
Flow Locks
Towards a Core Calculus for Dynamic Flow Policies

Niklas Broberg and David Sands

Chalmers University of Technology and Göteborg University

Abstract Security is rarely a static notion. What is considered to be confidential or untrusted
data varies over time according to changing events and states. The static verification of secure
information flow has been a popular theme in recent programming language research, but in-
formation flow policies considered are based on multilevel security which presents a static view
of security levels. In this paper we introduce a very simple mechanism for specifying dynamic
information flow policies, flow locks, which specify conditions under which data may be read
by a certain actor. The interface between the policy and the code is via instructions which open
and close flow locks. We present a type and effect system for an ML-like language with ref-
erences which permits the completely static verification of flow lock policies, and prove that
the system satisfies a semantic security property generalising noninterference. We show that this
simple mechanism can represent a number of recently proposed information flow paradigms for
declassification.

1 Introduction

Unlike access control policies, enforcing an information flow policy at run time is dif-
ficult because information flow is not a runtime property; we cannot in general charac-
terise when an information leak is about to take place by simply observing the actions
of a running system. From this perspective, statically determining the information-flow
properties of a program is an appealing approach to ensuring secure information flow.
However, securitypolicies, in practice, are rarely static: a piece of data might only be
untrusted until its signature has been verified; an activation key might be secret only
until it has been paid for.

This paper introduces a simple policy specification mechanism based on the idea
that the reading of storage location` by certain actors (principals, levels) is guarded by
boolean flags, which we callflow locks. For example, the policỳ{High;paid⇒Low} says
that` can always be read by an actor with a high clearance level, and also by an actor
with a low clearance level providing the “paid” lock is open.

The interface between the flow lock policies and the security relevant parts of the
program is provided by simple instructions for opening and closing locks. The program
itself does not depend on the lock state, and the intention is that by statically verifying
that the dynamic flow policy will not be violated, the lock state does not need to be
computed at run time.1

In addition to the introduction of flow locks, the main contributions of this paper
are:

1 The termdynamicflow policy could have different interpretations. We use it in the sense that
the flow policies vary over time, but they are still statically known at compile time.

In Proceedings of ESOP’06, European Symposium on Programming. Springer-Verlag (LNCS), Vienna, Austria, March 2006.

• The definition of a type system for an ML-like language with references which
permits the completely static verification of flow lock policies

• A formulation of the semantics of secure information flow for flow locks, and a
proof that well typed programs are flow-lock secure (the reader is referred to the
extended version of this article for the details).

• The demonstration that flow lock policies can represent a number of recently pro-
posed information flow paradigms.

Regarding the last point, the work presented here can be viewed as a study ofdeclas-
sificationmechanisms. In a recent study by Sabelfeld and Sands [18], declassification
mechanisms are classified along four dimensions:what information is released,who
releases information,wherein the system information is released, andwheninforma-
tion can be released. One of the key challenges stated in that work is tocombinethese
dimensions. In fact, combination is perhaps not difficult; the real challenge is to com-
bine these dimensions without simply amassing the combined complexities of the con-
tributing approaches. Later in this paper we argue that flow locks can encode a number
of recently proposed “declassification” paradigms, including the lexically scoped flow
policies introduced by Almeida Matos and Boudol [3], Chong and Myers’ notion of
noninterference until declassification[5], and Zdancewic and Myersrobust declassifi-
cation[22,13]. These examples, represent the “where”, “when” and “who” dimensions
of declassification, respectively, suggesting that flow locks have the potential to provide
a core calculus of dynamic information flow policies.

The remainder of the paper is organised as follows. Section 2 gives an informal
introduction to flow locks by showing a few motivating examples. In Section 3 we then
present the system formally, and outline a semantic security condition in Section 4.
Section 5 discusses related systems, with an emphasis on how we can use flow locks to
encode them. Finally Section 6 concludes.

2 Motivating Examples

First let us assume we have a simple imperative language without any security control
mechanisms of any kind. Borrowing an example from Chong and Myers [5], suppose
we want to implement a system for online auctions with hidden bids in this language.
We could write part of this system as the code on the right.

1 int aBid = getABid();
2 int bBid = getBBid();
3 makePublic(aBid);
4 makePublic(bBid);
5 . . . decide winner + sell item

This surely works, but there is nothing in the lan-
guage that prevents us from committing a serious se-
curity error. We could for instance accidently switch
the lines 2 and 3, resulting inA’s bid being made
public beforeB places her bid, givingB the chance
to tailor her bid afterA’s.

Flow locks are a mechanism to ensure that these and other kinds of programming
errors are caught and reported in a static check of the code.

The basic idea is very similar to what many other systems offer. To deny the flow
of data to places where it was not meant to go, we annotate variables with policies
that govern how the data held by those variables may be used. Looking back on our
example, a proper policy annotation on the variableaBid could be {A; BBid ⇒ B}.

2

The intuitive interpretation of this policy is that the data held by variableaBid may
always be accessed byA, and may also be accessed byB whenever the conditionBBid,
thatB has placed a bid, is fulfilled.BBid here is aflow lock— only if the lock isopen
can the data held by this variable flow toB. To know whether the lock is open or not
we must look at how the functions for getting the bids could be implemented.

function getABid(){
int {A; BBid⇒ B} x

= bidChanFromA;
open ABid;
return x;

}

The function shown on the right first fetches the bid sent
by A. We model the incoming channel as a global vari-
able that can be read from, one with the same policy
asaBid . When the bid has been read, the function sig-
nals this by opening theABid lock—A has now placed
a bid and the program can act accordingly. The imple-
mentation ofgetBBid follows the same pattern, and
will result in BBid being open.

function makePublic(bid){
publicChannel = bid;

}

Now both bids have been placed and can thus be
released. ThemakePublic function would be
implemented as shown on the left. The outgoing
publicChannel is also modelled as a global

variable that can be written to. This one has the policy{A;B} attached to it, denot-
ing that bothA andB will be able to access any data written into it. At the points in
the program wheremakePublic is applied, bothA andB will have placed their bids,
the locksABid andBBid will both be open, and the flows to the public channel will
both be allowed. However, if the lines 2 and 3 were now accidently switched, it would
be a different story. Then we would attempt to releaseA’s bid, guarded by the policy
{A; BBid⇒ B}, onto the public channel with policy{A;B}. Since the flow lockBBid
will then not yet be opened, this flow is illegal and the program can be rejected.

