Representing and Manipulating Contexts

A Tool for Operational Reasoning

David Sands Chalmers University of Technology

SOS Workshop, London, 30 August 2004

Acknowledgements: Swedish foundation for Strategic Research

Definition 1.0

Definition 1.0

An Old-Fashioned Course in Semantics

Aim

Introduce a useful technique for reasoning about higher-level properties of programming languages from simple operational semantics

Lifting computation rules from

terms to contexts

Contexts: informal notation

- C[] denotes a context a program phrase containing zero or more missing subphrases.
- C[M] denotes the program phrase obtained by plugging M into the holes
- Not the same as substitution

Operational Equivalence Two program phrases P and Q are operationally equivalent, $P \sim Q$ iff for all contexts C[.] such that C[P] and C[Q] are complete programs, the observable result of executing C[P] is the same as C[Q]

> Also known as contextual equivalence or observational equivalence

Reasoning about \sim

Considered hard to reason from the definition because of the quantification $\forall C$...

- Avoid this via alternative characterizations of \sim
- Bite the bullet...

Direct Reasoning with Contexts

- Not impossible
- We will use an applied lambda calculus as a running example.

Suppose we want to prove that $\forall C. C[M] \Downarrow \Leftrightarrow C[N] \Downarrow$ • P \Downarrow means that P terminates

Direct reasoning

- Want to reduce reasoning about C[M] and C[N] to reasoning about M and N directly.
- Suppose C[M]↓. We want to argue that C[N]↓ (and vice-versa).
- Proof idea: (induction on the length of the computation)

Direct Reasoning

Consider the first computation step $C[M] \mapsto M'$

- 1. Either it depends on M
 - Examine whether a similar step is thus possible for N
- 2. Or it is independent of M and so C[N] can form a similar computation step

Parametric computation

• Reasoning about case 1. is specific to the property at hand.

 Reasoning about case 2. is essentially the same in all cases, but tricky to formalise.

Example: Fixed-point properties

 Suppose we have recursively defined constants

Computation rule

$$\mathsf{f}\mapsto \mathcal{C}_\mathsf{f}[\mathsf{f}]$$

Recursive constants

- We wish to prove that the behaviour of a recursive constant f is completely characterised by it's finite "unwindings"
- Observe termination. Operational approximation:
- $\mathsf{M} \sqsubseteq \mathsf{N} \Leftrightarrow \forall \mathsf{C}. \mathsf{C}[\mathsf{M}] \Downarrow \Rightarrow \mathsf{C}[\mathsf{N}] \Downarrow$

The Unwinding Lemma

How to prove syntactic continuity

The hard part of the property

$(\forall n. C[f^n] \sqsubseteq M) \Rightarrow C[f] \sqsubseteq M$

can be proved by "direct" reasoning about contexts (c.f. [Smith, MFPS'92])

Proof outline

Assume ∀n. C[fⁿ] ⊑ M. Take an arbitrary closing context D such that D[C[f]]↓. We need to show that D[M]↓

Sufficient to show that if D[C[f]] converges in m steps then D[C[f^m]] converges.

Core of the Proof

- Examine the first computation step of D[C[f]]. Two cases
 - either it unwinds f, in which case we can argue that f^m can be unwound similarly, or
 - 2. the computation step does not depend on f, and so the step is "parametric" in the hole

Computing with contexts

Goal:

 Make "case 2" reasoning precise by lifting operational semantics to contexts

$\mathcal{C}\mapsto\mathsf{D}$

• Compatible with hole filling $C[M] \mapsto D[M]$ (roughly)

Applicability

- Types of semantics:
 - SOS rules, reduction context semantics, abstract machines, rule formats
- Types of property
 - Context lemmas
 - Fixed-point principles
 - Time & space semantics, unbounded nondeterminism

Hole filling does not commute with alpha-conversion

Computation not compatible with hole filling

• If we treat holes as distinguished variables, we can compute:

Decorated Holes

 During computation, substitution applied to holes must be remembered

• (I×.[]) I
$$\rightarrow_{\mathbf{b}}$$
 [] {×:=I}

Once this extension has been admitted then we must allow nesting: (Iy.[])[] {x:=I} $\rightarrow_{\mathbf{b}}$ []^{θ} where θ = [] {x:=I}

