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Definition 1.0



Definition 1.0

An Old-Fashioned Course in Semantics



Aim

Introduce a useful technique for 
reasoning about higher-level 
properties of programming languages 
from simple operational semantics

Lifting computation rules from 
terms to contexts



Contexts: informal notation

• C[ ] denotes a context – a program 
phrase containing zero or more 
missing subphrases.

• C[M] denotes the program phrase 
obtained by plugging M into the holes

• Not the same as substitution



A Syntactic Term



A Context



Filling the holes
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Operational Equivalence
Two program phrases P and Q are 

operationally equivalent, P » Q
iff

for all contexts C[.] such that C[P] and 
C[Q] are complete programs, 

the observable result of executing 
C[P] is the same as C[Q]

Also known as contextual equivalence 
or observational equivalence



Reasoning about »

Considered hard to reason from the 
definition because of the 
quantification 8 C…
– Avoid this via alternative 

characterizations of » 
– Bite the bullet…



Direct Reasoning with Contexts

• Not impossible
• We will use an applied lambda calculus 

as a running example.

Suppose we want to prove that 
8 C. C[M]⇓ , C[N]⇓

• P⇓ means that P terminates 



Direct reasoning

• Want to reduce reasoning about C[M] 
and C[N] to reasoning about M and N 
directly. 

• Suppose C[M]⇓. We want to argue 
that C[N]⇓ (and vice-versa).

• Proof idea: (induction on the length of 
the computation)



Direct Reasoning

Consider the first computation step
C[M] a M’

1. Either it depends on M
• Examine whether a similar step is thus 

possible for N
2. Or it is independent of M and so 

C[N] can form a similar computation 
step 



Parametric computation

• Reasoning about case 1. is specific to 
the property at hand. 

• Reasoning about case 2. is essentially 
the same in all cases, but tricky to 
formalise.



Example: Fixed-point 
properties

• Suppose we have recursively defined 
constants

• Computation rule

f , Cf[f]

f a Cf[f]



Recursive constants

• We wish to prove that the behaviour 
of a recursive constant f is 
completely characterised by it’s 
finite “unwindings”

• Observe termination. Operational 
approximation:

• M v N , 8 C. C[M] ⇓ ) C[N] ⇓



The Unwinding Lemma

8 n. C[fn] v M
,

C[f] v M
where 
f0 , f0

fn+1 , Cf[fn]



How to prove syntactic 
continuity

The hard part of the property 

(8 n. C[fn] v M) ) C[f] v M

can be proved by “direct” reasoning 
about contexts (c.f. [Smith, MFPS’92])



Proof outline

Assume 8n. C[fn] v M.
Take an arbitrary closing context D 

such that D[C[f]]⇓. 
We need to show that D[M]⇓

Sufficient to show that if D[C[f]] 
converges in m steps then D[C[fm]] 
converges.



Core of the Proof

• Examine the first computation step 
of D[C[f]]. Two cases

1. either it unwinds f, in which case we 
can argue that fm can be unwound 
similarly, or

2. the computation step does not depend 
on f, and so the step is “parametric” in 
the hole



Computing with contexts

Goal:
• Make “case 2” reasoning precise by 

lifting operational semantics to 
contexts

C a D
• Compatible with hole filling

C[M] a D[M] (roughly)



Applicability

• Types of semantics:
– SOS rules, reduction context semantics, 

abstract machines, rule formats
• Types of property

– Context lemmas
– Fixed-point principles 
– Time & space semantics, unbounded 

nondeterminism



Hole filling does not commute 
with alpha-conversion

(λx.[ ]) λx.λy.[ ]

(λz.[ ]) λx.λy.[ ]

(λx.x y) λx.λy.x y

(λz.x y) λx.λy.x y

α convert



Computation not compatible 
with hole filling

• If we treat holes as distinguished 
variables, we can compute:

(λ x.[ ]) I [ ]

(λ x.x) I I  ≠ x

Fill with x Fill with x

β

β



Decorated Holes 
• During computation, substitution 

applied to holes must be remembered

• (λx.[ ]) I !β [ ] {x:=I}

Once this extension has been admitted 
then we must allow nesting:

(λy.[ ]) [ ] {x:=I} !β [ ]θ where θ = [ ] {x:=I}



The Talcott/Mason Approach

• Develop a calculus of contexts based 
on substitution-decorated holes

• Extend some specific computation 
rules to contexts

• Prove that context reduction is 
compatible with hole-filling

• Use this to prove operational 
equivalences



A Simpler Approach

1. Representing contexts in any language 
with variable binding using higher-order 
abstract syntax. No new calculus needed.

