
Representing and Manipulating
Contexts

A Tool for Operational Reasoning

David Sands
Chalmers University of Technology

SOS Workshop,
London, 30 August 2004

Acknowledgements: Swedish foundation for Strategic Research

Definition 1.0

Definition 1.0

An Old-Fashioned Course in Semantics

Aim

Introduce a useful technique for
reasoning about higher-level
properties of programming languages
from simple operational semantics

Lifting computation rules from
terms to contexts

Contexts: informal notation

• C[] denotes a context – a program
phrase containing zero or more
missing subphrases.

• C[M] denotes the program phrase
obtained by plugging M into the holes

• Not the same as substitution

A Syntactic Term

A Context

Filling the holes

x
x

x

Variable capture

x

let x =

let x =

capture

freecapture

free

Operational Equivalence
Two program phrases P and Q are

operationally equivalent, P » Q
iff

for all contexts C[.] such that C[P] and
C[Q] are complete programs,

the observable result of executing
C[P] is the same as C[Q]

Also known as contextual equivalence
or observational equivalence

Reasoning about »

Considered hard to reason from the
definition because of the
quantification 8 C…
– Avoid this via alternative

characterizations of »
– Bite the bullet…

Direct Reasoning with Contexts

• Not impossible
• We will use an applied lambda calculus

as a running example.

Suppose we want to prove that
8 C. C[M]⇓ , C[N]⇓

• P⇓ means that P terminates

Direct reasoning

• Want to reduce reasoning about C[M]
and C[N] to reasoning about M and N
directly.

• Suppose C[M]⇓. We want to argue
that C[N]⇓ (and vice-versa).

• Proof idea: (induction on the length of
the computation)

Direct Reasoning

Consider the first computation step
C[M] a M’

1. Either it depends on M
• Examine whether a similar step is thus

possible for N
2. Or it is independent of M and so

C[N] can form a similar computation
step

Parametric computation

• Reasoning about case 1. is specific to
the property at hand.

• Reasoning about case 2. is essentially
the same in all cases, but tricky to
formalise.

Example: Fixed-point
properties

• Suppose we have recursively defined
constants

• Computation rule

f , Cf[f]

f a Cf[f]

Recursive constants

• We wish to prove that the behaviour
of a recursive constant f is
completely characterised by it’s
finite “unwindings”

• Observe termination. Operational
approximation:

• M v N , 8 C. C[M] ⇓) C[N] ⇓

The Unwinding Lemma

8 n. C[fn] v M
,

C[f] v M
where
f0 , f0

fn+1 , Cf[fn]

How to prove syntactic
continuity

The hard part of the property

(8 n. C[fn] v M)) C[f] v M

can be proved by “direct” reasoning
about contexts (c.f. [Smith, MFPS’92])

Proof outline

Assume 8n. C[fn] v M.
Take an arbitrary closing context D

such that D[C[f]]⇓.
We need to show that D[M]⇓

Sufficient to show that if D[C[f]]
converges in m steps then D[C[fm]]
converges.

Core of the Proof

• Examine the first computation step
of D[C[f]]. Two cases

1. either it unwinds f, in which case we
can argue that fm can be unwound
similarly, or

2. the computation step does not depend
on f, and so the step is “parametric” in
the hole

Computing with contexts

Goal:
• Make “case 2” reasoning precise by

lifting operational semantics to
contexts

C a D
• Compatible with hole filling

C[M] a D[M] (roughly)

Applicability

• Types of semantics:
– SOS rules, reduction context semantics,

abstract machines, rule formats
• Types of property

– Context lemmas
– Fixed-point principles
– Time & space semantics, unbounded

nondeterminism

Hole filling does not commute
with alpha-conversion

(λx.[]) λx.λy.[]

(λz.[]) λx.λy.[]

(λx.x y) λx.λy.x y

(λz.x y) λx.λy.x y

α convert

Computation not compatible
with hole filling

• If we treat holes as distinguished
variables, we can compute:

(λ x.[]) I []

