Lightweight Self-Protecting JavaScript

. k

Phu H. Phung David Sands Andrey Chudnov

Chalmers University of Chalmers University of Stevens Institute of
Technology Technology Technology

Gothenburg, Sweden

www.cse.chalmers.se/ phung

ABSTRACT

This paper introduces a method to control JavaScript exe-
cution. The aim is to prevent or modify inappropriate be-
haviour caused by e.g. malicious injected scripts or poorly
designed third-party code. The approach is based on mod-
ifying the code so as to make it self-protecting: the protec-
tion mechanism (security policy) is embedded into the code
itself and intercepts security relevant API calls. The chal-
lenges come from the nature of the JavaScript language: any
variables in the scope of the program can be redefined, and
code can be created and run on-the-fly. This creates poten-
tial problems, respectively, for tamper-proofing the protec-
tion mechanism, and for ensuring that no security relevant
events bypass the protection. Unlike previous approaches
to instrument and monitor JavaScript to enforce or adjust
behaviour, the solution we propose is lightweight in that (i)
it does not require a modified browser, and (ii) it does not
require any run-time parsing and transformation of code (in-
cluding dynamically generated code). As a result, the me-
thod has low run-time overhead compared to other methods
satisfying (i), and the lack of need for browser modifications
means that the policy can even be applied on the server to
mitigate some effects of cross-site scripting bugs.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Assertion checkers; D.4.6 [Operating Systems]:
Security and Protection

General Terms

JavaScript, Security, Programming

Keywords

Language Based Security, Inlined Reference Monitors

*Work performed while the author was at Chalmers

To appear in ASTACCS’09, March 10-12, 2009, Sydney, NSW, Aus-
traia. (©ACM

Gothenburg, Sweden

www.cse.chalmers.se/~dave

New Jersey, USA

achudnov@stevens.edu

1. INTRODUCTION

JavaScript cannot be trusted. The complex nature of the
browser architecture, the reflective features of scripting lan-
guage itself, and the prevalence of dynamic content offers
many ways to defeat the built in security mechanisms or
to inject malicious code into web pages originating from an
otherwise trusted source.

This paper studies a classic approach to imposing a secu-
rity policy on an otherwise untrusted system via a reference
monitor. The concept of a security reference monitor is
a method to specify and implement secure systems by us-
ing a component which intercepts security relevant resource
requests and applies a security policy to decide whether to
grant such requests. Variants of this idea include the au-
tomatic transformation of insecure events - for example to
repair known vulnerabilities [25].

In the context of JavaScript one approach to implement-
ing this idea would be to modify the runtime-system of the
browser in which the script runs [19]. This gives a great deal
of freedom to the implementation, and makes issues such as
tamper proofing of the monitor mechanism fairly straight-
forward. On the down side it requires a specific browser
architecture to be in place and for the client to actively seek
protection.

An alternative approach is to inline the policy into the
code so that the code becomes self-protecting. There has
been considerable recent interest in this approach as a way
to provide expressive and efficient application-specific secu-
rity policies for software components e.g. software fault iso-
lation [40], and inlined reference monitors [13]. There
are potential performance advantages to inlining a reference
monitor. Certain dynamic checks can be avoided if they can
be statically shown to be safe. For JavaScript this is less of
an issue since the nature of the language makes it difficult to
optimise. However self-protecting script is interesting for a
couple of reasons. Firstly it is not dependent on a modified
browser technology. This in turn means that the code trans-
formation can take place at any point between the browser
and the code producer. For example, a web site delivers a
particular piece of dynamic content. The server knows the
application and knows that it should only use a fixed number
of resources (e.g. dialogs or cookies). Anything beyond this
is either due to a programming error or a cross-site script-
ing (XSS) attack. Using inlining at the server side the server
can inline a policy which controls the page’s use of resources.
Alternatively inlining might be performed by some proxy.



2 SECURITY POLICY ENFORCEMENT FOR JAVASCRIPT

Self-Protecting JavaScript Challenges.

What are the main challenges for implementing self-protect-
ing JavaScript? The key issues are completeness and tamper-
proofing. Completeness — ensuring that all security relevant
events are intercepted — is a problem because of the reflec-
tion capabilities of JavaScript. Code can be constructed on
the fly using eval, or written directly to the document itself.
Tamper-proofing is the problem of ensuring that the code
cannot subvert the monitor mechanism itself — since it lives
within the same code base.

The most closely related approach to the one in this paper
is the BrowserShield tool [31], which intercepts and trans-
forms JavaScript operations without browser support (re-
lated work is discussed more fully in Section [8). Tamper-
proofing is handled by dynamic namespace management —
ensuring that the namespace for monitor code is disjoint
from the underlying program’s name space. Completeness
is achieved by making the transformation process itself part
of the library. Every time an ewval or a write operation is
performed on the document the transformer is called recur-
sively on the argument. We call this an invasive transfor-
mation method: it must traverse and transform all the code
— including anything dynamically created. The down side
of this — in addition to performance issues — is that attacks
are possible by exploiting mismatches between the parser of
the transformation method and the parser of the browser
itself. See e.g.[21] for a discussion of this, and descriptions
of the Samy and Yamanner worms [24] for an infamous ex-
ample exploiting such a mismatch to evade server-side script
filtering mechanisms.

Contributions.

In this article we present a lightweight approach to build-
ing self-protecting JavaScript. It is lightweight in the sense
that

e it does not require browser modification, so the pro-
tection could be applied at the server side or in a client
side proxy — or anywhere inbetween,

e it is non invasive: the original code (and any dynam-
ically generated code) is not syntactically modified.
The only modification is new code loaded in the header
of the page, and

e its implementation is a small and simple adaptation
of an aspect-oriented programming library which per-
mits interception of method calls in a clear and direct
fashion without the need for any specialised policy lan-
guages. The non-policy-specific part of the code is a
mere 89 LOC.

Organisation.

The next section presents attacker assumptions and out-
lines our method to enforce security policy in JavaScript.
Section |3 describes the implementation of our enforcement
method. Security policy patterns preventing identified at-
tacks are presented in Section[4] A formalisation of the key
ingredients of the method is given in Section [5, where we
show that security automata can be soundly encoded. Sec-
tion [6] discusses the evaluation of our method including ex-
periments, efficiency, and overhead measurement. We give
discussions with several practical issues and limitations in

Section [7 and discuss the related work in Section [8. Sec-
tion [9] concludes the paper.

2. SECURITY POLICY ENFORCEMENT FOR

JAVASCRIPT
2.1 Attacker Assumptions

We assume that an attacker is a malicious user that at-
tempts to inject potentially dangerous JavaScript code into
a web page via data entry in the web page, e.g. forum, wiki,
blog content such that the scripts will be stored in a web
application database. When a user visits the web page, the
malicious scripts are loaded from the database and then ex-
ecuted in the browser of the user by the privilege of the web
page such that the user becomes the victim of the attack.
We assume that the web pages are securely protected and
could not be compromised by the attacker, and the attacker
could not modify the content of the web pages, for exam-
ple, by man-in-the-middle attack. We also assume that the
web pages are trusted by the users, thus, they allow script
execution implicitly and expect their private information to
remain safe, e.g. not to leak to a third party.

2.2 The Enforcement Method

In this section we describe the goals of the method and the
particular approach we take. The basic approach to policy
enforcement in this work is to intercept security relevant
events before they are executed. These events can then be
permitted to run, rejected, or modified in some other way
according to some policy. This is a variation on the classic
idea of a security reference monitor, and in what follows we
will refer to this mechanism as the “reference monitor”.

The realisation of this idea will be through a source-to-
source transformation of the code. This is sometimes called
the inlined reference monitor approach 134, — al-
though similar ideas appear elsewhere e.g. [40]. As we dis-
cuss later, the transformation could take place on the server,
in a proxy, or in the browser itself.

First we must decide on what is being monitored. Here
we take the view that it is the methods and fields of the
built-in objects that are the security relevant events. These
are the fields and methods present in the run-time system
and having a semantic meaning independent of the program
being executed. For JavaScript running in a web browser
this basically means the API methods which directly effect
the DOM tree.

The reference monitor, based on some security state in-
formation which it maintains, decides whether and how to
call the original method. Let M range over the security
relevant methods. The basic interception method is to cre-
ate a security state needed to record the relevant parts of
the computation history, and to ensure any security relevant
events go through the monitor, i.e. for each security relevant
method M, we

1. Create an alias to the original method
Morig - M

2. Redefine!] the original method to only call the original

Note that there is a design choice here: to overwrite the
original method rather than overwrite the call sites with a
new wrapper method (as done in e.g. BrowserShield [31]).
This has a number of advantages that we will discuss later.



3 REALISATION

method via a wrapper method:

M (params) = wrapper ,, (Mo'rig7 params, SecurityState)

Consider, for example, the case of a security automaton
(a truncation automaton in the terminology of [25]). Here
the security state models a state in the automaton. Pseu-
docode for wrapper,, would be

if permitted(M, params, SecurityState) then
SecurityState := update(SecurityState, M, params);
M°"'8 (params);

else
abort;

end if

where “permitted” determines whether the M call is allowed
in the current state, and if so the security state is updated
and the call proceeds. Otherwise execution is aborted.

