. These are labelled differently – normal
assignments to variables marked with Low cause outputs
of the formx(v) whereas declassifications output so called

〈M, e〉 ⇓ n pol(x) 6= Low

〈M, x := e〉 → 〈M [x 7→ v], skip〉

〈M, e〉 ⇓ n pol(x) = Low

〈M, x := e〉
x(v)
→ 〈M [x 7→ v], skip〉
〈M, e〉 ⇓ n

〈M, x := declassify(e)〉
r:x(v)
→ 〈M [x 7→ v], skip〉

Figure 4. Operational semantics for Gradual Release

release eventsdenoted byr : x(v). Assignments to variables
marked with High do not yield any outputs at all.

The set of all possible low event sequences of a program
is defined as follows:

DEFINITION 6.1 (Low event sequences).The set of all pos-
sible low event sequences that programc may generate start-
ing from a low memoryL is

GRRun(c, L) = {~u | M =Low L, 〈M, c〉
~u

=⇒〈M ′, c′〉}

where=Low is equivalence on the low part of the memory.

For a program to satisfy Gradual Release, it needs to fulfill
the following property4:

DEFINITION 6.2 (Gradual Release).A commandc satis-
fiesGradual Release, written GR(c), if for all low projec-
tions of memoriesL, and all pairs of sequences~uu, ~uu′ ∈
GRRun(c, L), we have

k(c, L, ~uu) = k(c, L, ~uu′)

Flow Locks Encoding The language displayed here is as
noted already very similar to that shown in Section 5 and
the encoding is straightforward as previously described. We
define an encoding function̂· over commands, and policies
etc.

First we need to represent the security levels High and
Low. As before we introduce two actors:low is only al-
lowed to see public (Low) data, whilehigh is allowed
to see any data. We also introduce a lockDecl to han-
dle declassification. We can then encode the two levels as
Ĥigh = {high;Decl ⇒ low} andL̂ow = {high; low}. We
haveL̂ow ⊑ Ĥigh andĤigh 6⊑ L̂ow, as expected. We ex-
tend the encoding to variables (x̂) and memories (̂M ) in the
obvious way, by encoding all policies involved.

Secondly, we need to encode declassification. As previ-
ously the command

x := declassify(e)

4 We take the liberty of presenting the definitions from [AS07]in a style that
more closely resembles those which we have used for our own definitions.
Our presentation is not different in any substantial way.
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is represented with the sequence of commands

open Decl ; x := e; close Decl

And that is all we need.

Equivalence Our main goal here is to show that our encod-
ing of the Gradual Release primitives leads to a system that is
equivalent to the original Gradual Release system presented
in [AS07]. In particular, we want to show that a program will
be deemed secure according to Gradual Release if and only
if its encoding is deemed flow lock secure.

GR(c) ≡ TIFLS(∅, ĉ)

To do this, we first note that on the flow locks side
the only possible lockstates at any point in the program
are P(Locks) = {∅, {Decl}}, and the only actors are
Actors = {high, low}. Further we note that for all at-
tackersA ∈ Actors × P(Locks), the only attacker that
would not have perfect knowledge of the memory at all
times isA = (low , ∅). We can then specialise the defini-
tion of flow lock security, to say that an encoded program
ĉ is termination insensitive flow lock secure iff for attacker
A = (low , ∅), for all A-low memoriesL̂, and all pairs of
runs(~ww, ∅), (~ww′, Ω) ∈ RunA(∅, ĉ, L̂) we have that

kA(~ww, ĉ, L̂) = kA(~ww′, ĉ, L̂)

Next we note that we have a simple correspondance be-
tween the definitions of runs.

LEMMA 6.1 (Correspondence between runs).If (~uu) ∈

GRRun(c, L) then (~ww, Ω) ∈ RunA(∅, ĉ, L̂) for A =
(low , ∅), and furtherΩ = {Decl} iff u is a release event,
otherwiseΩ = ∅.

The proof of this is a straighforward inspection ofc.
Applying lemma 6.1 to our specialized version of flow

lock security above, we end up with exactly definition 6.2,
which is what we wanted to prove.

Type system equivalence We can also show that the type
system presented in [AS07] is equivalent to the type system
presented in Section 5. The typing judgements and rules for
expressions in the gradual release system are identical to
those in our type system. For commands, we have that

⊢GR c ; w ⇐⇒ ∅ ⊢ ĉ ; ŵ, ∅

This is trivial to show for all commands except for assign-
ments and declassifications.