2. Represent definitions over terms (e.g. 
operational semantics rules) as HO 
syntax. Not specific to reduction 
relations

3. Automatically lift definitions to contexts;  
compatible with hole-filling “for free”

Computing with Contexts, A simple approach, ENTCS 10 (1998)



A Representation of Contexts

• A. Pitts, Notes on Inductive & 
Coinductive Techniques in the 
Semantics of Functional Languages, 
BRICS NS-94-5
– Motivation: identify contexts up to 

alpha-equivalence
– Related: Klop’s CRS, Church’



Holes as functions

• Holes representing missing terms will 
be represented by first-order 
function variables ξ, ξ’ with types of 
the form 

(Term,…,Term) ! Term
• Hole filling corresponds to replacing 

hole variables by abstractions of the 
corresponding type



Example

• Conventional context 
(λx.[ ])I 

can be represented by 
(λx.ξ(x)) I

• ξ is a metavariable of type 
Term ! Term



Example

• Filling (λx.[ ])I with term x
can be represented by substitution of 

the meta abstraction (y)y for ξ

(λx.ξ(x)) I {ξ := (x)x}
= (λy.ξ(y)) I {ξ := (z)z} (α-conv)
= (λy.y) I 



Example

• If we meta-applications as new 
constants we can compute with 
contexts:

(λ x. ξ(x)) I ξ(I)

(λy.y) I I

{ξ := (x)x}
“Fill with x”

β

β

{ξ := (x)x}
“Fill with x”



Potential confusion

Entities of the form ξ(x1,…,xk)  are 
meta-applications, not applications in 
the source language of our examples!

(Entities of the form (x1,…,xk)M are the 
corresponding meta-abstractions)



Hole variables

• Since we will only use metavariables
of type (Term1,…,Termk) ! Term  
(for some k ¸ 0)

• Sufficient to refer to the arity of 
the hole metavariables

• arity(ξ) = k means that ξ is an 
abstraction of type 

(Term1,…,Termk) ! Term 



Contexts

Contexts over a given language T, 
denoted T*,  defined inductively as

• C 2 T* whenever C 2 T
• ξ(C1,…,Ck) 2 T* whenever
8i 2 1…k. Ci 2 T*  and arity(ξ) = k



Hole filling

• Hole filling is defined by capture-
avoiding substitution (i.e., the normal 
kind!)

• The only interesting case is 
ξ(C1,…,Ck)θ where θ = {ξ := (x1,…,xn)D}
= D{x1 := C1θ, …, xn := Cnθ}



Hole filling

ξ(C1,…,Ck)θ where θ = {ξ := (x1,…,xn)D}
= (x1,…,xn)D ¢ (C1θ,…,Ckθ)
= D{x1 := C1θ, …, xn := Cnθ}

We hide the beta reduction of this 
meta-term in the definition of 
substitution



Conventional Contexts

• Conventional contexts correspond to 
a special class of contexts, namely 
those with all holes of the form 

ξ(x1,…,xk) for some ξ
• Contexts are identified up to 

renaming of bound variables



Representing Conventional 
Contexts

The representation of C is given by 
h x i = x
h [ ] i = ξ(z1,…zn)
h op(C1,…,Ck) i = op(h C1 i,…, h Ck i )

where z1,…,zn is a vector of all variables 
in scope at the holes in C



Exercise

• How can the context 
(λx.[ ]) ((λx.[ ]) I) 

be represented?

• Perform two beta-reductions on your 
context and confirm that these 
reductions  “commute” with what you 
get by filling the hole with x.