The challenges in implementing this approach in a Java-
Script context are that anything in the scope of the program
can be redefined, potentially including

(1) Morig’
(ii) the security state and any of its helper functions,
(iii) The wrapped functions M (params) = wrapper (- --)

The solution to (i) and (ii) turns out to be straightforward
through appropriate use of scoping mechanisms: the refer-
ence to the original built-in method and the security state
information are maintained in a local scope visible to the
wrapper code?. By contrast, BrowserShield [31] uses a run-
time “name resolution management” whereby all other vari-
ables in the program (including those determined dynami-
cally or defined via reflection at runtime) are renamed so as
not to clash with the functions of the protection mechanism
library.

How about part (iii)? Although we can make any helper-
functions part of a local scope, the new version of M must
be globally visible. But JavaScript does not provide any
language-level mechanism for making this new definition im-
mutable. Our solution here is to do nothing. We allow the
script to freely redefine the any such method M — either
within a local scope or globally. This may seem surprising
at first. In Section |5/ we formalise this approach and show
that it soundly enforces the desired policy for one specific
class of reference monitors. For the present we explain the
rationale informally as follows.

Our policies are concerned with preventing (or modifying)
certain behaviours of the built-in methods. The policy is not
concerned with methods that happen to have the same name
as the built-ins. For example, if we were to monitor the built-
in window.open method to ensure that there are no more
than 2 popups are permitted. The policy refers to the actual
native code which performs the window.open operation, and
is not concerned with the name of the method per se. If the
program redefines window.open then the policy is still only
concerned with the native code for the original method, and
not this new method. This new method is free (under this
particular policy example) to be called any number of times.

2 An alternative idea we tried was to choose obscure random
names for the security state. Even if these are chosen after
any malicious code is inserted, the reflection capabilities of
JavaScript allow the code to determine the obscure names
dynamically by code self-inspection.

0 ~NO O E WN -

The key to making this approach safe is the fact that the
actual native code for the built-in method in question is
only accessible via the wrapper method. Although wrapper
methods can be overwritten, the reference to the original
built-in method is held uniquely by the wrapper method.

3. REALISATION

Here we describe the implementation of the method. The
code transformation itself is based on a simple transforma-
tion which inserts the policy code and some library code
into the header of the page. The exact architecture of this
process is not the main focus, and it could be performed by
the code producer, at the server, in an application-firewall
or proxy, or even as a browser plug-in.

<html><head>
<script src="/policies.js”"></script>
<I—— file policies.js contains weaving library
— and security policies —>
</head>
<body>
... <I—— the content of page (unaltered) —>
</body></html>

Listing 1: The structure of a webpage containing
policy enforcement code.

The concrete structure of a web page with an embed-
ded policy is illustrated in Listing The process to em-
bed policies is performed statically at some point between
code developer and browser. This static method has advan-
tage since it is simple and does not require any HTML and
JavaScript code analysis. The possibility that this could be
performed statically on server-side code (or code stubs) has
some potential advantages. In particular there is no addi-
tional computation for each HTTP request on the server at
runtime. This advantage is notable compared with similar
approaches such as BrowserShield [31], or CoreScript [44] in
which a computation is performed for each HTTP request
at a proxy between client and server, and the computation
overhead observable by each client depends on the size of
web page.

The core issues that must be addressed to make this scheme
viable are the requirements that the original methods are
“saved” but that these must not be accessible outside the
wrapper functions. Furthermore, any additional state vari-
ables that are needed should not be modifiable by the rest
of the program. These requirements are solved easily by
standard JavaScript scoping techniques. Firstly the policy
code must live inside a local scope. This can be achieved
by placing them in an anonymous function which is made
to be executed automatically. Secondly we achieve the re-
quired privacy of the reference to the original method and
the security state by making them local variables (defining
by war). The lifetime of these variables extends beyond the
scope because they are (most likely) used within the wrapper
method. The code sketch in Listing 2 illustrates a suitable
structure for wrapping a single method called “BuiltIn”.

The end result of this structure for the protection initial-
isation code is that the only variables visible to the attack
code are the new versions of the built-in functions — which
we freely allow the code to overwrite.

Another concern might be that the attacker attempts to
inject code (e.g. via document.write) into the page that



00 ~NO O WN -

00 ~NO O WN -

3.2 Policy Definition: the Security State

3 REALISATION

(function () { // Begin local
// Save ref to orig method
var OriginalBuiltIn = Builtln;
// Define local state
var SecurityState = ...

Builtln :

scope

// Redefine the
BuiltIn (..) = OriginalBuiltIn (..)
(O3 // End local scope

Listing 2: Protection Initialisation Code

preempts the execution of this protection initialisation code.
In our model, policies defined in aspects are located in the
first <script> tag within the <head> element of the docu-
ment. Assuming that web server is not compromised, at-
tackers cannot inject scripts into the <head> element.

Aspect-Oriented Programming.

Instead of implementing the above schema directly, an
elegant and robust implementation is provided the aspect-
oriented programming paradigm [23]. In this programming
style, an aspect comprises a pointcut, which defines the point
and the condition under which the aspect modifies the be-
haviour of an application, and an advice, which defines what
modifications should be applied. The process of combining
the pointcut with the advice is known a weaving. Using this
terminology, our pointcuts correspond to the built-in me-
thod calls, and our advice is the policy code. Following this
correspondence, our implementation, illustrated in Listing
[3, is an adaptation the so-called “around” advice from an
off-the-shelf library [1]. Modulo some slightly more elabo-
rate nesting of scope, our code uses essentially the schema
defined in Listing[2]

var wrap = function (pointcut, Policy) {

//Override the prototype of object if available

var source = (typeof(pointcut.target.prototype)
!= undefined)?

pointcut.target.prototype pointcut.target;

var method = pointcut.method;

//Save reference to the original method

var original = source[method];

//Weave the policy with the original method

var aspect = function () {

var invocation =

{object: this, args: arguments };

return Policy.apply(invocation.object ,
[{arguments:invocation.args ,method: method,
proceed function () {
return original.apply(invocation.object ,
invocation.args);} }]);

}

//Redefine the method
source [method] = aspect;
return aspect;

//Interface to weave an object method call with

//a policy function

var enforcePolicy= function (objectMethod, Policy){
return wrap (objectMethod, Policy);

}

Listing 3: The main wrapper function

3.1 Enforcing Policies on Methods

We define the enforcePolicy interface (illustrated in List-
ing [3) to weave object method calls with a policy function:
enforcePolicy ( Map pointcut, Function policy(invocation));

Map pointcut is a map to define the built-in method call
which we intend to monitor and/or modify. The map con-
sists of target object and method (name of the method to be
monitored by the policy). Function policy(invocation) is
the definition of the policy function. This is the wrapper
code that will replace the built-in method. Note that the
arguments to the method call are not mentioned by the in-
terface enforcePolicy. This is because they can be accessed
via JavaScript’s arguments property. Thus the parameters
of the call (via invocation.arguments) can be used by the
policy to decide the security response. Inside the policy
function, the execution of the target method can be con-
trolled. The method execution can be allowed to proceed
by calling invocation.proceed(). Listing provides an
example policy function that can monitor and tune popup
parameters at runtime to ensure that new popup window
contains a location bar and status bar in order to prevent
potential forgery attacks.

3.2 Policy Definition: the Security State

Suppose, for example, that a web application developer
knows what behavioural properties a given script should sat-
isfy. Based on that, to define a security policy, the devel-
oper first identifies the security relevant built-in methods and
properties which are the subject of the policy. Then he must
define the security policy (as a function) and weave the pol-
icy with the target method by calling the weaving function
enforcePolicy(..) as mentioned in Section[3.1l

JavaScript variables might be used to store security states
for security decisions in security policies. For example, a
policy like “the application should never raise more than two
popup windows” concerns the built-in method window.open
and needs a security state variable to count the number of
popups so far.

If the execution is in a safe state (i.e. the popupCount < 2
in this policy), the method is allowed, otherwise the method
is suppressed (an alternative could be to abort the whole
program). This policy is defined in Listing [4. This policy
function invokes the function antiForgeryPolicy in Listing
[11 which prevents potential forgery attacks when opening a
new popup window.

Security states are stored in an array variable. As men-
tioned previously, the security state variable is not accessible
outside the scope containing the policy functions. Similarly
any helper functions that are used to process the security
state variables must be offered the same protection. For
example, the policy in Listing[4 uses a supporting function
AllowedURL (url) which returns true if the provided URL
is in the URL whitelist allowed by the policy. If a malicious
code redefines this function so that it always returns true,
the policy is always bypassed. To prevent this problem,
supporting functions must be located within the anonymous
function.

3.3 Policy Parameter Integrity

In addition to the security state, the parameters of a given
call can be used to determine the appropriate policy action.
Those parameters which are potentially inspected by the
policy code will be referred to as policy parameters. From the
perspective of the policy code, the remaining parameters are
generic: they are simply forwarded in some way or discarded.