For assignments the rule for the Gradual Release system
states that

⊢GR e : r r ⊑ pol(x)

⊢GR x := e ; pol(x)

and we have a direct correspondence with the type rule for
assignments from Section 5, specialised to encoded com-
mands:

⊢ e : r̂ r̂ ⊑ p̂ol(x)

∅ ⊢ x := e ; p̂ol(x), ∅

For declassification the rule from Gradual Release is sim-
ply

⊢GR e : r

⊢GR x := declassify(e) ; pol(x)

i.e. no constraints on the respective security labels ofe and
x. For the encoded equivalent,

open Decl ; x := e; close Decl

we can simply construct the derivation and everything
is trivially typeable, with the exception of the constraint
r({Decl}) ⊑ pol(x) arising from the assignment in the
middle. Since we know from the domain thatr is either
{high; low} or{high;Decl ⇒ low}, we have thatr({Decl}) =

{high; low} = L̂ow. Since for alll, L̂ow ⊑ l, the constraint
L̂ow ⊑ pol(x) is always fulfilled, and we are done.

Discussion What we hope to show with this encoding is
that this could have been a feasible (not to say easy) way to
prove properties about Gradual Release. The proofs here that
Gradual Release is a specialisation of Flow Locks are much
less involved than the proofs in the Gradual Release paper,
even though those are quite simple to begin with.

Gradual Release is a special case in that it is already flow
sensitive, so we get an exact equivalence between the origi-
nal semantics and the flow locks induced one. We could not
get such a correspondence with a flow insensitive system.
However, we argue that most other systems are not inher-
ently flow insensitive, and that giving a flow sensitive seman-
tics to them via a flow locks encoding is not only feasible,
but also beneficial since it makes it easier to relate various
semantics and enforcement mechanisms.

Reasoning about flow locks is greatly simplified by the
new form of semantics. But what we have not done in these
examples is take advantage of the fact that the semantic
condition is not only simpler but also more liberal: in fact the
type system we have presented is very similar to that which
we previously verified against a flowinsensitivesemantics.
Flow sensitivity would be useful in cases where the type
system also needs to track properties of values – for example
if we wanted to extend the typings to additionally verify that
openings of locks only occurred in specific states, or released
specific parts of some data (c.f. [BNR08]). Any resetting-
style semantics would not be able to track such properties
through a computation.

7. Related Work
As mentioned previously, the knowledge based approach
used in this paper is inspired by the Gradual Release work
[AS07]. Similar uses of knowledge sets appear earlier – e.g.
[DEG06] – and many of the classic noninterference defini-
tions have a knowledge or “deducability” flavour. However
[AS07] appears to be the first to use this style of definition
to reason about the semantics of declassification. Gradual
release has also been extended by [BNR08] in a rather or-
thogonal direction, by allowing declassifications to carrya
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logical specification ofwhat is declassified, and under what
condition.

The notion of flow (in)sensitivity comes from the static
analysis world, where it is used to characterise program
analyses, and is not used to describe the underlying semantic
property.

The flow insensitivity problem arising in the papers
mentioned in the introduction [MS04, EP05, EP03, AB05,
Dam06, MR07, BCR08, LM08] all come about through
somewhat related bisimulation-like definitions. But flow in-
sensitivity can arise, in varying degrees, in other styles of
model too. For example, [SHTZ06] deals with a detailed
model of information flow policy updating. The semantics
is phrased in terms of the trace segments in between policy
updates, and asserts noninterference for the programs at the
beginning of each of these segments. This is a resetting ap-
proach since it reasserts noninterference at intermediatepro-
gram points, and thus becomes flow insensitive. As another
example, flow insensitivity also arises in the definition of
qualified robust declassification from [MSZ04] which uses
a “scrambling” semantics for endorsement (upgrading of
integrity) which nondeterministically resets the value ofa
variable after its endorsement.