1 auctionItem(firstItem);
2 aBid = getABid();
3 bBid = getBBid();
4 makePublic(aBid);
5 makePublic(bBid);
6 . . . decide winner + sell item
7 auctionItem(secondItem);
8 aBid = getABid();
9 bBid = getBBid();

10 makePublic(aBid);
11 makePublic(bBid);
12 . . . decide winner + sell item

Taking the example one step further, assume
that we have two items up for auction, one
after the other. We can implement this rather
naively as the program to the right. The locks
ABid and BBid will both be opened on the
first calls to thegetXBid functions. But un-
less we have some means to reset them, there is
again nothing to stop us from accidently switch-
ing lines to make our program insecure, this
time lines 9 and 10. The same problem could
also be seen from a different angle: what if
the locks were already open when we got to
this part of the program? Clearly we need a closing mechanism to go with the
open. The functionauctionItem could then be implemented as shown here.
By closing the locks when an auction is initiated, we can rest assured that bothA and
B must place new bids for the new item before either bid is made public.

function auctionItem(item){
close ABid, BBid;
... present item ... }

It should be fairly easy to see that what we
have here is a kind of state machine. The state
at any program point is the set of locks that are
open at that point, and the open and close state-

3

ments form the state transitions. A clauseσ ⇒ A in a policy means thatA may access
any data guarded by that policy in any state whereσ is open.

Our lock-based policies also give us an easy way to separate truly secret data from
data that is currently secret, but that may be released to other actors under certain cir-
cumstances. Assume for instance that payment for auctioned items is done by credit
card, and that the server stores credit card numbers in memory locationsaCCNumand
bCCNumrespectively. Assume further that the lineaBid := aCCnum; is inserted,
either by sheer mistake or through malicious injection, just before whereaBid is made
public. This would releaseA’s credit card number toB, however, the natural policy
on aCCNumwould be{A}, meaning onlyA may view this data, ever. Thus when we
attempt the assignment above, it will be statically rejected since the policy onaBid is
too permissive.

All the above are examples of policies to track confidentiality. The dual of confiden-
tiality is integrity, i.e. deciding to what extent data can be trusted, and it should come as
no surprise that flow locks can handle both kinds.

Returning to the example with the credit card, we assume that whenA gives her
credit card number, it must be validated (in some unspecified way) before we can trust it.
To this end we introduce a “pseudo” actorT (for “trusted”) who should only be allowed
to read data that is fully trusted. We then use an intermediate locationtmpACCNumto
hold the credit card number when it is submitted byA. This location is given the policy
{A; ACCVal ⇒ T}, stating that this data is trusted only if the lockACCVal is open,
which is done when the submitted number has been validated. Once validated we can
transfer the value toaCCNum, which now has the policy{A;T} stating that this data is
trusted.2

3 A Secure Type and Effect System

In the previous section we used a simple imperative language to give an easy introduc-
tion to the concept of flow locks. In this section we define the type system for flow locks
in the more general context of an ML-like language with recursion and references (but
without polymorphism).

3.1 The languageλF L

The terms and types of our language, dubbedλFL, are listed in Figure 1.
The policy language is worth some extra attention. The flow lock policies with

which we work assumes a set ofactors (or levels, principals) ranged over byA, B,
and a set of flow locks ranged over byσ, with Σ for sets of locks. Both actors and flow
locks are global in a program. Apolicy is a set ofclauses, where each clause of the form
Σ ⇒ A states the circumstances (Σ) under whichA may view the data governed by
this policy.Σ is a set of locks which we name theguardof the clause, and interpret it as
a conjunction. Thus for the guard to be fulfilled, all the locks inΣ must be open. We can

2 In order to prevent overwriting this data with a new number that hasn’t been validated, we
should also be sure to close the lockACCVal once the assignment is done.

4

Policies: p ::= { c1; . . . ; cn} c ::= { σ1, . . . , σk} ⇒ A

Values and types: v ::= n | b | () | λx.M | `p,τ

τ ::= int | bool | unit | (τ, p)
Σ,p,p,Σ−−−−−→ τ | ref p τ

Terms: M ::= v | x |MM | if M then M else M | rec x.M
| ref p,τ M | !M |M := M | open σ | close σ

Derived forms: let x = M1 in M2 ≡ (λx.M2)M1 M1; M2 ≡ (λ .M2)M1

Fig. 1.TheλFL language

however have more than one clause for the sameA, in which case the separate clauses
also form a conjunction —A may read the data if either of the guards are fulfilled. In
the special case where the guard contains no locks, signifying that the corresponding
actorA may always view the data, we write the clause as onlyA instead of{} ⇒ A.
From a logical perspective a policy is just a conjunction of definite Horn clauses, i.e.∧

i{σi1 ∧ · · · ∧ σin ⇒ Ai}. We implicitly identify policies up to logical equivalence.3

Now we can continue with the language itself. Apart from the terms from standard
λ calculus with recursion,λFL has constructs for creating (ref), dereferencing (!) and
assigning to (:=) memory locations (`p,τ) through references. In addition to the core
terms, we can also derive a few useful language constructs as is also shown in Figure 1.