(λ x.x) I I ≠ x

Fill with x Fill with x

β

β

Decorated Holes
• During computation, substitution

applied to holes must be remembered

• (λx.[]) I !β [] {x:=I}

Once this extension has been admitted
then we must allow nesting:

(λy.[]) [] {x:=I} !β []θ where θ = [] {x:=I}

The Talcott/Mason Approach

• Develop a calculus of contexts based
on substitution-decorated holes

• Extend some specific computation
rules to contexts

• Prove that context reduction is
compatible with hole-filling

• Use this to prove operational
equivalences

A Simpler Approach

1. Representing contexts in any language
with variable binding using higher-order
abstract syntax. No new calculus needed.

2. Represent definitions over terms (e.g.
operational semantics rules) as HO
syntax. Not specific to reduction
relations

3. Automatically lift definitions to contexts;
compatible with hole-filling “for free”

Computing with Contexts, A simple approach, ENTCS 10 (1998)

A Representation of Contexts

• A. Pitts, Notes on Inductive &
Coinductive Techniques in the
Semantics of Functional Languages,
BRICS NS-94-5
– Motivation: identify contexts up to

alpha-equivalence
– Related: Klop’s CRS, Church’

Holes as functions

• Holes representing missing terms will
be represented by first-order
function variables ξ, ξ’ with types of
the form

(Term,…,Term) ! Term
• Hole filling corresponds to replacing

hole variables by abstractions of the
corresponding type

Example

• Conventional context
(λx.[])I

can be represented by
(λx.ξ(x)) I

• ξ is a metavariable of type
Term ! Term

Example

• Filling (λx.[])I with term x
can be represented by substitution of

the meta abstraction (y)y for ξ

(λx.ξ(x)) I {ξ := (x)x}
= (λy.ξ(y)) I {ξ := (z)z} (α-conv)
= (λy.y) I

Example

• If we meta-applications as new
constants we can compute with
contexts:

(λ x. ξ(x)) I ξ(I)

(λy.y) I I

{ξ := (x)x}
“Fill with x”

β

β

{ξ := (x)x}
“Fill with x”

Potential confusion

Entities of the form ξ(x1,…,xk) are
meta-applications, not applications in
the source language of our examples!

(Entities of the form (x1,…,xk)M are the
corresponding meta-abstractions)

Hole variables

• Since we will only use metavariables
of type (Term1,…,Termk) ! Term
(for some k ¸ 0)

• Sufficient to refer to the arity of
the hole metavariables

• arity(ξ) = k means that ξ is an
abstraction of type

(Term1,…,Termk) ! Term

Contexts

Contexts over a given language T,
denoted T*, defined inductively as

• C 2 T* whenever C 2 T
• ξ(C1,…,Ck) 2 T* whenever
8i 2 1…k. Ci 2 T* and arity(ξ) = k

Hole filling

• Hole filling is defined by capture-
avoiding substitution (i.e., the normal
kind!)

• The only interesting case is
ξ(C1,…,Ck)θ where θ = {ξ := (x1,…,xn)D}
= D{x1 := C1θ, …, xn := Cnθ}

Hole filling

ξ(C1,…,Ck)θ where θ = {ξ := (x1,…,xn)D}
= (x1,…,xn)D ¢ (C1θ,…,Ckθ)
= D{x1 := C1θ, …, xn := Cnθ}

We hide the beta reduction of this
meta-term in the definition of
substitution

Conventional Contexts

• Conventional contexts correspond to
a special class of contexts, namely
those with all holes of the form

ξ(x1,…,xk) for some ξ
• Contexts are identified up to

renaming of bound variables

Representing Conventional
Contexts

The representation of C is given by
h x i = x
h [] i = ξ(z1,…zn)
h op(C1,…,Ck) i = op(h C1 i,…, h Ck i)

where z1,…,zn is a vector of all variables
in scope at the holes in C

Exercise

• How can the context
(λx.[]) ((λx.[]) I)

be represented?

• Perform two beta-reductions on your
context and confirm that these
reductions “commute” with what you
get by filling the hole with x.