Flow locks do not deal directly with the question ofwhat
information is released (e.g. the length of a cryptographic
key or the first four digits of a credit card number), and that
is one natural direction for further work. In general policy
mechanisms that deal withwhat is released are more exten-
sional and therefore less prone to problems of context sen-
sitivity. However a knowledge-style semantics can be useful
in that setting too: a recent approach to expressive policies
by Banerjeeet al [BNR08] uses a generalisation of grad-
ual release which is able to express policies which describe
what is released (relative to the current state) at specific re-
lease points in the code. The policies include regular pro-
gram assertions and can thus also constrain the conditions of
release5.
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can be viewed as boolean shadow variables, and as such can be used to
express a conditional release policy in their setting. It not obvious to us how
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(i) only deals with a two-level low-high lattice, so cannot directly model
multilevel security, integrity, and their combination (ii) only deals with
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Appendix
This appendix is not included in the published proceedings
version of the paper. It includes proofs of the main results
from the paper.

Proof of Proposition 4.1 We need to show that

FLS(Σ, c) ∧ Σ ⊆ Σ′ =⇒ FLS(Σ′, c)

AssumeFLS(Σ, c). That means that for all attackersA =
(α, ∆), and allA-low memoriesL, we have that if(~ww, Ω) ∈
RunA(Σ, c, L) thenΩ ⊆ ∆ =⇒ kA(~ww, c, L) = kA(~w, c, L)

We make the following observations for usingΣ′ ⊇ Σ:
Changing the lock state will not affect control flow of

a program, which means there will be a direct one-to-one
mapping between elements in the two traces, with the same
last element of the output sequence.

For each element(~ww, Ω′) ∈ RunA(Σ′, c, L) with a
corresponding(~ww, Ω) ∈ RunA(Σ, c, L), we will have
thatΩ′ ⊇ Ω. The larger lock state is because adding more
locks at the start can never lead to fewer locks open at any
subsequent point in the program.

We can then see that usingΩ′ ⊇ Ω in the implication is
less restrictive since,Ω′ ⊆ ∆ will hold for fewer attackers.

Proof of Proposition 5.3 We need to show that

Σ ⊢ c ; w, ∆ ∧ 〈Σ, c, M〉
ℓ
→ 〈Σ′, c′, M ′〉

=⇒ Σ′ ⊢ c′ ; w′, ∆′ ∧ w′ ⊒ w ∧ ∆′ ⊇ ∆

which we do by induction of the height of the typing deriva-
tion.

Casec = x := e: We know

⊢ e : r r(Σ) ⊑ pol(x)

Σ ⊢ x := e ; pol(x), Σ

and 〈Σ, x := e, M〉
ℓ
→ 〈Σ, skip, M ′〉 and can show that

Σ ⊢ skip ; ⊤, Σ where⊤ ⊒ pol(x).
Casec = open σ: We must have

Σ ⊢ open σ ; ⊤, Σ ∪ {σ}

and
〈Σ, open σ, M〉

ℓ
→ 〈Σ ∪ {σ}, skip, M〉

and the conclusion follows trivially.
Casec = close σ: Like the case foropen σ.
Casec = if e then c1 else c2: We must have

⊢ e : r Σ ⊢ ci ; wi, Σi r ⊑ w1 ⊓ w2

Σ ⊢ if e then c1 else c2 ; w1 ⊓ w2, Σ1 ∩ Σ2

and

〈Σ, if e then c1 else c2, M〉
ℓ
→ 〈Σ, ci, M〉

for somei ∈ {1, 2}, and we have thatΣ ⊢ ci ; wi, Σi and
wi ⊒ w1 ⊓ w2 andΣi ⊇ Σ1 ∩ Σ2.

Casec = while (e) c: We have that

⊢ e : r Σ ∩ Σ′ ⊢ c ; w, Σ′ r ⊑ w

Σ ⊢ while (e) c ; w, Σ′

and

〈Σ, while (e) c, M〉

ℓ
→ 〈Σ, if e then c; while (e) c else skip, M〉

We can then construct the following derivation:

⊢ e : r Σ ⊢ skip ; ⊤, Σ
Σ ⊢ c; while (e) c ; w, Σ′ r ⊑ w

Σ ⊢ if e then c; while (e) c else skip ; w, Σ′ ∩ Σ

To prove that the sequential composition can indeed be typed
we continue with

Σ ⊢ c ; w, Σ′′ Σ′′ ⊢ while (e) c ; w, Σ′

Σ ⊢ c; while (e) c ; w, Σ′
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The first premise in this deriviation holds because of subtyp-
ing for lock sets, together with the observation thatΣ ⊇ Σ∩
Σ′. By the subtyping rule we then also know thatΣ′′ ⊇ Σ′.
To show the second premise we observe that

⊢ e : r Σ′′ ∩ Σ′ ⊢ c ; w, Σ′ r ⊑ w

Σ′′ ⊢ while (e) c ; w, Σ′ ∩ Σ′′

and note that this is an equivalent statement sinceΣ′′∩Σ′ =
Σ′ due toΣ′′ ⊇ Σ′.