The Talcott/Mason Approach

- Develop a calculus of contexts based on substitution-decorated holes
- Extend some specific computation rules to contexts
- Prove that context reduction is compatible with hole-filling
- Use this to prove operational equivalences

A Simpler Approach

- 1. Representing contexts in any language with variable binding using higher-order abstract syntax. No new calculus needed.
- Represent definitions over terms (e.g. operational semantics rules) as HO syntax. Not specific to reduction relations
- Automatically lift definitions to contexts; compatible with hole-filling "for free"

Computing with Contexts, A simple approach, ENTCS 10 (1998)

A Representation of Contexts

- A. Pitts, Notes on Inductive & Coinductive Techniques in the Semantics of Functional Languages, BRICS NS-94-5
 - Motivation: identify contexts up to alpha-equivalence
 - Related: Klop's CRS, Church'

Holes as functions

 Holes representing missing terms will be represented by first-order function variables x, x with types of the form

$(\text{Term}, \dots, \text{Term}) \rightarrow \text{Term}$

 Hole filling corresponds to replacing hole variables by abstractions of the corresponding type

 Conventional context (λ×.[])Ι can be represented by $(\lambda x. x(x))$ I x is a metavariable of type $\mathsf{Term} \to \mathsf{Term}$

 Filling (λx.[])I with term x
 can be represented by substitution of the meta abstraction (y)y for x

$$(\lambda x.x(x)) I \{x := (x)x\}$$

= $(\lambda y.x(y)) I \{x := (z)z\}$ (α -conv)
= $(\lambda y.y) I$

 If we meta-applications as new constants we can compute with contexts: β $(\lambda \times \mathbf{x}(\mathbf{x}))$ I _ $\mathbf{x}(\mathbf{I})$ {ξ := (x)x} "Fill with x" {ξ := (x)x} "Fill with x" (λγ.γ) I _____

Potential confusion

Entities of the form $\mathbf{x}(x_1,...,x_k)$ are meta-applications, not applications in the source language of our examples!

(Entities of the form $(x_{1,...},x_k)M$ are the corresponding meta-abstractions)

Hole variables

- Since we will only use metavariables of type (Term_1,...,Term_k) \rightarrow Term (for some $k \geq 0$)
- Sufficient to refer to the arity of the hole metavariables
- arity(ξ) = k means that ξ is an abstraction of type (Term₁,...,Term_k) \rightarrow Term

Contexts

Contexts over a given language T, denoted T*, defined inductively as

- $\mathcal{C} \in \mathsf{T}^*$ whenever $\mathcal{C} \in \mathsf{T}$
- $\xi(C_1,...,C_k) \in T^*$ whenever $\forall i \in 1...k. C_i \in T^*$ and arity(ξ) = k

Hole filling

- Hole filling is defined by captureavoiding substitution (i.e., the normal kind!)
- The only interesting case is
- $\mathbf{x}(C_1,\ldots,C_k)\theta \text{ where }\theta = \{\xi := (x_1,\ldots,x_n)D\}$
- $= \mathsf{D}\{\mathsf{x}_1 := \mathsf{C}_1 \theta, \dots, \mathsf{x}_n := \mathsf{C}_n \theta\}$

Hole filling

 $\mathbf{x}(C_1,...,C_k)\theta \text{ where }\theta = \{\xi := (x_1,...,x_n)D\}$ $= (x_1,...,x_n)D \cdot (C_1\theta,...,C_k\theta)$ $= D\{x_1 := C_1\theta,...,x_n := C_n\theta\}$

We hide the beta reduction of this meta-term in the definition of substitution

Conventional Contexts

 Conventional contexts correspond to a special class of contexts, namely those with all holes of the form

$\mathbf{x}(\mathbf{x}_1,...,\mathbf{x}_k)$ for some \mathbf{x}

 Contexts are identified up to renaming of bound variables

Representing Conventional Contexts

The representation of C is given by $\langle x \rangle = x$ $\langle [] \rangle = \mathbf{x}(z_1,...,z_n)$ $\langle op(C_1,...,C_k) \rangle = op(\langle C_1 \rangle,..., \langle C_k \rangle)$

where z_1, \dots, z_n is a vector of all variables in scope at the holes in C

- How can the context
 (λx.[]) ((λx.[]) I)
 be represented?
- Perform two beta-reductions on your context and confirm that these reductions "commute" with what you get by filling the hole with x.