The reference creation construct takes an extra parameterp which is the policy that
the contents should be governed by. The same parameter also shows up on the memory
locations themselves, together with the base typeτ of the contents. In many cases this
τ is irrelevant, or clear from the context, and in those cases we omit it and just write`p.
Function types are annotated with read and write policies, and start and end states, and
arguments are annotated with a reading policy. We discuss the meaning of these when
we define the type system. There are also the open and close terms for manipulation
flow locks, thereby changing the state of the program.

The semantics of the language is standard, but apart from the termM and a memory
µ, the configurations include the current stateΣ. This state is the set of currently open
locks, which are effected by the execution ofopen andclose expressions. The small-
step semantics of these are simply:

〈Σ,open σ, µ〉 → 〈Σ ∪ {σ}, (), µ〉 〈Σ, close σ, µ〉 → 〈Σ \ {σ}, (), µ〉

It is important to note that the only interaction between a program and the lock state
is via the open and close instructions. This is because we are aiming for a completely
static verification — we include the lock state in the semantics only to be able to prove
properties about flows, but the state is not actually represented at runtime. For this
reason we also do not need to consider potential covert channels introduced by the flow
lock state.

3 It is worth noting that we do not allow negative flow policies. Our policy language is mono-
tonic, i.e. the more locks that are open, the more flows are allowed.

5

3.2 Some intuitions about flow-lock security

Before we define our type system, it is useful to get some intuitions about which pro-
grams we deem secure/insecure. At this point we only concern ourselves with informa-
tion leaks arising from direct or indirect data flows. In particular we will not consider
timing or termination sensitivity.

`{A} := !m{B}(1)

`{A;B} := !m{B}(2)

`{A} := !m{A;B}(3)

`{σ⇒A;B} := !m{B}(4)

`{A} := !m{σ⇒A}(5)

A few small example programs are presented on the
right. All of these contain insecure direct data flows, ex-
cept (3). In (1) the contents ofm{B} may only be read by
B, but we are attempting to leak them into a location read-
able by A. Same thing goes for (2) — even though B can
read the contents of the target location, we are still leaking
the contents ofm{B} to A. The simple pattern is that we
may not write data to a memory location if that location may be read by someone who
cannot already access the data. What’s more, this should hold for future time as well.
Thus if a reader could access the data from the location we are writing to in some future
state, that reader must also have access to the data that is being written, in that same
state. Thus the examplem{σ⇒A} :=!`{σ⇒A} is secure while program (4) is not. In pro-
gram (5) we attempt to take data not yet readable by A, and put it in a location where A
could read it right away. This should clearly not be allowed for the same reasons as for
(4).

open σ; `{A} := !m{σ⇒A}(6)

`{A} := (open σ; !m{σ⇒A})(7)

The lock state in effect at the point of the
assignment determines its validity, so the pro-
grams (6) and (7) are secure. However, we also
want a program like (8) below to be considered
secure, so we should take the policy of data read from some memory location to be the
policy on the location, but taking into account the current state.

(8) `{A} := let x = (open σ; !m{σ⇒A}) in (close σ;x)

In program (8) above, the data read from the reference will thus have the policy{A}
and not{σ ⇒ A}, since it is read in a state whereσ is open.

Putting all this slightly more formally, data may be written to a memory location if
and only if the policy on the location is at least as restrictive as the one on the data, with
respect to the state in effect at the point of the assignment. We give a formal definition
of this in the next section.

We must also handle indirect flows that arise from various branching situations. A
very simple example program containing an invalid indirect flow is

(9) if !`{A} then m{B} := true else m{B} := false

This program is obviously insecure since it will leak the value of`{A} into m{B}, but
for some programs it is not so easy to tell. Consider the three programs

if !`{σ⇒A} then (open σ;m{A} := true) else (open σ;m{A} := false)(10)

if !`{σ⇒A} then (open σ;m{A} := true; close σ) else ()(11)

if (open σ; !`{σ⇒A}) then (close σ;m{A} := true) else ()(12)

6

Program (10) could be argued correct since at the points where we leak the informa-
tion to A, i.e. the assignments, the state allows A to access the result of the branching
conditional directly, and hence the leak is secure.

However, as program (11) shows it is not that simple. If the second branch in (11)
is chosen, the value of the condition is still leaked to A by the absence of a write, but
at no point does the state allow the flow. The leaks come from knowing which of the
two branches is taken, which suggests that the leak actually occurs at the branch point.
Thus it is the policy of the condition, taken in the state in effect at the branch point, that
decides what writes the branches may perform. This means that (9), (10) and (11) are
all insecure, while (12) is secure even though the lock is closed again before the write.

Another possible source of indirect leaks is function application. If the function
itself is secret, an attacker could still get information about what that function is by
observing its effects, just like he could know which branch was taken by observing the
effects of a conditional expression. Thus in a sense we can view function application as
a kind of branching.

(!`{A}) ()(13)

(!`{σ⇒A}) ()(14)

(!`{σ⇒A}) (open σ; ())(15)

(!`{A}) := 0(16)

(!`{σ⇒A}) := (open σ; 0)(17)

(λx.`{B} := x) (!m{A})(18)

(λx.`{B} := 0) (!m{A})(19)

Consider the programs (13) – (19). In the
program (13) we must ensure that the func-
tion read from the reference does not write
to locations visible by anyone other thanA,
otherwise we could leak information about
which function that was used. As an exam-
ple, if the function read from̀{A} in (13) is
(λx.m{B} := 1) or (λx.m{B} := 2), B can
determine which of the two that was used by
readingm{B}. We treat the application point
in the same way as the branch point of a con-
ditional, so in program (14) the body of the function must not write to a location directly
visible toA, even if it first opensσ. However, since we have a call-by-value semantics,
in program (15) the function body may perform writes to locations directly visible to
A, even if it first closesσ, sinceσ will be open at the application point.