Remains to show thatΣ′ ⊢ c ; w, Σ′. SinceΣ′ ⊇ Σ′∩Σ
we can show by subtyping of the original premise thatΣ′ ⊢
c ; w, Σ′′′ whereΣ′′′ ⊇ Σ′. To see thatΣ′′′ = Σ′ we note
that by the subtyping rule we have that

Σ′′′ \ Σ′ ⊆ Σ′ \ (Σ′ ∩ Σ) = Σ′ \ Σ

and the only way to satisfy that inequation is ifΣ′′′\Σ′ = ∅,
henceΣ′′′ ⊆ Σ′ and we are done.

Casec = c1; c2: We have two cases, eitherc1 = skip

or c1 6= skip. In the former case the conclusion follows
trivially from the typing derivation and semantic rule, so the
interesting case is the latter. We then have that

Σ ⊢ c1 ; w1, Σ1 Σ1 ⊢ c2 ; w2, Σ2

Σ ⊢ c1; c2 ; w1 ⊓ w2, Σ2

and
〈Σ, c1; c2, M〉

ℓ
→ 〈Σ′, c′1; c2, M

′〉

where the induction hypothesis gives us that

Σ′ ⊢ c′1 ; w′
1, Σ

′
1 ∧ w′

1 ⊒ w1 ∧ Σ′
1 ⊇ Σ1

We then have by subtyping thatΣ′
1 ⊢ c2 ; w2, Σ

′
2 where

Σ′
2 ⊇ Σ2, and thus we have that

Σ′ ⊢ c′1; c2 ; w′
1 ⊓ w2, Σ

′
2 ∧ w′

1⊓2 ⊒1 ⊓2 ∧ Σ′
2 ⊇ Σ2

and we are done.

DEFINITION .1 (Bounded iteration).We define a bound on
iteration of while-loops as follows:

[while (e) c]0 = skip

[while (e) c]k = if e then c; [while (e) c]k−1 else skip

LEMMA .1 (Consistent run).
If (~w, ∆) ∈ RunA(Σ, c, M\A) and

〈Σ, c, M〉 =⇒A 〈Σ′, c′, M ′〉

then(~w, ∆) ∈ RunA(Σ′, c′, M ′\A)
Also, if(w~ww′, ∆) ∈ RunA(Σ, c, M\A) and

〈Σ, c, M〉
w
→A 〈Σ′, c′, M ′〉

then(~ww′, ∆) ∈ RunA(Σ′, c′, M ′\A)

The proof follows directly from the construction of
RunA(Σ, c, M\A). Note also that this extends naturally to
the case where we take more than one step and/or produce
more than one output along the way.

LEMMA .2 (Context typing).If Σ ⊢ E[c] ; w, Σ′, then
Σ ⊢ c ; wc, Σ

′′ with w ⊑ wc.

Proof: Straighforward induction on the typing derivation for
E[c].

LEMMA .3 (Deterministic expression evaluation).If
⊢ e : r and r is visible to A and〈e, M〉 ⇓ v then∀M ′ ∼

A
M

we have that〈e, M ′〉 ⇓ v

Proof: By induction on the structure of e.
Casee = n: We have〈n, M〉 ⇓ n for all M so the

conclusion always holds.
Casee = x: We have that〈x, M〉 ⇓ (M [x]), and since

pol(x) is visible to A andM ′ ∼
A

M we know thatM ′[x] =
M [x].

Casee = e1⊕e2: By the assumption and the type rule for
operators we know thatr1⊔r2 is visible to A, which implies
that ri is visible to A, i ∈ {1, 2}. We apply the induction
hypothesis to the subterms, and combine that with⊕ being
deterministic, and we are done.