One reasonable assumption is that policy parameters are
primitive types — primarily Strings, Numbers and Booleans.



00 ~NO O WN -

o O WN

O WN =

3 REALISATION

3.5 Attacks to the Unique Reference Property

( function (){
// init and assign security
SecurityStates.init ();
SecurityStates.setState (’popupCount’,0) ;
//define security policies
enforcePolicy ({target : window, method: ’open’},
function (invocation) {
antiForgeryPolicy (invocation) ;
var url = stringOf(invocation ,0);
var popupCount =
SecurityStates.getState (’popupCount’) ;
if ((popupCount < 2) && AllowedURL(url)){
SecurityStates.updateState (' popupCount’,
popupCount+1);

states

invocation.proceed () ;

else policylog (’Popup suppressed ’) ;

Listing 4: A popup security policy example: allow
at most 2 popup windows that its URL must be in
the whitelist and the new popup window must has
location bar

However, treating them if they were primitive types is risky®.

Consider, for example, the function A1lowedURL (url) men-
tioned above. The url is a policy parameter. The policy
checks whether the provided URL is in a whitelist. How-
ever, although we treat url as a string, it could well be any
object with a toString () method. The problem here is that
the toString() method is potentially impure: it can return
a different value each time it is called. In particular, it could
be defined so as to return a “good value” when being checked
by the policy code, but to return a “bad value” when passed
to the actual built-in. This problem is exemplified in the
below example:

var url={toString: function (){

this.toString =
function (){return “bad”;};
return ”good”;}};
alert (url); // alerts with “good”
alert (url); // alerts with “bad”

The idea to avoid this problem is to implement call-by-
primitive-value for all policy parameters. We have imple-
mented helper functions to force the arguments into appro-
priate primitive types. An example of such a function forcing
the parameter into string type is implemented as follows:

function stringOf(inv,arglndex){
var tmp = inv.arguments|[arglndex].toString();
inv.arguments [argsIndex] = tmp;
return tmp;

The parameters are the invocation object and the argument
index of the intended string parameter. The string0f pro-
cedure grabs the current string from the argument and mod-
ifies the argument to be that primitive value.

For example, in Listing[4, we make sure that the url vari-
able in line 9 is passed by string primitive type by calling
string0f (invocation,0).

O 00N WN -

3.4 Monitoring Object Properties Access Events

So far we have only discussed policies involving built-
in methods. Another important class of security relevant

3Thanks to Sergio Maffeis for alerting us to this issue.

events are property accesses. We monitor the property ac-
cess events using the fact that property access (read/write)
of each object can be defined by __defineGetter__(...),
and __defineSetter__(...) methods of the prototype of
the object [5]7.

Our library defines a helper function MonitorProperty(. .)
that represents the new wrapped definitions for the function
getter and setter for the corresponding objects. The inter-
face of the function is provided as following:

MonitorProperty( object, property,
Function policyforGetter,
Function policyforSetter);

The functions policyforGetter and policyforSetter are
embedded to the getter and the setter respectively so that
each function will be invoked when corresponding property
access event is executed. Listing [5]illustrates the use of a
property access monitoring. This might be used in imple-
menting a policy which e.g. prevents certain network sends
after a cookie has been read.

SecurityStates.setState (’cookieread ’, false);
MonitorProperty (’document ’, ’ cookie 7,
function () {updateCookieState ();},
function () {}

)5
var updateCookieState =
SecurityStates.
SecurityStates.

}

function () {
updateState (' cookieread ’, true);
updateState (’sensitiveread ’, true);

Listing 5: Monitoring cookie read and write event.

The argument for the soundness of this approach is essen-
tially the same as for the treatment of methods. In practice,
the attacker could redefine these functions for any proper-
ties of any objects, thus, the property access weaving might
be overwritten and replaced. Just as for built-in methods,
the attacker can never access the original (real) value of the
property without going through the monitored getter or set-
ter, and by the same reasoning as for methods, if the getter
and setter methods get redefined then this does not matter
— the actual property accesses will still be mediated by the
policy wrapper.

For properties document .location and window.location,
this monitoring method is inapplicable in practice since they
can not be controlled via the setter and the getter. In this
case, the method watch(property, handlerfunc), inher-
ited by every object descended from Object [5] and adding a
watchpoint to a property of the object, could be used to con-
trol the property access event. A policy using watch(...)
to prevent leakage of sensitive data by changing the location
of the window is illustrated in Listing[8]

3.5 Attacks to the Unique Reference Property

The key requirement for the correct functioning of our
method is the property that the wrapper method holds a
unique local reference to the original built-in method. How-
ever, this property can be broken using two techniques, one

4This feature is Mozilla-specific, however, it has been spec-
ified in the current draft proposal for the next generations
of JavaScript (ECMA-262 3.1 [3,42]).



O WO ~NOOUPB WN -

[

O 00N WN =

4 SECURITY POLICY PATTERNS

general and one platform—speciﬁcﬁ We present these issues
below and discuss methods to prevent such attacks.

3.5.1 Restoring built-in methods from another page

By creating a new window, frame or iframe, the script
can manufacture a pointer to the original built-in methods
by copying them from their child contexts. Code in Listing[6
illustrates this attacks.

//create the pointer to a mew window context
var win = window.open(””);
//and restore the built—in method window. alert
window . alert=win.window. alert ;
//create the pointer to a mew iframe context
ifrm = document.createElement (”iframe”);
document . body.appendChild (ifrm) ;
//and restore the built—in method window. alert
window. alert = function (s)

return ifrm.contentWindow. alert (s) };

Listing 6: Examples of restoring built-in methods.

There are a couple of alternatives to prevent this attack,
and one of these must be enforced as part of any policy.

The first solution is fairly heavy handed, and involves a
policy which simply disables creation of new window, frame,
or iframe contexts. An example of such a policy is defined
in Listing[7.

enforcePolicy ({target :document,
method: ’createElement '},

function (invocation) {
var str = stringOf(invocation ,0) ;
if (str.indexOf(’iframe ’)>=0) {

return;

}else invocation.proceed();

}

)3

Listing 7: Policy to disallow iframe creation

The second alternative solution is more liberal. Since the
way to recover the original built-in method of frame/iframe
objects must be via contentWindow, we can also can prevent
the attack simply by using a policy which disables these
calls. It seems that this may allow many typical uses of
frames/iframes. However, at the time of writing we have
not performed any empirical investigations to determine the
true impact of disabling contentWindow.

3.5.2 Mozilla’s delete operator

An implementation specific problem is caused by one par-
ticular implementation of the delete operator. The delete
operator was implemented in JavaScript 1.2, NES3.0 and
specified in ECMA-262 [5]. The operator can be used
to delete an object, an object’s property or an element at
a specified index in an array. In Mozilla’s implementation
of this operator there is a twist. Deleting removes a me-
thod (and all previous versions of a method) from an ob-
ject except for methods of built-in objects. In that case the
Mozilla flavour of delete restores the original built-in method.
Thus since our wrapper methods are not built-in, they are
deletable and the deletion exposes the original built-in.

®The authors are grateful to Jonas Magazinius for pointing
out these attacks.

Unfortunately our method cannot prevent this attack; we
cannot simply disable delete since it is an operator of the
language and not a method. However, we believe that the
problem is both Mozilla specific and likely to be a short-term
one. In the current draft proposal for the next generations
of JavaScript (ECMA-262 3.1 [3]), there is a strong case
made for user definable attributes. One such attribute is
the Configurable attribute (the converse of what was previ-
ously called DontDelete). By setting Configurable attribute
to false for our wrapper methods, we can prevent their dele-
tion. Note that the more “obvious” attribute, Writable (pre-
viously known in converse form as ReadOnly), is less suitable
for our purpose. Making a wrapper method read-only will
break many programs which wish to redefine built-in meth-
ods. More importantly, it would no longer permit us to use
our method compositionally to apply multiple policies to the
same page. This might happen if e.g. policies are applied at
different points in time. The Configurable attribute, on the
other hand, is no more and no less than we need.

4. SECURITY POLICY PATTERNS

So far we have described the bare-bones idea of how to
write policies. In this section we flesh this out with a number
of examples and patterns of use.

As any security reference monitor, our mechanism is ca-
pable, amongst other things, of ensuring any safety property
of program execution [33]. This means that the policy can
allow or suppress security-relevant actions based on the ex-
ecution history. Given that the set of such actions is the
whole DOM API[® our vocabulary of policies is rather large.
The ability to write policies in JavaScript also adds to the
expressiveness in writing policies.

Ideally it is the (non-malicious) application developer who
should specify the policies. Knowing the intended function-
ality of the application is the best starting point for re-
stricting the usage of certain JavaScript features without
adversely affecting the function of the application. As it
is common in security, there is always a trade-off between
functionality and security. We believe that the developer is
in the best position to specify meaningful security policies
that would maximise both functionality and security of the
application.