Checkpoint

• Seen a functional representation of
contexts (following A. Pitts notation)

• Examples suggest that the obvious
notion of computation compatible with
hole-filling

• To do: why it works - a general
argument

Higher-order Abstract Syntax

• To generalise over syntax and
syntactic definitions we use a higher-
order abstract syntax

(widely used in type-theory, logical
frameworks…)

Example

Concrete syntax (λx.y) z
represented by

apply((lambda ((x)y)), z)

apply has type (term,term) ! term
lambda has type (term ! term) ! term

Example

Concrete syntax (λx.y) z
represented by

apply((lambda ((x)y)), z)

apply has arity (0,0)
lambda has arity (1)

Example

case M of
nil => N;
cons x xs => N’

Computation rules

Seen how higher-order abstract syntax
can represent

• contexts and
• syntax involving variable binding

Now we look at how rules and inductive
definitions can be represented

Computation rules

Computation rules, e.g.
(λx.M) N a M{x := N}

M a M’

M N a M’ N

represented using typed metavariables

X, Y, Z

Formal Computation Rules

apply(lambda X, Y) a X Y

Y a Y’
apply(Z,Y) a apply(Z,Y’)

Instance of a rule obtained by mapping
metavariables to abstractions (and
normalising)

Formal Computation Rules

Example, {X := (z)z, Y := 3 }
• applied to

• gives instance

apply(lambda X, Y) a X Y

apply(lambda (z)z, 3) a 3

Computing with Contexts

Simply allow instances of rules to
contain holes!

apply(lambda X, Y) a X Y
when X := (z)ξ(z), Y := ξ(y)
yields
apply(lambda (z)ξ(z), ξ(y)) a ξ(ξ(y))

Why it works

• A rule (e.g. an axiom like the beta
reduction rule) is a pair of meta-
terms

Rule = h L, R i
terms containing

metavariables

Why it works

• A rule (e.g. an axiom like the beta
reduction rule) is a pair of meta-
terms

Rule = h L, R i
Instance = h Lσ, Rσ i

instance
containing holes

Why it works

• A rule (e.g. an axiom like the beta
reduction rule) is a pair of meta-
terms

Rule = h L, R i
Instance = h Lσ, Rσ i

Hole filling = h (Lσ)τ, (Rσ)τ i

filling the holes

Why it works
Is h (Lσ)τ, (Rσ)τ i a valid instance?
i.e. if we compute with contexts then fill the

holes, is that the same as filling the holes
and computing? Since metavariables and
hole variables are distinct

h (Lσ)τ, (Rσ)τ i = h L(στ), R(στ) i

I.e. the substitution lemma from lambda-
calculus

Applicability

• The argument generalises to any
inductively defined relation

• Configurations of SOS rules
• Particular subsets of terms
• V 2 Values ::= h V1, V2 i | λx.M
• Evaluation contexts

Applicability

• GDSOS rule format [Sands POPL’97]
– various theorems that hold for any

functional language fitting the format
• Context lemmas for call-by-need

[Moran & Sands POPL’99]
• Theory of Space improvement

[Gustavsson & Sands, ICFP’2001]

Conclusion

A simple typed-lambda-calculus
representation of contexts

• lifts definitions to contexts
• compatible with hole filling
• useful for reasoning about operational

equivalence

Related Work

The “direct reasoning” style
Talcott, Mason, Smith, Felleisen

e.g. Mason and Talcottm Equivalence in
functional languages with effects
[JFP 1991]

Related Work

Typed lambda calculus representation
of contexts

• Huet and Lang, Proving and Applying
program transformations expressed
with second-order patters [Acta Inf
‘78]

• Klop, PhD thesis
• Pitts tutorial BRICS 1994

Related Work

• Context calculi
– Talcott
– Mason
– Hashimoto & Ohori
– Lee & Freedman

May provide more generality in some cases

Further Work

• Test the applicability in nominal
calculi
– Potential pitfalls(?): clauses depending

on the equivalence or inequivalence of
names

• www.cs.chalmers.se/~dave/SOS04/