LEMMA .4 (Silent evaluation).If Σ ⊢ c ; w, ∆ andw is
not visible to A, then runningc with any starting memory
will not produce any A-visible output, and will not change
the memory in any way visible to A. Formally,∀M we have
either

〈Σ, c, M〉 =⇒A 〈Σ′, skip, M ′〉

with M ′ ∼
A

M , or 〈Σ, c, M〉 ⇑A

Proof: By induction on the height of the typing derivation of
Σ ⊢ c.

Casec = x := e: We have

⊢ e : r r(Σ) ⊑ pol(x)

Σ ⊢ x := e ; pol(x), Σ

Sincepol(x) is not visible to A, for the transition

〈Σ, x := e, M〉
ℓ
→ 〈Σ, skip, M [x 7→ v]〉

where〈e, M〉 ⇓ v, l is not visible to A, andM [x 7→ v] ∼
A

M .
Casec = if e then c1 else c2: We have

⊢ e : r Σ ⊢ ci ; wi, Σi r ⊑ w1 ⊓ w2

Σ ⊢ if e then c1 else c2 ; w1 ⊓ w2, Σ1 ∩ Σ2

Neitherw1 nor w2 are visible to A, so we can take a transi-
tion step

〈Σ, if e then c1 else c2, M〉
τ
→ 〈Σ, ci, M〉

using either transition rule for conditionals. We apply the
induction hypothesis to the resulting term and we are done.
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Casec = while (e) c′: We have

⊢ e : r Σ ∩ Σ′ ⊢ c′ ; w, Σ′ r ⊑ w

Σ ⊢ while (e) c′ ; w, Σ′ ∩ Σ

To prove this case we need a contradiction. Assume that
runningc will produce a first output visible to A on thekth
iteration, i.e. after first performingk−1 silent iterations. This
means that up to the point of the first output, runningc will
be equivalent to running a bounded iteration[while (e) c′]k
such that:

〈Σ, [while (e) c′]k, M〉 =⇒A 〈∆, c′; skip, M ′〉

with M ′ ∼
A

M . We must then have

〈∆, c′; skip, M ′〉
w

=⇒A 〈∆′, c′′; skip, M ′′〉

since the output cannot have come from theskip. But by
the induction hypothesis and the typing ofc we know that
runningc cannot produce any output visible to A, and we
have our contradiction.

Casec = c1; c2: We apply the induction hypothesis to
both subterms and we are done.

The remaining cases forc can never produce any output
or change the memory so they are trivial.

LEMMA .5 (Deterministic output).

If Σ ⊢, M ∼
A

N , 〈Σ, c, M〉
~ww
=⇒A 〈Σ′, c′, M ′〉 and

〈Σ, c, N〉
~ww
=⇒A 〈Σ′′, c′′, N ′〉 thenc′ = c′′ andM ′ ∼

A
N ′.

Proof: By induction on the length of the transition sequence
producing~ww when running with memoryM .

Casec = E[x := e]: We have

⊢ e : r r(Σ) ⊑ pol(x)

Σ ⊢ x := e ; pol(x), Σ

and we identify two cases:
i) pol(x) is visible to A. We must then have

〈Σ, E[x := e], M〉
x(v)
→A 〈Σ, E[skip], M [x 7→ v]〉

and

〈Σ, E[x := e], N〉
x(v)
→A 〈Σ, E[skip], N [x 7→ v]〉

where we haveM [x 7→ v] ∼
A

N [x 7→ v]. If this was
the final output then we are done, and that forms our base
case for the induction. Otherwise we apply the induction
hypothesis to the resulting configurations.

ii) pol(x) is not visible to A. We then get

〈Σ, E[x := e], M〉
ℓ
→ 〈Σ, E[skip], M [x 7→ v]〉

and

〈Σ, E[x := e], N〉
ℓ
′

→ 〈Σ, E[skip], N [x 7→ v′]〉

where neitherl nor l′ are visible to A, andM [x 7→ v] ∼
A

N [x 7→ v′]. We continue by applying the induction hypoth-
esis to the resulting configurations.