It turns out that writing sensible policies for JavaScript
programs is not an easy task, in particular, because DOM
API is large and contains a lot of methods that could be
abused and lead to compromising application security. We
have found that, instead of trying to come up with a sin-
gle policy for an application, it is often simpler and more
reliable to synthesise it from several small and understand-
able policies. It is important to make sure, though, that
these policies have different areas of concern, i.e. the access
each DOM API property or method is restricted by at most
one such policy. Our mechanism makes it natural to specify
the simple policies at the property/method granularity. The
resulting application policy would be the product of these
policies, hence we call it a product policy.

Here we have identified common attacks involving mali-
cious JavaScript code and presented several security policy
patterns that would help to prevent these attacks. We note
that these patterns are not universal, and the actual pol-

5Document Object Model Application Programming Inter-
face



1
2
3

4 SECURITY POLICY PATTERNS

icy may and should be specific to the web application in
question.

Leakage of sensitive data.

One of the great threats of malicious JavaScript code is
leakage of sensitive data. By design JavaScript programs
running in the browser do not have access to the file system
or other system resources. Still there are several sources
of data in the browser itself that could contain sensitive or
private information. Although we cannot directly encode
information flow policies (and see no “lightweight” way to
do so), we can at least control information flow at the end-
points. The general policy to prevent data leakage is to
monitor reading from sensitive data sources and prevent op-
erations that could send information to a third party. The
sources of sensitive information are:

e the browser cookie, stored in the window.cookie and
document .cookie properties, as it may contain user
specific information such as user name, identifier, ses-
sion identifier etc.,

e the history object, stored in the window.history prop-
erty, as it allows to browse the history of visited web-
pages thus affecting user privacy,

e the values of window.location and document.URL, as
well as document . referrer containing the URLs of the
current and previous pages visited since leaking this
data may too affect user privacy,

e the values of form elements, potentially containing pri-
vate data entered by the user, and

e the web page contents.
The means for leaking information to a third party include:

e redirecting to another website by changing the
document.location and window.location properties.
The sensitive information to be leaked could be en-
coded in the URL, e.g. in the query part of the URL
http://evil.com/leak.cgi?data=password:qwerty,

e changing the source location of the instances of Frame,
IFrame, Image and Form classes to a new location, sim-
ilar to described above.

document . watch(’location >, locationPolicy);
window . watch (’location ’, locationPolicy);
function locationPolicy (id, oldloc, newloc){

var loc = newloc.toString () ;

if (sensitiveRead ()){
policylog ("Redirection is suppressed:

potential data leakage”);

abort () ;

if (!AllowedURL(loc)){
policylog (loc+ 7 is forbidden”);
abort () ;

return loc;

¥

Listing 8: Policy controlling the redirection of a
webpage.

The general policy that helps preventing leakage is struc-
tured as follows:

20
21
22

e reading from the sensitive sources should be moni-
tored. The wrapper function would set an appropri-
ate security state when such a property is accessed to
indicate that the JavaScript program has performed
a read operation on sensitive data. Above sensitive
properties would be monitored by invoking the func-
tion MonitorProperty(...) as illustrated in the same
task in Listing[5 in Section [3.4]

onLoadPolicies = function () {
var IMGs = document.images;

if (!'IMGs){ policylog(’no images’);
for (var i=0;i<IMGs.length;i++){
IMGs[i].watch(’src’, IMGPolicy);

return; }

var IMGPolicy =function (id, oldsrc,
var src = newsrc.toString () ;
if (sensitiveRead ()){
policylog (”"Image changing is suppressed:
potential data leakage”);

newsrc) {

abort () ;

}

if (!AllowedIMG (src)){
policylog (src+ 7 is forbidden”);
abort () ;

return src;

}

window . addEventListener ("DOMContentLoaded” ,
onLoadPolicies, true);

Listing 9: Policy preventing leakage of information
through loading of new images

e writing to the document.location, window.location
and the src property of the instances of Frame, IFrame,
Image and Form classes should only be permitted if the
sensitive data fields have not been previously read or
the new location is in an URL whitelist allowed by
the policy. However, these issues are treated differ-
ently. For example, we monitor the change of the loca-
tion by invoking the method watch for the properties
document.location, window.location as mentioned
in Section 3.4l Listing [8 gives a policy that prevents
redirection attack by changing the location property
after sensitive data sources have been read and the
new location is not on the allowed list. The function
sensitiveRead() is a supporting function that moni-
tors security states corresponding to sensitive property
read events and returns true if one the security states
is true. For changing image source event, we also use
method watch to monitor changes to the document lo-
cation. Listing 9]defines this policy.

Impersonation attacks.

Another attack that became common with the emergence
of AJAX web applications is the impersonation attack. The
idea behind the attack is for the malicious JavaScript code
to use XMLHttpRequest — the very same tool used to build
AJAX applications — for sending HTTP requests to the
server on behalf of the user. An attacker can therefore mimic
a legitimate user and generate requests that appear to be
from that user. This could lead to undesired actions to be
performed in the context of the web application on behalf
of the user. The idea behind the policy preventing such a
scenario should involve co-operation with the server side as


http://evil.com/leak.cgi?data=password:qwerty

00 ~NO O WN -

5 SOUNDNESS

var XMLHttpRequestURL = null;
enforcePolicy ({ target : XMLHttpRequest ,
method: ’open’ }, function(invocation){
XMLHttpRequestURL = stringOf(invocation ,1);
return invocation.proceed();}
)3
enforcePolicy ({ target : XMLHttpRequest ,
method: ’send’},
function (invocation){
XMLHttpRequestPolicy (invocation) ;}

)3
var XMLHttpRequestPolicy =
function (invocation){
//allow the transaction if the
/ URI is in the whitelist
if (AllowedURL (XMLHttpRequestURL) )
return invocation.proceed();
policylog ("XMLHttpRequest is suppressed:”+
?potential impersonation attacks”);

Listing 10: Policy preventing impersonation attacks
using XMLHttpRequest object.

well. In particular, if the web application conforms to a
W3C recommendation that requires the GET request
handlers to be pure, i.e. have no side effects, with respect
to user data, we can require the application to do POST re-
quests only using HTML Forms. Prohibiting POST requests
prevents malicious scripts from impersonating the legitimate
user.

Additionally the web application developer could filter the
URL parameter when the XMLHttpRequest . open gets called.
For example, he can allow for only a certain subset of web-
application services to be accessible with XMLHttpRequest.
Listing [10 defines a policy that can prevent the potential
impersonation attacks using XMLHttpRequest object. This
policy allows XMLHttpRequest object to open and send data
to an URI if it is in the whitelist of the policy.

Forgery attacks.

Forgery attacks are a subcategory of phishing attacks [2]
where the attacker tries to lure the user into believing that
either the attacker’s website belongs to a legitimate company
and/or that all the interactions are performed securely with
the legitimate website. These attacks often involve some
JavaScript tricks (but in general not necessarily JavaScript-
based). For example, attackers can use JavaScript to open
a new window without the location bar. To prevent these
attacks, we could define a policy to enforce invariants, e.g.
always enable the location bar and status bar on the user in-
terface of a new open window. The function defined in List-
ing[11]illustrates this policy. This function has to be woven
with the open new window method call (window.open(...))
as we have illustrated in Listing [4.

Another example of a forgery attack is to inject a mali-
cious hyperlink. This can lead to a phishing attack by using
IP verses hostname or encoding the link to evade server fil-
tering (c.f. [7]). To deal with this problem, we can dis-
able links in the document that are not in the whitelist
link of the policy as in the checkLinks function illustrated
in Listing 12. This function is invoked by the function
onLoadPolicies() in Listing[9 to make sure it will be exe-
cuted before the document is loaded.

00 ~NO O WN -

O 00N WN -

var antiForgeryPolicy = function (invocation){
var opts = stringOf(invocation ,2);
if (opts.indexOf(”location=no”) >= 0){
opts.replace(”location=no” ,”location=yes”);
}else{
if (!(opts.indexOf(”location=yes”) >= 0)){
opts = opts + ”,location=yes”;
if (opts.indexOf(”status=no”) >= 0){
opts.replace (”status=no” ,”status=yes”);
telse{
if (!(opts.indexOf(”status=yes”) >= 0)){
opts = opts + 7 ,status=yes”;
}
}
invocation.arguments [2] =opts;
}
Listing 11: Policy preventing potential forgery
attacks.
var checkLinks = function () {
var links = document.links;
if (!links){ policylog(’no links ’); return; }
for(var i = 0; i < links.length; i++) {
if (!AllowedLinks(links[i]. href))
links [i]. href =”javascript:”+
7alert (’disabled link ’)7;
}
}
Listing 12: Policy preventing potential forgery

attacks by injecting bad links.

Resource abuse.