A similar situation is assignment to a reference that in turn has been read from a ref-
erence, as illustrated in program (16) which should be disallowed if the reference read
from `{A} is visible to anyone other thanA. In particular, the contents of`{A} could be
m{B} or n{B}, in which caseB can determine the contents of`{A} by checking which
of the two latter locations that contain the value 0. However, just as for application,
program (17) is secure if the reference assigned to has policy{A}, or any policy that is
more restrictive than{A}, sinceσ is opened before the assignment takes place.

We also need to look at how functions handle the values passed to them as argu-
ments. Clearly we want to rule out a direct leak in the function body, as the one in
example (18). One solution attempt could be to rule out all functions that write to “low”
memory, i.e. locations with less restrictive policies that the one placed on the argument.
But this also rules out perfectly secure programs such as (19) which in particular would
mean that we could not derive a sequential composition form as in figure 1 without
placing too heavy restrictions on the writing capabilities of the second sub-program.

7

Thus we want our type system to treat these two programs differently — (18) should be
deemed insecure, but not (19).

Other issues such as whether our system is termination sensitive or timing sensitive
(see [16] for an overview of these concepts) are orthogonal to the above discussion. We
choose to develop a type system and semantics for termination and timing insensitive
security. Termination insensitivity makes the type system simpler but the semantics
more complex.

3.3 The Type System

Now we have all the intuition needed to construct the type system. We choose to model
our system as a type and effect system in the style of Almeida Matos and Boudol [3].
This means in particular that all expressions will be given areading effectand awriting
effect. In our system the reading effect of an expression is a policy which states who
may read the result of that expression, and in what lock states they may do so. The
writing effect is also a policy, which records which actors and in what lock states they
can see the memory effect of the expression’s execution. Type judgments then have the
form

Γ ;Σ ` M : τ, (r, w)⇒ Σ′

– Γ is a typing environment for variables giving a type and policy for each variable.
– Σ is the state, i.e. the set of locks currently open.
– τ is the type of the term
– (r, w) are the reading and writing effects of the term, both on the form of policies
– Σ′ is the state the program will be in after evaluating the term

First we need to define a few operators on policies that we will use in the typing rules.
The aforementioned ordering of how restrictive policies are is defined as

p1 � p2 ≡ ∀(Σ2 ⇒ A) ∈ p2.∃(Σ1 ⇒ A) ∈ p1.Σ1 ⊆ Σ2

Read out, we say thatp1 is less restrictive thanp2 if and only if every clause inp2 is
matched by a clause inp1 for the sameA with a less restrictive guard (one with no
additional locks). From the logical perspective, this ordering corresponds directly to
implication. The most restrictive policy is{}, also written>, and data with this policy
can never be accessed by anyone. On the other end of the spectrum is⊥, defined as
the set of all actors in the system. In other words, data marked with⊥ can be read by
everyone at all times.

To join two policies means combining their respective clauses, thereby forming the
logical disjunction. We define

p1 t p2 ≡ {Σ1 ∪Σ2 ⇒ A | Σ1 ⇒ A ∈ p1, Σ2 ⇒ A ∈ p2}

It should be intuitively clear that the join of two policies is at least as restrictive as each
of the two operands, i.e.p � p t p′ for all p, p′. In contrast, forming the union of two
policies, i.e. the meet, corresponding tou or logical conjunction, makes the result less
restrictive, so we havep u p′ � p for all p, p′. Bothu andt are clearly commutative
and associative.

8

Γ ; Σ ` n : int, (⊥,>)⇒ Σ Γ ; Σ ` b : bool, (⊥,>)⇒ Σ

Γ ; Σ ` up,τ : ref p τ), (⊥,>)⇒ Σ Γ ; Σ ` () : unit, (⊥,>)⇒ Σ

Γ, x : (τ, rα); ∆ ` M : τ ′, (r, w)⇒ ∆′

Γ ; Σ ` λx.M : (τ, rα)
∆,r,w,∆′
−−−−−−→ τ ′, (⊥,>)⇒ Σ

x : (τ, r) ∈ Γ

Γ ; Σ ` x : τ, (r(Σ),>)⇒ Σ

Γ ; Σ ` open σ : unit, (⊥,>)⇒ Σ ∪ {σ} Γ ; Σ ` close σ : unit, (⊥,>)⇒ Σ \ {σ}

Γ, x : (τ, r); Σ ` M : τ, (r, w)⇒ Σ

Γ ; Σ ` rec x.M : τ, (r, w)⇒ Σ

Γ ; Σ ` M : τ, (r, w)⇒ Σ′

Γ ; Σ ` ref p M : ref p τ , (r, w)⇒ Σ′

Γ ; Σ ` M : ref p τ , (r, w)⇒ Σ′

Γ ; Σ ` !M : τ, (r t p(Σ′), w)⇒ Σ′

Γ ; Σ ` M1 : ref p τ , (r1, w1)⇒ Σ′ Γ ; Σ′ ` M2 : τ, (r2, w2)⇒ Σ′′

Γ ; Σ ` M1 := M2 : unit, (⊥, w1 u w2 u p)⇒ Σ′′ r1(Σ
′′) t r2(Σ

′′) � p

Γ ; Σ ` M0 : bool, (r0, w0)⇒ Σ′ Γ ; Σ′ ` Mi : τ, (ri, wi)⇒ Σi r0(Σ
′) � w1 u w2

Γ ; Σ ` if M0 then M1 else M2 : τ, (r0 t r1 t r2, w0 u w1 u w2)⇒ Σ1 ∩Σ2

r1(Σ2) � wf

Γ ; Σ ` M1 : (τ, r2)
Σ2,rf ,wf ,Σ3−−−−−−−−→ τ ′, (r1, w1)⇒ Σ1 Γ ; Σ1 ` M2 : τ, (r2, w2)⇒ Σ2