Checkpoint

- Seen a functional representation of contexts (following A. Pitts notation)
- Examples suggest that the obvious notion of computation compatible with hole-filling
- To do: why it works a general argument

Higher-order Abstract Syntax

- To generalise over syntax and syntactic definitions we use a higherorder abstract syntax
- (widely used in type-theory, logical frameworks...)

Concrete syntax (λx.y) z represented by apply((lambda ((x)y)), z)

apply has type (term,term) \rightarrow term lambda has type (term \rightarrow term) \rightarrow term

Concrete syntax (λx.y) z represented by apply((lambda ((x)y)), z)

apply has arity (0,0) lambda has arity (1)

case M of nil => N; cons x xs => N'

Computation rules

Seen how higher-order abstract syntax can represent

- contexts and
- syntax involving variable binding

Now we look at how rules and inductive definitions can be represented

Computation rules

Computation rules, e.g. $(\lambda x.M) N \mapsto M\{x := N\}$

$\frac{\mathsf{M}\mapsto\mathsf{M}'}{\mathsf{M}\:\mathsf{N}\mapsto\mathsf{M}'\:\mathsf{N}}$

represented using typed metavariables X, Y, Z

Formal Computation Rules

apply(lambda X, Y) \mapsto X Y

$Y \mapsto Y'$ apply(Z,Y) \mapsto apply(Z,Y')

Instance of a rule obtained by mapping metavariables to abstractions (and normalising)

Formal Computation Rules

- Example, {X := (z)z, Y := 3 }
- applied to apply(lambda X, Y) \mapsto X Y
- gives instance

apply(lambda (z)z, 3) \mapsto 3

Computing with Contexts

- Simply allow instances of rules to contain holes!
- apply(lambda X, Y) \mapsto X Y when X := (z)x(z), Y := x(y) yields
- apply(lambda (z) $\mathbf{x}(z), \mathbf{x}(y)$) $\mapsto \mathbf{x}(\mathbf{x}(y))$

A rule (e.g. an axiom like the beta reduction rule) is a pair of meta-terms
 Rule = (L, R)

• A rule (e.g. an axiom like the beta reduction rule) is a pair of meta-terms

Rule =
$$\langle L, R \rangle$$

Instance = $\langle L\sigma, R\sigma \rangle$
instance
containing holes

• A rule (e.g. an axiom like the beta reduction rule) is a pair of meta-terms

Rule =
$$\langle L, R \rangle$$

Instance = $\langle L\sigma, R\sigma \rangle$
Hole filling = $\langle (L\sigma)\tau, (R\sigma)\tau \rangle$
filling the holes

Is $\langle (L\sigma)\tau, (R\sigma)\tau \rangle$ a valid instance? i.e. if we compute with contexts then fill the holes, is that the same as filling the holes and computing? Since metavariables and hole variables are distinct

$\langle (L\sigma)\tau, (R\sigma)\tau \rangle = \langle L(\sigma\tau), R(\sigma\tau) \rangle$

I.e. the substitution lemma from lambdacalculus

Applicability

- The argument generalises to any inductively defined relation
- Configurations of SOS rules
- Particular subsets of terms
- V \in Values ::= \langle V_1, V_2 \rangle | $\lambda x.M$
- Evaluation contexts

Applicability

- GDSOS rule format [Sands POPL'97]
 - various theorems that hold for any functional language fitting the format
- Context lemmas for call-by-need [Moran & Sands POPL'99]
- Theory of Space improvement [Gustavsson & Sands, ICFP'2001]

Conclusion

- A simple typed-lambda-calculus representation of contexts
- lifts definitions to contexts
- compatible with hole filling
- useful for reasoning about operational equivalence

Related Work

The "direct reasoning" style Talcott, Mason, Smith, Felleisen e.g. Mason and Talcottm Equivalence in functional languages with effects [JFP 1991]

Related Work

- Typed lambda calculus representation of contexts
- Huet and Lang, Proving and Applying program transformations expressed with second-order patters [Acta Inf '78]
- Klop, PhD thesis
- Pitts tutorial BRICS 1994

Related Work

- Context calculi
 - Talcott
 - Mason
 - Hashimoto & Ohori
 - Lee & Freedman

May provide more generality in some cases

Further Work

- Test the applicability in nominal calculi
 - Potential pitfalls(?): clauses depending on the equivalence or inequivalence of names

• www.cs.chalmers.se/~dave/SOS04/