Client-side resource abuse in JavaScript might seem rather
harmless compared to the attacks already mentioned, but
still they can adversely affect user experience to the point
that the application becomes unusable. A simple example
is a program displaying alert messages in an infinite loop.
There are certain methods in the DOM API that allow
manipulation with the browser window size and location” ,
as well as creation of new windowsd and displaying pop-
up alert messages (window.alert(..), window.confirm(..)
and window.prompt (..)). We regard these methods as out-
dated since modern web application provide consistent user
interface without using these methods. However, if the ap-
plication developer needs to employ some of these methods,
this policy could be relaxed and restrict the number of times
a certain method is called, or restrict its frequency relative to
other events. For example no web application would need to
display more than two pop-up alerts in a row, as illustrated
in Listing [4 in Section [3.2. Listing illustrates the policy
that disallows the above mentioned methods if they could
cause resource abuse problems.

5. SOUNDNESS

In this section we attempt to address, from a formal point
of view, the correctness (soundness) of our method. What
are the formal properties of the method described here? This
is a difficult question to answer with any rigour since the

7Exaurnples. are window.moveBy(..), window.moveTo(..),
window.resizeBy(..), window.resizeTo(..),
window.scrollBy(..) and window.scrollTo(..)

8 window.open(..) and window.createPopup(..)(only
specific to Internet Explorer)



00 ~NO O WN -

©

5 SOUNDNESS

5.2 Security Automata

var deniedPolicy = function (invocation){
debug (’Method is disabled ’);
return null;

enforcePolicy ({target:window,method:  alert '},
function (invocation) {
deniedPolicy (invocation);

)3
enforcePolicy ({target :window ,method:’prompt’},
function (invocation) {
deniedPolicy (invocation);

}
)
/AL

Listing 13: Policy to disable methods that might
cause resource abuse.

problem deals with two complex artifacts, the web browser
and the JavaScript programming language. Formalising the
semantics of JavaScript is itself a research problem. Never-
theless we can ask about what security policies we are trying
to enforce here. The natural class of security policies that
we can enforce are the edit automata properties [25]. But
in order to be concise, in this section we will instead study
the simpler class of security automata properties, which cor-
respond to the classic notion of safety properties [33]. Since
our formalisation is rather lightweight its main contribution
is to clarify the assumptions that we make about the imple-
mentation and platform.

We will proceed as follows. We define an abstract semi-
formal model of program execution and prove that the pro-
posed technique, under certain implementation assumptions
(that we believe we have satisfied in our particular imple-
mentation), is able to soundly inline any security automata
over the language of built-in methods. Here the notion of
soundness means that if the transformed program exhibits
a particular behaviour, then that behaviour is indeed one of
the permitted behaviours of the automata specification.

5.1 Computation Model

We begin by defining an abstract computational model.
We will not formalise any programming language details (for
JavaScript that is a nontrivial task [26]), and thus the con-
nection between simple commands and their (obvious) effect
on the computation state will be left informal.

We assume a set of runtime machine configurations, Config,
ranged over by C', C1, C2 etc., which represent the complete
information about the computation state of the interpreter
and program at any point in time during the computation.
Computation is modelled via two kinds of transitions:

e C X meaning that from configuration C' the native
code for a built-in method M is executed, leaving the
machine in configuration C”.

e C' — (' meaning that the machine makes an internal
computation step from C to C’.

We define = to be the reflexive and transitive closure of
—, and for any sequence of built-in method names M =

Mi, ..., My, we write C' 2 C” to mean that
crxoMo s oW

By assuming that the transition (1) is a complete execution

of some native code we are effectively assuming that the
built-in methods do not call any other methods, built-in or
otherwise.

Furthermore, we suppose that it is possible to identify
when a given configuration C' is just about to execute the
body of a particular non-built-in method d. in that case we
say that C calls d.

We will also assume that we can extract the value of a
particular variable x in C' and we will denote this by C.x.
This notation is somewhat ambiguous but we will use it only
to refer to a particular local variable — the representation of
the security state.

For a program P let init(P) denote the initial configura-
tion for execution of program P.

Definition 1. We say that P has a run M if init(P) ey,
for some C.

5.2 Security Automata

Security automata [33] are a means to specify safety prop-
erties of computations. We can view such an automaton as a
reference monitor which determines which transitions should
be allowed in any given state. Here we introduce security au-
tomata specialised to the alphabet of built-in method names:
a security automaton A is a triple A(Q, go,9) , where Q is a
set of states, qo € @ is the initial state, and § € Q x M — Q
is the (partial) transition function. If the automaton is in
state ¢ and is willing to accept symbol M and evolve to state
q’ then §(q, M) = ¢’. We view every state of the automaton
as an accepting state, and write M € A to mean that word
M is accepted by A.

It is convenient to extend the transition function §(g, -) to
words of by defining, inductively, that §(g,€) = ¢, where €
is the empty word, and d(q, M - N) = 6(8(q, M), N). Note
that M € A if and only if §(qo, M) = ¢ for some q.

5.3 Self Protected Programs

For simplicity’s sake we will assume that the states and
transition functions of an automaton are directly representable
in a program. In practice there may be a nontrivial encoding
layer. See for example [10] for a more formal proof involving
a bigger representation distance between the automaton and
the encoding.

Definition 2. We say that P is self-protected with respect
to automaton A if P begins its execution with the following
steps:

(E1) P defines a local alias M°"¢ for each built-in M.
(E2) P initialises a security state variable ¢ to value qo.

(E3) P then redefines each built-in method M to be
M(args) = q=06(M,q);
if ¢ # undefined then M°"$(args) else abort;

where abort is any program which prevents further built-
ins from being called , and P satisfies the following runtime
properties:

(I1) References M8 are the unique references to the built-
in methods throughout the execution of the program;

(I2) The security state ¢ is only ever changed by execution
of the definitions constructed in step 2 above, and the
transition function § referred to in the body of the
definition is unmodified throughout the execution.



6.2 Overhead

6 EVALUATION

Note that the implementation properties I1 and 12 could be
proven rather than assumed if we had a suitable model of
JavaScript and a precise definition of the code corresponding
to E1-E3 (as described in Section [3).

Now we are in a position to state the soundness of self-
protecting programs.

THEOREM 1  (SOUNDNESS). Let P be self-protected with

respect to automaton A. If P has run M then M is accepted
by A.

PROOF. See the tech report version of this article O

One might hope to prove more than just soundness. For
example if the program always aborts then it is sound. One
notion that has been used in the context of reference moni-
tors in general is transparency. To talk about transparency
we need to compare the “original” program with the self-
protected version. Transparency means that if any run M
of the original program is accepted by A then M will be
a run of the self-protected program. We cannot prove this
based on the assumptions we have made, and it turns out
that transparency does not hold in practice. We discuss this
further in Section [7, where we argue that the lack of trans-
parency is only through programs exhibiting pathological
behaviour.

6. EVALUATION

To evaluate our method, we have conducted experiments
to verify the effectiveness of our mechanism against known
script injection attacks. Experiments attempting to break
policy enforcement have also performed to demonstate the
policy protection. We have also measured the overhead of
the security policy enforcement mechanism. As expected,
our mechanism can prevent most of known script injection
attack vectors.

Our uncompressed base library contains only 89 LOC in
JavaScript with the size of 2.5KB. The code of general secu-
rity policies we have identified in Section[4 has 236 LOC with
the size of 9.3KB, thus in this experiment the total code em-
bedded into each page for policy enforcement has 325 LOC.
These code, benchmarks, and test cases are available at [29].

6.1 Effectiveness

We have conducted the experiments in several approaches.
First, a test suite of XSS attack vectors introduced in [7] was
implemented and run to select successful attacks for differ-
ent web browsers. Since the method to weave property ac-
cess events with policies is specific to Mozilla’s version of
JavaScript, most of the tests were performed in Firefox. As
expected, our policy enforcement solution can defeat most of
the identified XSS attacks. Out of the over one hundred at-
tack vectors published on ha.ckers.org [7], 38 vectors can
be launched successfully in Firefox 3.0.1. Our policy can
detect and prevent 34 of these vectors. The remaining vec-
tors employ meta and iframe tags and could not be detected
and confined by the policy. The reason is that these attacks
could force the browser to load an external HTML docu-
ment, and all the JavaScript code in that document would
be executed in a context of a different DOM tree. This issue
is discussed in Section|7.

Besides the simple tests, we have also conducted experi-
ments on real world web applications to verify that our solu-
tion is also suitable for defeating real world script injection

attacks. We installed a version of a well-known web-based
bulletin board system phpBB 2.0.18 [12] known to be vulner-
able to cross-site scripting attacks and launched the known
attacks. We also experimented with WebCal 3.04 (a
web-based calendar application). The bulletin board sys-
tem is most vulnerable to stored XSS attacks where injected
scripts are stored in the database of the application and
the attack could launched at a later time whenever the user
loads the attacked page. In addition to studying attacks
identified in [12], we allowed script tags in messages of the
bulletin board and successfully mounted the attacks identi-
fied in Section[4.