Γ ; Σ ` M1 M2 : τ ′, (r1 t rf , w1 u w2 u wf)⇒ Σ3

Fig. 2.Type and Effect system

Finally we need to define using a policy with respect to a particular state, or nor-
malising to a state. We say that policyp normalised at stateΣ is

p(Σ) ≡ {Σ′ \Σ ⇒ A | Σ′ ⇒ A ∈ p}

Informally, we remove all open locks from all guards inp, since these no longer restrict
data governed byp. This function is antimonotonic, soΣ ⊆ Σ′ =⇒ p(Σ′) � p(Σ),
and in particularp(Σ) � p for all Σ. Logically this operation is a partial evaluation,
where all variables (locks) that appear inΣ are set totrue in p.

The type and effect system is presented in Figure 2. The rules for literal values
are straight-forward, giving all such values the reading effect bottom. However, from
the variable rule we see that variables are given a reading policy. This is used to keep
track of the reading policies of function arguments, as can be seen from the rules for
abstraction and application, and the purpose is to disallow programs like (18) while still
allowing (19). It is important to note that we donot check thatr2(Σ2) � wf in the
application rule, since doing so would invalidate program (19). Instead we rely on the
type checking of the body of the function to find any leaks inside it, with the help of the
annotation on its parameter.

9

In the rule for abstractions, we annotate the function arrow with the latent read and
write effects that will be accurate for the function body once it is applied. We also
annotate the arrow with the state that the program will be in at the application point,
and the state the program will be in after evaluating the body. The interpretation of

a function with type(τ, rα)
∆,r,w,∆′

−−−−−−→ τ ′ is thus that when applied in state∆ on an
argument of typeτ and with reading policyrα, it will produce a result of typeτ ′ with
reading policyr. The writing policyw states who could see that the function has been
applied, and the whole program will be in state∆′ afterwards. This is all mirrored by
the appropriate states in the application rule.

Direct leaks, like the ones in programs (1), (2), (4) and (5), are handled by the check
r2(Σ′′) � p in the rule for assignment. Since we normalise the policyr2 of the assignee
to the state in effect at the point of the assignment, program (5) would be secure if run
in a state whereσ is open, which is exactly what happens in programs (6) and (7). Also
the normalisation to the current state in the dereferencing rule, i.e.p(Σ′) in the reading
effect of the conclusion, means that program (8) will be deemed secure. The same kind
of normalisation also appears in the variable rule.

The checkr0(Σ′) � w1 u w2 in the conditional rule will ensure that an indirect
leak like the one in (9) will not be allowed. The normalisation ofr0 to Σ′ means that it
is the state at the branch point that is important, which disallows (10) and (11) but lets
(12) through. The branches may open and close different locks, so the end states can
differ. Since policies are monotonic, we can use the intersection of the end states as a
safe approximation for the following program.

The checksr1(Σ′′) � p in the assignment rule, and the correspondingr1(Σ2) � wf

in the application rule handle indirect flows like in (13), (14) and (16), but allow (15)
and (17).

In the assignment rule, the reading effect in the conclusion is⊥. The reason is that
the result of an assignment is always(), independent of the result values of the two
expressionsM1 andM2, so no information is leaked by making the() result public.
For similar reasons,r2 does not show up in the reading effect in the conclusion of the
application rule. Since function arguments are annotated with their reading effects, if
the result ofM2 has any effect on the result of the whole application expression, this
fact will be seen throughrf .4

4 Semantic Security Properties

For reasons of space this section gives only a brief outline of the semantic definitions
and results about flow-lock security. For details the reader is referred to the full version
of the paper. The main development is the definition of a notion offlow lock security
which

4 The rules involving functions are fairly restrictive as they are formulated here. One could
easily imagine various forms of subsumption, both for lock states and argument policies, that
would make the system less restrictive. however, adding subsumption would complicate the
overall formulation of the type system, so we leave it for the full version of the paper.

10

– generalises a standard notion of noninterference, since amongst other things it guar-
antees that a noninterference property holds for computation between any changes
in the flow lock state.

– holds whenever a flow lock program is well-typed – i.e. well-typed programs are
flow-lock secure.

The two main challenges in generalising the notion of noninterference to the flow lock
setting are (i) dealing with policy change, in particular when a policy become less lib-
eral (i.e. when locks are closed), and (ii) coping with the “latency” of a language with
higher-order functions and state.

Before we can deal with policy change we must understand the underlying notion
of noninterference that we build upon in the definition of flow lock security. Suppose in
a computation that the set of locksΣ are open. This means that an actorA is permitted,
at that point, to read the contents of a location with policyc providing(∆ ⇒ A) ∈ c for
some∆ ⊆ Σ. If the set of open locksΣ does not change, then the basic noninterference
property that we expect is the following: given two memories which agree on allA-
readable locations, the results of computing with these two respective memories should
also agree onA-readable locations. This means that the actorA does not learn anything
about the memory locations that were not visible initially.