Casec = E[if e then c1 else c2]: We have

⊢ e : r Σ ⊢ ci ; wi, Σi r ⊑ w1 ⊓ w2

Σ ⊢ if e then c1 else c2 ; w1 ⊓ w2, Σ1 ∩ Σ2

and we identify two cases:
i) r is visible to A. Then by the deterministic expression

evaluation lemma we have〈e, M〉 ⇓ v =⇒ 〈e, N〉 ⇓ v. We
must have

〈Σ, E[if e then c1 else c2], M〉
τ
→ 〈Σ, E[ci], M〉

and

〈Σ, E[if e then c1 else c2], N〉
τ
→ 〈Σ, E[ci], N〉

for the samei ∈ {1, 2}. We continue by applying the induc-
tion hypothesis to the resulting configurations.

ii) r is not visible to A, which meansw1 ⊓ w2 is not
visible to A. Then by the silent evaluation lemma, and the
fact that we know the computations cannot silently diverge
before producing the output we seek, we must have that

〈Σ, E[if e then c1 else c2], M〉 =⇒A 〈Σ′, E[skip], M ′〉

and

〈Σ, E[if e then c1 else c2], N〉 =⇒A 〈Σ′′, E[skip], N ′〉

whereM ′ ∼
A

M ∼
A

N ∼
A

N ′. Since the lockstate cannot
interfere with the evaluation or output, we can continue
by applying the induction hypothesis to the configurations
〈Σ′, E[skip], M ′〉 and〈Σ′, E[skip], N ′〉.

All other cases are trivial since only one transition rule
applies, and that transition does not change the memory or
produce any output. We simply perform that transition and
apply the induction hypothesis to the resulting configura-
tions.

LEMMA .6 (Deterministic silent termination).If Σ ⊢ c and
M ∼

A
N and

〈Σ, c, M〉 =⇒A 〈Σ′, skip, M ′〉

then either

〈Σ, c, N〉 =⇒A 〈Σ′′, skip, N ′〉

or 〈Σ, c, N〉 ⇑A.

Proof: By induction on the length of the transition sequence
leading to termination when running with memoryM .

Casec = skip: This case is only interesting since it
forms the base case for the induction.skip trivially con-
verges toskip in 0 steps with no output.
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Casec = E[x := e]: Since we know the computation is
silent we must have thatpol(x) is not visible to A. We then
have

〈Σ, E[x := e], M〉
ℓ
→ 〈Σ, E[skip], M [x 7→ v]〉

and

〈Σ, E[x := e], N〉
ℓ
′

→ 〈Σ, E[skip], N [x 7→ v′]〉

for somev, v′. We have that neitherl nor l′ are visible to
A, andM [x 7→ v] ∼

A
N [x 7→ v′], and we can apply the

induction hypothesis to the resulting configurations.
Casec = E[if e then c1 else c2]: We have

⊢ e : r Σ ⊢ ci ; wi, Σi r ⊑ w1 ⊓ w2

Σ ⊢ if e then c1 else c2 ; w1 ⊓ w2, Σ1 ∩ Σ2

and we identify two cases:
i) r is visible to A. Then by the deterministic expression

evaluation lemma we have〈e, M〉 ⇓ v =⇒ 〈e, N〉 ⇓ v. We
must have

〈Σ, E[if e then c1 else c2], M〉
τ
→ 〈Σ, E[ci], M〉

and

〈Σ, E[if e then c1 else c2], N〉
τ
→ 〈Σ, E[ci], N〉

for the samei ∈ {1, 2}. We continue by applying the induc-
tion hypothesis to the resulting configurations.

ii) r is not visible to A, which meansw1⊓w2 is not visible
to A. Then by the silent evaluation lemma we must have that

〈Σ, E[if e then c1 else c2], M〉 =⇒A 〈Σ′, E[skip], M ′〉

and either

〈Σ, E[if e then c1 else c2], N〉 =⇒A 〈Σ′′, E[skip], N ′〉

whereM ′ ∼
A

M ∼
A

N ∼
A

N ′, or
〈Σ, E[if e then c1 else c2], N〉 ⇑A. In the latter case we
are done, in the former we apply the induction hypothesis to
the resulting configurations.

All other cases are trivial since only one transition rule
could apply, and that transition does not change the memory
nor produce any output. We simply perform that transition
and apply the induction hypothesis to the resulting configu-
rations.