Attacks on WebCal [14] fell in a different category of re-
flected XSS attacks. With reflected attacks it is possible to
directly manipulate the contents of the web-page by provid-
ing certain inputs (think of a search engine diplaying the
search query at the top of the search results). This type of
attack does not need a persistent storage to be involved (see
e.g. for real examples). We have applied our solution
to these web applications by embedding the desired secu-
rity policy file in an appropriate placeg to prevent against
these two types of attacks. For the phpBB web application,
since the description of the board is always displayed, we
managed to embed the security policy file in the description
of the site via the administration tool and, thus, without
modifying the web application. For the WebCal web ap-
plication, we used the subroutine start_html() (in Perl)
in the file webcal_shared.pm which is invoked to print the
start of a html page whenever the application generates and
displays a page. We modified this subroutine and embedded
the security policy file in the first <script> tag within the
<head> tag. The success in applying our security mechanism
to these real world applications gives us confidence in that it
could be widely used to counter modern cross-site scripting
attacks.

6.2 Overhead

We evaluated the overhead of our policy enforcement mech-
anism by measuring the overhead of a number of individual
JavaScript weaving operations at runtime and page render
time. All experiments were performed on a PC PENTIUM
D 820 (2.80GHz) with 1.0GB memory.

6.2.1 Weaving overhead

We selected 10 operations to measure their weaving over-
head. Table 1]shows the operations and their weaving slow-
down ratio. We used JavaScript time functions to calculate
the execution time of each operation test, which is a loop
lasting over 500 milliseconds. Each operation test was per-
formed locally from the local file system. The execution time
of each operation test is averaged over 10 browser loads. For
each operation, we weave the execution event with an assign-
ment and proceed with the execution. The slowdown ratio
was measured by comparing the average execution time of
each operation test with the weaving process and that of
original code.

Overall, the slowdown is quite small since our enforcement
mechanism is so lightweight. The average slowdown for the
10 operation tests is 6.33 times. Compared to similar ra-
tio overhead of BrowserShield [31], which was average 66.03
times, our enforcement method overhead is very light. The
two greatest slowdowns in our operation tests are concat

9Tt depends on the structure of each web application


ha.ckers.org

7 DISCUSSION

operation slowdown

1 | document.getElementsByTagName(. .) 4,89
2 | document.createElement(..) 3.16
3 | eval() with an assignment 6.09
4 | eval() with if ... else 3.50
5 | toString() object method 9.19
6 | string split (split() method) 4.61
7 | string replace (replace() method) 11.16
8 | string concat (concat() method) 19.54
9 | document.cookie read (property read) 0.69
10 | document.cookie write (property write) 0.09

Table 1: Weaving slowdown ratio for operations in
self-protecting JavaScript

and replace operation of the String object. Interestingly
enough, the execution time of monitored property read and
write operations is faster than that of the original one: read-
ing from document . cookie is 45% and writing is 11.58 times
faster than reading/writing from an unmodified property.
This can be explained by the fact that reading/writing to
properties is manipulated through a property cache in our
library and does not involve expensive XPCOM calls to the
DOM engine.

6.2.2 Render Overhead

The overhead is calculated as percentage difference of the
load time of an original page and its modified version with
policies embedded. We used a data set of the front pages of
22 sites retrieved from the Internet (18 of which are slowest
pages from top 100 popular web sites on alexa.com, and the
remaining 4 are websites frequently visited by the authors).
Then, the 22 pages were copied and the security policies
were inlined in each. We uploaded all the pages to our web
server to perform the test. Each web page was loaded in the
browser 20 times. We measured the total time taken by the
browser to load each page using YSlow plugin[9] in Firefox
version 3.0.1 on Windows XP SP2 platform. The total load
time of 22 unmodified pages in 20 times was 1408.82 seconds,
while the total time to load the modified pages was 1484.54
seconds, thus the average overhead is 5.37%.

7. DISCUSSION

In this section we discuss the main limitations of the ap-
proach.

Frame, iFrame, and refresh.

The approach we have described is page-specific. All scripts
which are part of the page are subject to the policy. This
includes, for example, scripts that are loaded via image tags,
tables, body background or event handlers, e.g. onClick(),
onLoad (), etc. However the policy does not apply to scripts
loaded via <frame> or <iframe>. These force loading the
documents in a new context, unreachable for our mecha-
nism. For security reasons these pages are intended to be
isolated from the parent page, which means they execute in
a fresh context and are, thus, not subject to the policy of
the parent. The same applies to the HTML refresh directive:
this loads a fresh page, whereas our protection is limited to
the present page only.

If we adopted a proxy-based approach to our policy injec-
tion then one could argue that such pages would also receive
their own self-protection. However this has several limita-
tions. If we have application-specific server-side protection

then this approach is not applicable. A more important
problem is if we want policies which span several pages.
This implies, amongst other things, the need for a shared
security-state.

Implementation-specific issues.

We touched upon two issues which relate to Mozilla-specific
features, one positive and one negative. Firstly, our treat-
ment of JavaScript properties of built-in objects is essentially
the same as our treatment of methods, but relies on using
Mozilla-specific getter and setter methods in order to moni-
tor and modify the behaviour of property accesses. While we
benefit from this feature, we suffer at the hands of another.
As described in Section [3.5, the behaviour of Mozilla’s im-
plementation of the delete operator is a major problem. In
the latter case we discussed the solution “just around the
corner” in the form of the current ECMAScript 3.1 draft
142]. This language revision proposes to give the program-
mer control over the delete operation. It turns out that
the proposal for ECMAScript 3.1 also includes Mozilla-style
user-definable getter and setter methods, thus making our
approach to dealing with property access potentially more
widely applicable.

Transparency.

A classic property expected of a security reference monitor
is transparency. This is the property that systems which are
already well-behaved are unaffected by the monitor.

As discussed at the end of Section |5, our approach is not
transparent even when restricted to the implementation of
security automata. In fact it is not transparent even when
restricted to a trivial policy which does not attempt to do
anything. The issue here is JavaScript’s reflection capabil-
ities, and we argue that the lack of transparency exhibited
here is pathological.

The problem is that any JavaScript code can inspect the
source of the page in which it is embedded. Thus it is pos-
sible for the script to detect the presence of the policy code.
If it detects it, it can modify its behaviour accordingly. In
particular we can have a script which acts like an attention
seeking toddler: well-behaved when not being watched, but
behaving badly when monitored. Our method would clearly
not be transparent for such a script. The question is whether
we care about transparency in such cases. We would argue
that in practice this is not an issue.

Interestingly the BrowserShield approach goes to con-
siderable lengths to achieve some transparency. This is done,
at some cost, by maintaining a runtime shadow of the orig-
inal document. Every document read or write must use
and maintain, respectively, the shadow copy. A similar ap-
proach may be possible in our setting by suitably modify-
ing all methods which read and modify the document, al-
though we have not attempted to construct such a policy.
However, even BrowserShield’s method is not transparent
to a determined attacker. Since the method has high cost
there are easy timing channels which can be used to signal
the presence of the monitor. We believe that it would be
more practical to settle for a weaker transparency goal which
promises transparency for non-self-inspecting programs. A
precise formalisation of this property remains to be made.

Perhaps a more important security implication of Java-
Script’s self-awareness is that we can have code which be-
haves badly only when it is not being watched. Trans-


alexa.com

8.3 Code transformation

8 RELATED WORK

parency is not the issue here. This means that a malicious
script might survive undetected for longer, by attacking only
clients unequipped to detect their actions. This, however,
is not a transparency issue but a general issue for all self-
protection approaches.

8. RELATED WORK

Web application security has recently received wide atten-
tion both in industry and in the research community. Most
web browsers provide security protection for JavaScript such
as sandboxing, same-origin policy and signed scripting [32]
[5]. XPCNativeWrapper [6] is a security extension library
that wraps up objects so that it can limit access to the prop-
erties and methods of the wrapped object. Unfortunately,
these mechanisms only provide coarse-grained protections;
attacks such as XSS, phishing, or resource abuse could de-
feat these protections.

8.1 Static Analysis

Few existing solutions use static analysis of the source
code of server programs in order to detect violations of
data integrity policies that could lead to potential cross-site
scripting or other code injection attack 4, 135,
[43]. The basic idea is to declare all the input data of the
program logically “tainted”. The programmer is then forced
to sanitise the data obtained from untrusted sources in order
to produce an output depending on the these inputs. Some
of the analyses are quite elaborate [43] and allow to precisely
capture the flows of information even in such dynamic lan-
guages as PHP ([43]). However, as practice has shown [24],
input sanitisation is hard to get righm and is, probably, the
weakest point in the solution. The solution presented in
achieves the same goal as the above, but using dynamic code
analysis. The fact that the analysis is being dynamic pro-
vokes a question on the soundness of the method ([33]). The
path taken in [28] also requires modification of the language
interpreter.

8.2 Monitoring

In contrast to static analysis approaches there are mecha-
nisms that offer protection on the client side by monitor-
ing the execution of the JavaScript programs. Here the
type of the enforced policies could be different. One pa-
per ([19]) enforces access control policies, controlling script
access to DOM API methods and properties. Somewhat in
the spirit of our work, the solution presented in [19] requires
quite an invasive modification of the browser (Firefox). An-
other work [39] also relies on a modification of Firefox, but
concerns data integrity policies. Although the monitoring
mechanism does not raise immediate soundness concerns, it
is, however, quite restrictive when it comes to the most in-
teresting (dynamic) parts of JavaScript. It is also unclear
whether data integrity policies enforced on client side can
prevent any cross-site scripting attacks.