Now to deal with change in the set of open locks we follow the “self-bisimulation”
approach from [17], whereby security is characterised by a more general property of
two programs being bisimilar with respect the the observable parts of memory. One
particular feature of the definition from [17] is that the bisimulation is defined over
programs and not configurations (program-memory pairs). The idea is that at each step
of the bisimulation the pair of programs under comparison are inspected in all pairs of
memory states which are indistinguishable to the attacker. This very strong requirement
was needed to make the definition of security compositional with respect to parallel
composition. But this approach of “resetting” the store at each step has another very
useful property: it enables us to reset the state in the event of a policy change. For
example, one particular difficulty is that when the current policy becomesmore re-
strictive — in our case when locks are closed — then we need a way to reestablish
a stronger security requirement at that point in the execution. It is notable that two
previous semantic accounts of temporary policy weakening mechanisms, Mantel and
Sands’s language based intransitive noninterference condition [8], and Almeida Matos
and Boudol’snondisclosurepolicy [3], both rely on such a “resetting” bisimulation not
only to deal with threads, but more importantly to provide a semantics to local policy
change mechanisms. Of these two earlier definitions, our definition is close in spirit to
Almeida Matos and Boudol’s – although we refer to the full paper for details.

A straightforward “resetting” bisimulation is not enough to define flow lock secu-
rity; it is not enough to consider just the locations which are currently visible to an
actorA. Consider a program such as`{σ⇒A} := !m{σ′⇒A} in a state where neither
σ nor σ′ are open. Since this assignment deals with locations not currently visible to
A then a simple resetting bisimulation would allow it. However it is clearly insecure
with respect to possiblefuturestates which may openσ. In order to detect the insecure
flow that might be revealed at some future time we must check the equivalence of the
two memories in a state whereσ is open butσ′ is not. More generally, the definition

11

of flow-lock security therefore takes into account all possible (more permissive) future
lock states.

For the full details of these developments the reader is referred to the extended
version of this paper.

5 Relating to Other Systems and Idioms

Standard Noninterference As a first example of the expressiveness of our system,
consider a standard termination insensitive noninterference property for a lattice-based
security model in the standard Denning style [6].

In this setting we have a lattice of security levels〈L,v,t〉, and a policylevel :
Loc → L that fixes the intended security level of the storage locations in the program.
Given such a policy we can define noninterference. For simplicity we consider closed
programs of unit type which do not perform any storage allocation or lock open/close
operations. In what follows let metavariablesP andQ range over such programs.

Definition 1 (Noninterference).Given two storesµ andν, and a levelk ∈ L, defineµ
andν to be indistinguishable at levelk, writtenµ =k ν, iff for all ` such thatlevel(`) v
k we haveµ(`) = ν(`).

Then we say thatP is noninterferingif for all k, whenever〈P, µ〉 →∗ 〈(), µ′〉 and
〈P, ν〉 →∗ 〈(), ν′〉, thenµ =k ν impliesµ′ =k ν′.

To represent a lattice policy we do not need any locks; we represent the reading level
of a variable by the set of levels at which it may be read. Thus the policy for a storage
location ` is the upwards closure of its lattice level, written↑level(`), where↑j =
{{} ⇒ k | k w j}. Given this, we have the following:

Theorem 1. If P is flow lock secure thenP is noninterfering.

Thus whenever we show thatP is secure in the flow lock setting then it is also
noninterfering. But it is perhaps not too surprising that our security specification is
stronger than standard noninterference. A reasonable concern might be that the defini-
tion, or indeed the type system, is too strong to be useful. Here we show that despite
being stronger, we are still able to type just as much as “typical” systems for regular
noninterference.

Figure 3 presents a simple type system for a while language which can be seen as
a straightforward reformulation of the typing system presented by Volpano, Irvine and
Smith [21].

p =
F

`∈E level(`).

ǸI E : p

ǸI E : q p t q v level(`)

p ǸI u := E

p ǸI C1 p ǸI C2

p ǸI C1; C2

ǸI E : q p t q ǸI Ci i = 1, 2

p ǸI if E then C1 else C2

ǸI E : q p t q ǸI C

p ǸI while (E) C

Fig. 3.Standard Noninterference Type System

12

Define the following translationd·e from terms in the while language toλFL:

dwhile (E) Ce = rec x.if dEe then dCe;x else ()
dif E then C1 else C2e = if dEe then dC1e else dC2e

dC1;C2e = dC1e; dC2e
d` := Ee = `p := dEe wherep = ↑level(`)

dEe = E′ whereE′ is the result of replacing

each locatioǹ in E with `↑level(`).

To make our formulations easier, let us restrict the language of expressions to booleans
(so we do not have to consider typing issues). Now we can state that whenever some-
thing is typeable in the simple noninterference system, a corresponding derivation holds
for the flow locks system:

Theorem 2. Let Γ0 be the type environment that maps every storage location tobool .
Then

1. If ǸI E : k thenΓ0; ∅ ` dEe : bool , (r,>)⇒ ∅ wherer = ↑k
2. If pc ǸI C thenΓ0; ∅ ` dCe : unit , (r, w)⇒ ∅ wherew ⊆ ↑pc

We also expect that a similar theorem holds for some suitable termination-insensitive
version of DCC [2], although we have not attempted to show this formally.

Simple Declassification We can encode a simple declassification mechanism in the
same Denning-style setting as used in the previous example. The needed extra step is
to extend all policies with clauses to allow declassification. For each levelj not in the
policy already, we introduce a flow lockσj representing a declassification to that level.
The new policies then look like

{k | k w level(`)} ∪ {σj ⇒ k | j 6w level(`), k w j}

We can now define a declassification operator to levelj as

declassifyj ≡ (λv.let x = (open σj ; v) in (close σj ;x))

It is easy to verify from the type system that the only effect of applying this function to
some value is that the value will then be readable also at levelj, as was our intention.