Proof of Theorem 5.1 , repeated here for convenience.
What we want to prove isΣ ⊢ c =⇒ TIFLS(c), which
expanded means

∀A = (α, ∆), L, (~ww, Ω), (~ww′, Ω′) ∈ RunA(Σ, c, L)

we have that

∆ ⊇ Ω =⇒ kA(c, L, ~ww) = kA(c, L, ~ww′)

We prove this by showing that we must havew = w′, by
induction on the length of the computation leading to~ww.
We identify two cases:

i) ~w has length greater than 0. Then by the deterministic
output lemma, and the fact that we know both computations
will produce more output and so cannot diverge, we must
have that forM ∼

A
N :

〈Σ, c, M〉
~w

=⇒A 〈Σ′, c′, M ′〉

and
〈Σ, c, N〉

~w
=⇒A 〈Σ′′, c′, N ′〉

whereM ′ ∼
A

N ′. By the consistent run lemma, subject
reduction and non-interference of lockstates we then know
thatΣ′ ⊢ c′ and(w, Ω), (w′, Ω′′) ∈ RunA(Σ′, c′, L′), where
L′ is the commonA-low projection ofM ′ andN ′, and we
can apply the induction hypothesis to getw = w′.

ii) ~w has length 0. We then proceed to case onc.
Casec = E[x := e]: We have

⊢ e : r r(Σ) ⊑ pol(x)

Σ ⊢ x := e ; pol(x), Σ

and we identify two cases:
i) pol(x) is not visible to A. Then

〈Σ, E[x := e], M〉
ℓ
→ 〈Σ, E[skip], M [x 7→ v]〉

and

〈Σ, E[x := e], N〉
ℓ
′

→ 〈Σ, E[skip], N [x 7→ v′]〉

We have that neitherl nor l′ are visible to A, and
M [x 7→ v] ∼

A
N [x 7→ v′], and by the consistent run lemma

we must have(w, Ω), (w′, Ω′) ∈ RunA(Σ, E[skip], L)
whereL is the commonA-low projection of the resulting
memories. We can apply the induction hypothesis to get
w = w′.

ii) pol(x) is not visible to A. Then the next transition will
generate the visible output, so we must haveΩ = Ω′ = Σ.
Then byr(Σ) ⊑ pol(x) and∆ ⊇ Σ we know thatr is visible
to A. Then by the deterministic expression evaluation lemma
we know〈e, M〉 ⇓ v =⇒ 〈e, N〉 ⇓ v, so we must have

〈Σ, E[x := e], M〉
x(v)
→A 〈Σ, E[skip], M [x 7→ v]〉

and

〈Σ, E[x := e], N〉
x(v)
→A 〈Σ, E[skip], N [x 7→ v]〉

We havew = w′ = x(v) and we are done.
Casec = E[if e then c1 else c2]: We have

⊢ e : r Σ ⊢ ci ; wi, Σi r ⊑ w1 ⊓ w2

Σ ⊢ if e then c1 else c2 ; w1 ⊓ w2, Σ1 ∩ Σ2

and we identify two cases:
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i) r is not visible to A. Then by the silent evaluation
lemma andr ⊑ w1 ⊓ w2 we know the subterms cannot
produce A-visible output. We must have

〈Σ, E[if e then c1 else c2], M〉 =⇒A 〈Σ′, E[skip], M ′〉

and

〈Σ, E[if e then c1 else c2], N〉 =⇒A 〈Σ′′, E[skip], N ′〉

with M ′ ∼
A

M ∼
A

N ∼
A

N ′. By the consistent run
lemma we must also have(w, Ω), (w′, Ω′′) ∈
RunA(Σ′, E[skip], L) and we can apply the induction hy-
pothesis to getw = w′.

ii) r is visible to A. Then by the deterministic expression
evaluation lemma we know〈e, M〉 ⇓ v =⇒ 〈e, N〉 ⇓ v and
we must have

〈Σ, E[if e then c1 else c2], M〉
τ
→ 〈Σ, E[ci], M〉

and

〈Σ, E[if e then c1 else c2], N〉
τ
→ 〈Σ, E[ci], N〉

for somei ∈ {1, 2}. By the consistent run lemma we must
have (w, Ω), (w′, Ω′′) ∈ RunA(Σ, E[ci], L) and we can
apply the induction hypothesis to getw = w′.

All other cases are trivial since only one transition rule
applies, and that transition does not change the memory
or produce any output. We simply perform that transition,
note that the consistent run lemma applies, and apply the
induction hypothesis to the resulting configurations.
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