Tahoma web browsing framework uses virtualization and
sandboxing techniques to contain the client part of the web
application [15]. Although the emphasis of this work is on
mitigating the vulnerabilities of the web browser there is a
mechanism that allows web application developers to restrict
the communication of the client side by specifying a list of

00ne ends up either too restrictive or misses obscure attack
vectors.

allowed URLs. In addition, it restricts the web application
access to local files. The approach, however, requires using
special versions of the OS, the hypervisor and the browser.

The common feature of these three solutions is that they
require the modification of the basic software on the client
machine. Introducing new security mechanisms, for exam-
ple, in the browser potentially allows more transparency
than in our solution. But, from an immediate practical per-
spective such modifications are certainly time consuming,
error prone and, most importantly, short lived: the rapidly
changing codebase of the main branch of, e.g, Firefox (or any
other open source project) is likely to make the changes ob-
solete rather soon. Maintaining the patches for the current
versions of software would most likely require much effort.
From a general perspective methods requiring browser mod-
ifications offer discretionary protection. In contrast, protec-
tion mechanisms not involving browser modifications do not
require the browser user to be proactive.

In [21], the authors proposed a solution for preventing
script injection called Browser-Enforced Embedded Policies
(BEEP). In this solution the code developer plays an active
role (as we envisage for our approach). The idea of this
mechanism is that web pages contain embedded policies de-
scribing which scripts are allowed to run. When executing
scripts in the web pages, the browser enforces the policies.
Although the BEEP provides a lightweight security policy
enforcement, web browsers are needed to modify in order to
enforce policies at runtime. Moreover, the mechanism can
enforce only access control policies that allow script methods
in a whitelist to be executed and deny script methods exe-
cution not in the whitelist. Another weakness of this solu-
tion is that attackers can use script methods in the whitelist
to launch attacks, for example, using the XMLHttpRequest
(that is allowed by Web 2.0 applications [8], thus it should
be in the whitelist) to send cookie to adversary’s site. The
paper shows the security hook function to enforce policies is
tamper-proof but did not discuss the problem that attack-
ers can overwrite the whitelist or add more methods in the
whitelist to break the policy enforcement. Compared with
BEEP, our solution could enforce more fine-grained security
policies without browser modification and provides method
to protect policy enforcement.

8.3 Code transformation

CoreScript uses program instrumentation for Java-
Script where untrusted JavaScript code goes through a rewrit-
ing process according to a security policy before executing
them in the browser. CoreScript policies are specified in
term of edit automata [25], which is essentially the same
class covered by our policies. The rewriting process is de-
ployed in an add-on proxy in the browser'"], thus it requires
the modification of the browser. A disadvantage of this ap-
proach is that it only consider script code in <script> tags,
consequently, other ways embedding script code e.g. us-
ing tags such as <img src=...> <body background=...>or
event handlers such as onClick(), onLoad()...are escaped
from the rewriting. Moreover, scripts dynamically generated
at runtime the rewriting method in CoreScript are treated
by string analysis, therefore, it might face the problem that
attackers can evade the analysis by using script encoding. In

1T fact the main focus of the work is on the theoretical
framework as described for a simple language; our descrip-
tion of their “system” is an extrapolation.



10 REFERENCES

our method, we intercept execution events at runtime, thus
our method can overcome these challenges.

The system called BrowserShield [31] which we have dis-
cussed in more detail in Section [1] is also based on code
transformation. We consider this to be the closest related
work since it is browser independent. BrowserShield is a gen-
eral framework that rewrites web pages to enforce policies
at runtime. As mentioned previously BrowserShield applies
transformation dynamically. The main weaknesses here are
script obfuscation evading BrowserShield’s parser, and the
run-time overhead of such invasive transformation, both in
terms of the size of the library, and in terms of the runtime
parsing and transformation of code. Advantages over our
approach are the possibility to make the instrumentation
mechanism transparent to the code being monitored (mod-
ulo other covert channels such as timing) and the fact that
the code can monitor and modify arbitrary code patterns —
something which might be useful to repair other forms of
code vulnerabilities (e.g. (hyperthetical) buffer overruns in
the runtime system triggered by specific coding patterns).

The approach of Erlingsson in also relies on dynamic
code transformation, but is distinct from the vast majority
of other research and is, potentially, capable of enforcing
a wide range of policies. However it requires features not
currently present in any of modern browsers, i.e. so called
mutation event transformers.

Another interesting approach to access control on the client
side is taken in [27]. Instead of employing a reference mon-
itor, the authors show that a certain subset of JavaScript
is an object-capability language and represent access control
rights as capabilities. The enforcement model is static anal-
ysis.

Other subsets of JavaSript, like FBJS ([18]) and ADsafe
([17]), are used as standard languages for untrusted scripts
in Facebook and Yahoo applications respectively. FBJS en-
forces sandboxes the untrusted code by enforcing the usage
of a separate namespace. ADsafe puts restrictions on some
of the most dangerious features of JavaScript. Both lan-
guages are backwards-compatible with JavaScript and allow
programs to run in the browser unchanged. Although these
approached do not allow the developers to specify flexible
policies for their code, they could be used in combination
with our approach, providing more rigid foundation than
unconstrained JavaScript.

9. CONCLUSIONS

We have described an approach to control and modify the
behaviour of JavaScript by transforming the code to make
it self protecting. Unlike previous mechanisms for achieving
similar goals our method does not require browser modifi-
cations, and is non-invasive, avoiding the need for extensive
run-time code transformation in order to handle dynamicly
generated scripts or scripts loaded on the fly. The flexibil-
ity of self protecting code is that the self-protection can, on
the one hand, be applied at the code source (server side) in
order to embed application specific policies describing the
intended behaviour of the code. Even if the code is com-
promised by a XSS attack then the developer’s policy still
applies. On the other hand the method can be used as a
lightweight way to patch generic vulnerabilities by inserting
the self-protection using a proxy or plugin.

Acknowledgements.

We are indebted to Jonas Magazinius and Sergio Maffeis
who both provided valuable contributions in the form of at-
tacks to the method presented. Thanks to Andrei Sabelfeld
and the anonymous referees for their feedback and helpful
comments.

This work was financially supported by the Swedish fund-
ing agencies Vinnova (The Swedish Governmental Agency
for Innovation Systems), VR, and SSF, and by the Euro-
pean IST-2005-015905 MOBIUS project.

10. REFERENCES

[1] Aspect Oriented Extensions for jQuery.
http://code.google.com/p/jquery-aop/.

[2] CNN: "Phishing’ scams reel in your identity. http://
www.cnn.com/2003/TECH/internet/07/21/phishing.
scam.

[3] ECMAScript 3.1 Language Specification. http://
wiki.ecmascript.org/doku.php?id=es3.1:es3.1_
proposal_working_draft, Working Draft as of 01 Dec
2008.

[4] IBM Rational Web application security software
(former AppShield). http://www-01.ibm.com/
software/rational/offerings/websecurity.

[5] Mozilla Developer Center: Core JavaScript 1.5
Reference. http://developer.mozilla.org/en/docs/
Core_JavaScript_1.5_Reference.

[6] Mozilla Developer Center: XPCNativeWrapper.
http://developer.mozilla.org/en/docs/
XPCNativeWrapper.

[7] RSnake: XSS (Cross Site Scripting) Cheat Sheet.
http://ha.ckers.org/xss.html.

[8] Web 2.0. http://en.wikipedia.org/wiki/Web_2.

[9] Yahoo Developer Network: YSlow for Firebug.
http://developer.yahoo.com/yslow/.

[10] I. Aktug, M. Dam, and D. Gurov. Provably Correct
Runtime Monitoring. In FM 2008: Formal Methods,
15th International Symposium on Formal Methods,
Turku, Finland, May 26-30, 2008, Proceedings, pages
262-277, 2008.

[11] J. P. Anderson. Computer security technology
planning study. Technical Report ESD-TR-73-51, US
Air Force, Electronic Systems Division, Deputy for
Command and Management Systems, HQ Electronic
Systems Division (AFSC), USA, 1972.

[12] M. Arciemowicz. phpBB 2.0.18 XSS and Full Path
Disclosure.
http://securityreason.com/securityalert/269.

[13] L. Bauer, J. Ligatti, and D. Walker. Composing
security policies with Polymer. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation,
pages 305-314, New York, NY, USA, 2005. ACM.

[14] S. Bubrouski. XSS in WebCal (v1.11-v3.04).
http://securityreason.com/securityalert/267.

[15] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G.
Hansen. A safety-oriented platform for web
applications. In SP ’06: Proceedings of the 2006 IEEE
Symposium on Security and Privacy, pages 350-364,
Washington, DC, USA, 2006. IEEE Computer Society.