Lexically Scoped Flows In the setting of a multilevel security model, Almeida Matos
and Boudol describe how to build a system with lexically scoped dynamic flow policies
[3]. They start from aλ-calculus with recursion and references like we do, and introduce
a construct“flow α ≺ β in M” that extends the current global flow policy to also allow
flows from levelα to β in the scope of M. These flows are transitive, so if the current
policy already allows flows from sayβ to γ, flows fromα to γ would also be allowed
in M.

Modelling scoped flows using flow locks is easy, but the global nature of policies
in Almeida Matos and Boudol’s system, as opposed to our local policies on memory

13

locations, needs special treatment. We introduce a lockσα≺β for each pair of levelsα
andβ that data could flow between. Each policy on some data must record the fact that
a future flow declaration could allow that data to flow to many new locations due to
the transitive nature of flows. Thus if a location in Almeida Matos and Boudol’s system
would have levelA, we could represent that as

A ∪
{
σα≺β0 , σβ0≺β1 , . . . , σβk−1≺βk

⇒ βk | α ∈ A, βi /∈ A
}

where the/∈ is taken with respect to some universal set of levels. In effect, each location
records all possible future transitive flows from it. We then derive our representation of
the “flow” construct that opens a lock in the scope of some subprogram:

flow σ in M ≡ let x = (open σ;M) in (close σ;x)

Almeida Matos and Boudol also include parallel execution in their system, and as
a consequence make their type system and semantic security definition, callednon-
disclosure, sensitive to possible non-termination. Our system has no parallel execution
so we cannot model their full system, only the sequential subset.

Intransitive Noninterference Flow locks represent a lower level abstraction than
lattice-based information flow models in the sense that the lattice ordering is not “built
in” but must be represented explicitly. One advantage of such a lower level view is that
it can also representintransitive noninterferencepolicies [15,14] — i.e. ones in which
the flow relation is intentionally not transitive. Since intransitive policies are the default
case for flow locks, it is straightforward to represent simple language-based intransitive
policies such as the one described by Mantel and Sands [8].

Noninterference Until Declassification Chong and Myers’ [5] introduce a class of
temporal declassification policies. This is achieved by annotating variables with types
of the formk0

c1 · · · cn kn, which intuitively means that a variable with such an anno-
tation may be successively declassified to the levelsk1, . . . , kn, and that the conditions
c1, . . . , cn will hold at the execution of the corresponding declassification points. The
exact nature of the conditions are left unspecified, and it is assumed in the type system
that these conditions are verified at certain key program points by some external tool.

We can achieve a similar effect fairly naturally using flow locks, where we would
use a distinct lockCi for each conditionci. One should then insertopen Ci constructs
in the program at points where the intended declassification takes place, and verify
(with an external tool) that the corresponding conditionci does indeed hold at these
points, and that lockCi−1 has been opened (we assume that locks are never closed in
this encoding). The policy above could then be represented as

{k0; {C1} ⇒ k1; · · · ; {C1, . . . , Cn} ⇒ kn}.

Robust Declassification Information flow may be used to verify integrity properties,
to ensure that untrusted (low integrity) data does not influence the values of trusted
(high integrity) data. Since flow lock policies are neutral with respect to whether we are

14

dealing with confidentiality or integrity properties it is no problem to add such integrity
policies to data, and we can easily have clauses for integrity and confidentiality in the
same policy. The interesting case, however, is the interaction between confidentiality
and integrity in the presence of dynamic policies.

Zdancewic and Myers [22] introduced the concept ofrobust declassificationto char-
acterise the property that an attacker (who controls low integrity data) cannot influence
what is declassified. This guarantees that the attacker cannot manipulate the amount of
information which is released through declassification.

In the setting of flow lock policies, “declassification” can be thought of as the pro-
cess of opening locks, since whenever a lock is opened more flows are enabled. Thus
we can interpret robust declassification as the question of whether low integrity data
can influence the decision to open locks.5

One possible way of enforcing robust declassification using flow locks is to observe
the following: since we cannot perform any computation with locks, the only way that
an open operation can be influenced by low integrity data is via indirect information
flow from low integrity data. Suppose that our policies use an indexed set of locks
σi, i ∈ I to control confidentiality. These are unguarded (i.e. we ignoreendorsement).
Let us assume that in addition to the actors of the system we have the pseudo-actor
trustedused to track integrity information, just as we did in Section 2.

In order to prevent indirect flow from low integrity data to the opening of locks, we
will log each use of an open operation by writing to a variablelog . An obvious way to
enforce this is to define a “robust” version of open:

ropen σi ≡ open σi; log := i

Now we givelog the policy{trusted}. This ensures that the assignment is always
safe from a confidentiality perspective (since normal actors can never read it anyway),
and that the open operation can never have taken place in a low integrity context (since
otherwise the assignment would cause information to flow from untrusted to trusted
data). Finally, to additionally prevent the declassification of low integrity data we can
syntactically enforce that lock-guarded policies are only used on high integrity data.

The Decentralized Label Model In the Decentralized Label Model (DLM) [10,11,12],
data is said to beownedby a set of principals. These principals may allow other princi-
pals to read the data, and the effective reader set is those principals that all owners agree
may read the data. Allowing a new reader roughly corresponds to declassification, and
we can model it similarly. The DLM also defines a global principal hierarchy, where
one principal may allow another principal toact for it, which means it may read all
the same things. This is very similar in spirit to introducing a new flow in the system
by Almeida Matos and Boudol, including transitivity, and we can model it in the same
way. Apart from clauses for declassification and hierarchic flows, the policies must also
include clauses for the combination of the two, e.g.A can read the data ifB owns it,
has declassified it forC to read it, andA acts forC.