Checkpoint

• Seen a functional representation of 
contexts (following A. Pitts notation)

• Examples suggest that the obvious 
notion of computation compatible with 
hole-filling

• To do: why it works - a general 
argument



Higher-order Abstract Syntax

• To generalise over syntax and 
syntactic definitions we use a higher-
order abstract syntax

(widely used in type-theory, logical 
frameworks…)



Example

Concrete syntax  (λx.y) z
represented by

apply((lambda ((x)y) ), z)

apply has type (term,term) ! term
lambda has type (term ! term) ! term 



Example

Concrete syntax  (λx.y) z
represented by

apply((lambda ((x)y) ), z)

apply has arity (0,0) 
lambda has arity (1) 



Example

case M of 
nil => N; 
cons x xs => N’



Computation rules

Seen how higher-order abstract syntax 
can represent 

• contexts and 
• syntax involving variable binding

Now we look at how rules and inductive 
definitions can be represented



Computation rules

Computation rules, e.g. 
(λx.M) N a M{x := N}

M a M’

M N a M’ N

represented using typed metavariables

X, Y, Z



Formal Computation Rules

apply(lambda X, Y) a X Y

Y a Y’
apply(Z,Y) a apply(Z,Y’)

Instance of a rule obtained by mapping 
metavariables to abstractions (and 
normalising)



Formal Computation Rules

Example, {X := (z)z, Y := 3 }
• applied to 

• gives instance

apply(lambda X, Y) a X Y

apply(lambda (z)z, 3) a 3



Computing with Contexts

Simply allow instances of rules to 
contain holes!

apply(lambda X, Y) a X Y
when X := (z)ξ(z), Y := ξ(y)
yields 
apply(lambda (z)ξ(z), ξ(y)) a ξ(ξ(y))



Why it works

• A rule (e.g. an axiom like the beta 
reduction rule) is a pair of meta-
terms 

Rule = h L, R i
terms containing 

metavariables



Why it works

• A rule (e.g. an axiom like the beta 
reduction rule) is a pair of meta-
terms 

Rule = h L, R i
Instance = h Lσ, Rσ i

instance 
containing holes



Why it works

• A rule (e.g. an axiom like the beta 
reduction rule) is a pair of meta-
terms 

Rule = h L, R i
Instance = h Lσ, Rσ i

Hole filling = h (Lσ)τ, (Rσ)τ i

filling the holes



Why it works
Is h (Lσ)τ, (Rσ)τ i a valid instance?
i.e. if we compute with contexts then fill the 

holes, is that the same as filling the holes 
and computing? Since metavariables and 
hole variables are distinct

h (Lσ)τ, (Rσ)τ i  = h L(στ), R(στ) i

I.e. the substitution lemma from lambda-
calculus



Applicability

• The argument generalises to any 
inductively defined relation 

• Configurations of SOS rules
• Particular subsets of terms 
• V 2 Values ::= h V1, V2 i | λx.M
• Evaluation contexts 



Applicability

• GDSOS rule format [Sands POPL’97]
– various theorems that hold for any 

functional language fitting the format
• Context lemmas for call-by-need 

[Moran & Sands POPL’99]
• Theory of Space improvement 

[Gustavsson & Sands, ICFP’2001]



Conclusion

A simple typed-lambda-calculus 
representation of contexts

• lifts definitions to contexts
• compatible with hole filling
• useful for reasoning about operational 

equivalence 



Related Work

The “direct reasoning” style
Talcott, Mason, Smith, Felleisen

e.g. Mason and Talcottm Equivalence in 
functional languages with effects 
[JFP 1991]



Related Work

Typed lambda calculus representation 
of contexts

• Huet and Lang, Proving and Applying 
program transformations expressed 
with second-order patters [Acta Inf
‘78] 

• Klop, PhD thesis
• Pitts tutorial BRICS 1994



Related Work

• Context calculi
– Talcott
– Mason
– Hashimoto & Ohori
– Lee & Freedman

May provide more generality in some cases



Further Work

• Test the applicability in nominal 
calculi
– Potential pitfalls(?): clauses depending 

on the equivalence or inequivalence of 
names



• www.cs.chalmers.se/~dave/SOS04/