[16] D. Danchev. HSBC sites vulnerable to XSS flaws,


http://code.google.com/p/jquery-aop/
http://www.cnn.com/2003/TECH/internet/07/21/phishing.scam
http://www.cnn.com/2003/TECH/internet/07/21/phishing.scam
http://www.cnn.com/2003/TECH/internet/07/21/phishing.scam
http://wiki.ecmascript.org/doku.php?id=es3.1:es3.1_proposal_working_draft
http://wiki.ecmascript.org/doku.php?id=es3.1:es3.1_proposal_working_draft
http://wiki.ecmascript.org/doku.php?id=es3.1:es3.1_proposal_working_draft
http://www-01.ibm.com/software/rational/offerings/websecurity
http://www-01.ibm.com/software/rational/offerings/websecurity
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference 
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference 
http://developer.mozilla.org/en/docs/XPCNativeWrapper
http://developer.mozilla.org/en/docs/XPCNativeWrapper
http://ha.ckers.org/xss.html
http://en.wikipedia.org/wiki/Web_2
http://developer.yahoo.com/yslow/
http://securityreason.com/securityalert/269
http://securityreason.com/securityalert/267

10 REFERENCES

[22]

[28]

[29]

could aid phishing attacks. http://blogs.zdnet.com/
security/?p=1365. Posted on June 29th, 2008.
Douglas Crockford. ADsafe — making JavaScript safe
for advertising. http://adsafe.org/.

Facebook. FBJS. http://wiki.developers.
facebook.com/index.php/FBJS.

O. Hallaraker and G. Vigna. Detecting Malicious
JavaScript Code in Mozilla. In ICECCS "05:
Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer
Systems, pages 85-94, Washington, DC, USA, 2005.
IEEE Computer Society.

I. Jacobs. URIs, Addressability, and the use of HTTP
GET and POST. http://www.w3.0rg/2001/tag/doc/
whenToUseGet .html. Accessed May 16 2007.

T. Jim, N. Swamy, and M. Hicks. Defeating script
injection attacks with browser-enforced embedded
policies. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages
601-610, New York, NY, USA, 2007. ACM.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
Static Analysis Tool for Detecting Web Application
Vulnerabilities (short paper). In SP ’06: Proceedings
of the 2006 IEEE Symposium on Security and
Privacy, pages 258263, Washington, DC, USA, 2006.
IEEE Computer Society.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In ECOOP, pages
220-242, 1997.

E. Levy. Worst-case scenario. IEEE Security and
Privacy, 4(5):71-73, 2006.

J. Ligatti, L. Bauer, and D. Walker. Edit Automata:
Enforcement Mechanisms for Run-time Security
Policies. International Journal of Information
Security, 4(1-2):2-16, 2005.

S. Maffeis, J. Mitchell, and A. Taly. An operational
semantics for JavaScript. In APLAS, pages 307-325,
2008.

M. S. Miller, M. Samuel, B. Laurie, and 1. A. M. Stay.
Caja: Safe active content in sanitized JavaScript.
http://google-caja.googlecode.com/files/
caja-spec-2008-06-07.pdf.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In In 20th IFIP
International Information Security Conference, 2005.
P. H. Phung, D. Sands, and A. Chudnov. Lightweight
Self-Protecting JavaScript. Technical Report 2008:24,
Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg,
Sweden, December 2008. Project URL: http://www.
cse.chalmers.se/ phung/projects/jss.
ISSN:1652-926X.

T. Pietraszek, C. V, and E. Berghe. Defending against
injection attacks through context-sensitive string
evaluation. In Recent Advances in Intrusion Detection
(RAID), 2005.

C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. Browsershield: Vulnerability-driven filtering
of dynamic html. ACM Trans. Web, 1(3):11, 2007.

32]

(33]

(34]

(35]

(43]

(44]

J. Ruderman. Same origin policy for JavaScript.
http://developer.mozilla.org/En/Same_origin_
policy_for_JavaScript.

F. B. Schneider. Enforceable security policies. ACM
Trans. Inf. Syst. Secur., 3(1):30-50, 2000.

F. B. Schneider, J. G. Morrisett, and R. Harper. A
Language-Based Approach to Security. In LNCS 2000,
Informatics - 10 Years Back. 10 Years Ahead., pages
86-101, London, UK, 2001. Springer-Verlag.

A. Stevens. KaVaDo InterDo: A useful tool in the
fight to keep your server secure. http://www.vnunet.
com/pc-magazine/software/2133317/
kavado-interdo. PC Magazine, 08 Jul 2002.

Ulfar Erlingsson. The Inline Reference Monitors
Approach to Security Policy Enforcement. PhD thesis,
Cornell University, Ithaca, New York, 2004.

Ulfar Erlingsson, B. Livshits, and Y. Xie. End-to-end
web application security. In HOTOS’07: Proceedings
of the 11th USENIX workshop on Hot topics in
operating systems, pages 1-6, Berkeley, CA, USA,
2007. USENIX Association.

Ulfar Erlingsson and F. B. Schneider. IRM
Enforcement of Java Stack Inspection. In SP ’00:
Proceedings of the 2000 IEEE Symposium on Security
and Privacy, page 246, Washington, DC, USA, 2000.
IEEE Computer Society.

P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, and

C. Kruegel. Cross-Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. In NDSS
’07: Proceeding of the 14th Annual Network and
Distributed System Security, San Diego, CA, 2007.
Internet Society.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation. In
SOSP ’93: Proceedings of the fourteenth ACM
symposium on Operating systems principles, pages
203-216, New York, NY, USA, 1993. ACM.

J. Wells. Protect sensitive Web data with Teros-100
APS. http://articles.techrepublic.com.com/
5100-10878_11-1060422.html.

A. Wirfs-Brock. Proposed ECMAScript 3.1 Static
Object Functions: Use Cases and Rationale. http://
wiki.ecmascript.org/lib/exe/fetch.php?id=es3.
1%3Aes3. 1_proposal_working_draft&cache=cache&
media=es3.1:rationale_for_es3_1_static_object_
methodsaug26.pdf. Revised August 26, 2008.

Y. Xie and A. Aiken. Static detection of security
vulnerabilities in scripting languages. In
USENIX-SS°06: Proceedings of the 15th conference on
USENIX Security Symposium, pages 13—13, Berkeley,
CA, USA, 2006. USENIX Association.

D. Yu, A. Chander, N. Islam, and I. Serikov.
Javascript instrumentation for browser security. In
POPL ’07: Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 237-249, New York,
NY, USA, 2007. ACM.


http://blogs.zdnet.com/security/?p=1365
http://blogs.zdnet.com/security/?p=1365
http://adsafe.org/
http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/FBJS
http://www.w3.org/2001/tag/doc/whenToUseGet.html
http://www.w3.org/2001/tag/doc/whenToUseGet.html
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://www.cse.chalmers.se/~phung/projects/jss
http://www.cse.chalmers.se/~phung/projects/jss
http://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://www.vnunet.com/pc-magazine/software/2133317/kavado-interdo
http://www.vnunet.com/pc-magazine/software/2133317/kavado-interdo
http://www.vnunet.com/pc-magazine/software/2133317/kavado-interdo
http://articles.techrepublic.com.com/5100-10878_11-1060422.html
http://articles.techrepublic.com.com/5100-10878_11-1060422.html
 http://wiki.ecmascript.org/lib/exe/fetch.php?id=es3.1%3Aes3.1_proposal_working_d raft&cache=cache&media=es3.1:rationale_for_es3_1_static_object_methodsaug26.pdf
 http://wiki.ecmascript.org/lib/exe/fetch.php?id=es3.1%3Aes3.1_proposal_working_d raft&cache=cache&media=es3.1:rationale_for_es3_1_static_object_methodsaug26.pdf
 http://wiki.ecmascript.org/lib/exe/fetch.php?id=es3.1%3Aes3.1_proposal_working_d raft&cache=cache&media=es3.1:rationale_for_es3_1_static_object_methodsaug26.pdf
 http://wiki.ecmascript.org/lib/exe/fetch.php?id=es3.1%3Aes3.1_proposal_working_d raft&cache=cache&media=es3.1:rationale_for_es3_1_static_object_methodsaug26.pdf
 http://wiki.ecmascript.org/lib/exe/fetch.php?id=es3.1%3Aes3.1_proposal_working_d raft&cache=cache&media=es3.1:rationale_for_es3_1_static_object_methodsaug26.pdf

	Introduction
	Security Policy Enforcement for JavaScript
	Attacker Assumptions
	The Enforcement Method

	Realisation
	Enforcing Policies on Methods
	Policy Definition: the Security State
	Policy Parameter Integrity
	Monitoring Object Properties Access Events
	Attacks to the Unique Reference Property 
	Restoring built-in methods from another page
	Mozilla's delete operator


	Security Policy Patterns
	Soundness
	Computation Model
	Security Automata
	Self Protected Programs

	Evaluation
	Effectiveness
	Overhead
	Weaving overhead
	Render Overhead


	Discussion
	Related work
	Static Analysis
	Monitoring
	Code transformation

	Conclusions
	References