5 If we also take the view from [13], then we extend this concept with the requirement that we
should not be able to declassify low integrity data

15

A common extension of the DLM [22,20,19] deals with integrity and trust. The
interesting part for us is the integration with the principal hierarchy, where ifA trusts
some data andA acts forB, thenB also trusts that data. This can be modelled as the
reverse of the normal clauses for transitive flows, and the clauses will be very similar to
those for forward flows.

The complete general policy for a DLM variable encoded with flow locks would be
fairly large and awkward, so we do not show it here.

Other Related Work The JFlow language [9], as well as several recent papers [19,23,7],
supports runtime mechanisms to enforce security in situations where this cannot be de-
termined statically, e.g. permissions on a file that cannot be known at compile time.
Our flow locks is a static, compile-time mechanism only, and thus cannot handle these
issues.

Banerjee and Naumann [4] describe a combination of stack-based access control
and information flow types to allow the static checking of policies such as “the method
returns a result at levelL unless the caller has permissionp”. It may be possible to en-
code these kinds of policies in a straightforward way using flow locks, but this remains
a topic for future work.

6 Conclusions and Future Work

Flow locks are a very simple mechanism that generalises many existing systems and
idioms for dynamic information flow policies. We have only just started looking at flow
locks however, and much remains to be done.

To really establish flow locks as a core calculus, we need to show more formally how
to embed other systems and idioms, and prove that our semantic condition is sufficiently
strong compared to the semantic conditions of these other systems. It would also be
worthwhile to look at extensions of our core system, in order to handle systems that
we definitely cannot model at this point. Examples of such systems include the parallel
execution of Almeida Matos and Boudol [3], and also systems that use various runtime
mechanisms [19,23,7].

Furthermore, we would need to investigate how to implement the flow locks sys-
tem as a programming language, and to determine what kinds of inference would be
needed for policies and locks. Also, flow locks are fairly low-level in nature, being
a raw mechanism for controlling data flows in a program. As such it is nontrivial to
write and maintain correct flow lock programs. It would therefore be useful to look
at what higher-level abstractions and design patterns that could be used together with
flow locks. There exists some work specifically targeting the question of patterns, for
instance thesealpattern by Askarov and Sabelfeld [1].

AcknowledgementsThanks to Ulf Norell and our colleagues in the ProSec group for helpful
comments, and to the anonymous referees for numerous helpful comments and suggestions. This
work was partly supported by the Swedish research agencies SSF, VR and Vinnova, and by the In-
formation Society Technologies programme of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project.

16

References

1. A.Askarov and A.Sabelfeld. Security-typed languages for implementation of cryptographic
protocols: A case study. InProc. European Symp. on Research in Computer Security, 2005.

2. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency. InProc.
ACM Symp. on Principles of Programming Languages, pages 147–160, Jan. 1999.

3. A. Almeida Matos and G. Boudol. On declassification and the non-disclosure policy. In
Proc. IEEE Computer Security Foundations Workshop, June 2005.

4. A. Banerjee and D. A. Naumann. Stack-based access control and secure information flow.
Journal of Functional Programming, 15(2):131–177, Mar. 2005.

5. S. Chong and A. C. Myers. Security policies for downgrading. InACM Conference on
Computer and Communications Security, pages 198–209, Oct. 2004.

6. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

7. M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic updating of information-flow poli-
cies. InProc. Foundations of Computer Security Workshop, 2005.

8. H. Mantel and D. Sands. Controlled downgrading based on intransitive (non)interference. In
Proc. Asian Symp. on Programming Languages and Systems, volume 3302 ofLNCS, pages
129–145. Springer-Verlag, Nov. 2004.

9. A. C. Myers. JFlow: Practical mostly-static information flow control. InProc. ACM Symp.
on Principles of Programming Languages, pages 228–241, Jan. 1999.

10. A. C. Myers and B. Liskov. A decentralized model for information flow control. InProc.
ACM Symp. on Operating System Principles, pages 129–142, Oct. 1997.

11. A. C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. In
Proc. IEEE Symp. on Security and Privacy, pages 186–197, May 1998.

12. A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.ACM
Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.

13. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. InProc.
IEEE Computer Security Foundations Workshop, pages 172–186, June 2004.

14. S. Pinsky. Absorbing covers and intransitive non-interference. InProc. IEEE Symp. on
Security and Privacy, pages 102–113, May 1995.

15. J. M. Rushby. Noninterference, transitivity, and channel-control security policies. Technical
Report CSL-92-02, SRI International, 1992.

16. A. Sabelfeld and A. C. Myers. Language-based information-flow security.IEEE J. Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

17. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proc. IEEE Computer Security Foundations Workshop, pages 200–214, July 2000.

18. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. InProc. Founda-
tions of Computer Security Workshop, 2005.

19. S. Tse and S. Zdancewic. Run-time principals in information-flow type systems. InProc.
Symposium on Security and Privacy, 2004.

20. S. Tse and S. Zdancewic. Designing a security-typed language with certificate-based de-
classification. InProc. European Symp. on Programming, volume 3444 ofLNCS, pages
279–294. Springer-Verlag, Apr. 2005.

21. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.J.
Computer Security, 4(3):167–187, 1996.

22. S. Zdancewic and A. C. Myers. Robust declassification. InProc. IEEE Computer Security
Foundations Workshop, pages 15–23, June 2001.

23. L. Zheng and A. Myers. Dynamic security labels and noninterference. InProc. Workshop
on Formal Aspects in Security and Trust, 2004.

17

	 Flow Locks
	Niklas Broberg cl@@auth, David Sands

