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ABSTRACT
Lazy programming languages have a very different execution
order of expressions which makes debugging such programs
a very different experience from debugging eager or imper-
ative programs. We describe a simple idea of how to apply
conventional eager language debugging concepts to lazy pro-
gramming language Haskell. We give a detailed description
of how such debugger could be implemented and describe
our prototype of this system. Further, we elaborate on how
such debugger could be implemented in an efficient way and
describe some Haskell runtime extensions that would help
this process.

1. INTRODUCTION
Haskell is a lazy language and its execution order differs a lot
from how eager programming languages execute. As a re-
sult it is harder to apply conventional debugging techniques
based on tracing statements in the order of their evaluation.
The resulting execution order is rather unintelligible and,
even worse, the resulting call stack gives information not
about where a function was applied, but where the corre-
sponding closure was forced. As a result conventional de-
bugging techniques when applied without modifications to
Haskell give incomprehensible information to the program-
mers whose brains have been irreversibly mutilated by eager
if not imperative languages.

For this reason existing Haskell debuggers such as HAT [3],
Buddha [5], or HOOD [1] collect exhaustive information
about program execution and then provide tools to browse it
post-mortem, i.e. after the program has finished. Although
useful, such debuggers have their limitations. They don’t
support concurrency, don’t allow adapting program inputs
during the debugging session, and work badly with long-
running processes because information about whole program
execution must be collected. By being more heavy-weight
and different from conventional debugging techniques they
create rather high adoption barrier. As a result when a
programmer is faced with a problem of finding a bug in

his program he has the following options: think a little bit
more and find the bug without running a program, add some
tracing print-outs, evaluate some functions in eval loop, or
spend considerable time learning and configuring the tool.
As a result the latter almost never happens. This view is
supported by highly non-scientific poll among badly-biased
selection of Chalmers students none of whom have used any
Haskell debugger.

2. THE IDEA
Our idea is very simple—although Haskell programs can-
not be computed eagerly, because of infinite data struc-
tures, finite number of function applications can be com-
puted eagerly without any differences in the result. More-
over, any closures or even arbitrary expressions can be com-
puted out-of-(lazy)-order without any harm for program re-
sult. Of course, errors arising from forcing closures (e.g.
arguments) out-of-order must be ignored until the closure is
really needed. There are some exceptions, though.

If one forces a closure that is an infinite computation that
otherwise would not have been forced the program will di-
verge. The solution is to allow escaping an infinite com-
putation by throwing an error which is semantically equiv-
alent (i.e. ⊥). Another problem is side-effects. Luckily,
IO monad can only be executed in unique (sequential) or-
der. Of course, if executing some closure causes execution
of unsafePerformIO (e.g. m = putStrLn "side-effect")
then obviously execution semantics changes—some things
are just meant to be lazy after all. However, we don’t see it
as a serious problem because the programmer has to think
in terms of operational semantics anyway.

Further, when evaluating function arguments eagerly a ”nor-
mal” call stack is created, which also includes tail calls, al-
though this too can be made only finitely many times. Some
form of call stacks arises even when executing in lazy mode.
As a complementing tool we can keep (some suffix of) a trail
of all events of closures being forced and later returning a
value.

Based on this foundation we’d like to create a debugging en-
gine that would mimic conventional debugging as much as
possible. First, we need some simple navigation rules that
would allow deciding when to apply eager evaluation mode
and when to keep closures on the call stack. Now we can al-
low programmer to set break points when closures are forced
(or when they return) and inspect local syntactic bindings



and the call stack and the trail. At the break points the
programmer could force any new closures or even evaluate
whole new expressions. This could be done by providing
an eval-loop environment that gives access to local bindings
etc. It is important to provide good tools for filtering out
relevant events because Haskell programs are usually built
with higher-level abstractions whose execution details might
be irrelevant for particular debugging session. For instance,
when debugging monadic program a programmer may want
to ignore how monadic bind is implemented.

The approach that we have described can be implemented
as follows:

• Transform debugged program by wrapping an inter-
ceptor around each function application.

• The interceptor having access to function application
closure but also to the arguments can force eager eval-
uation using seq. Interceptor also implements break
point logic and provides an eval loop environment.

• Eval loop environment would execute expressions in IO
monad. All debugger commands would be a domain
specific language (DSL) embedded into IO monad.

We now proceed to describe these steps in more detail.

2.1 Transformation
We propose to instrument a program by wrapping the fol-
lowing syntactic constructions into an interceptor:

• function applications,

• data constructor applications,

• case expressions,

• introducing new bindings into the syntactical scope.

An interceptor gets access to the following information that
we call collectively a frame:

• the closure itself (we also call it just expression when
its not ambiguous),

• the arguments of function or data constructor applica-
tions, or argument of case expression,

• local bindings in the current syntactic scope,

• symbol information including the location in the
source file, module name, and top-level function name.

For all values accessible in a frame it is essential to be able
at run-time to:

• force them,

• inspect their values.

The latter is actually highly non-trivial because of Haskell’s
type system. We will come back to this issue later.

2.2 Interceptor
An interceptor maintains for each Haskell thread the follow-
ing information:

• current call stack depth (D),

• current call stack,

• current call trail (some suffix of it),

• a stack of strategies, explained below,

• a list of break points.

A strategy is a structure with the following values:

• eager limit (ED),

• stack limit (SL),

• break level (BL),

For convenience, these values are actually represented as
relative values to the value of stack depth D when strategy
was pushed on the stack.

Break point is a function that gets access to all struc-
tures maintained by the interceptor (stack, . . .), current
frame, and current event (e.g. EnteredFrame) and returns
IO (Maybe Bool). Returning Nothing means abstaining
from decision, Just True means voting for breaking and
Just False voting against. Just False has veto right, i.e.
if at least one break point returns Just False the program
will go on executing. Each break point has an associated
level L. Only those break points that have level greater or
equal to current break level L ≥ BL are tested. This allows
easily adjusting the level of details that the programmer
sees. At break level 0 there is normally one break point that
always returns Just True which allows stepping through all
events.

When program execution is braked at some frame, the de-
bugger asks commands from a user in a loop, compiles and
runs them. Commands get the same information as break
points and are also run in IO monad. Each command can
complete with the following results:

• A string value to be shown to the user. The user will
have to enter a new command after that.

• IO exception after which the user will have to enter a
new command too.

• Continue—meaning that interceptor execution should
continue as normal.

• Escape—meaning that interceptor should leave cur-
rent frame and let evaluate current expression in lazy
mode without putting anything on the call stack.

• Crash msg—replace current expression with
error msg. Useful for breaking out of infinite
computations.



When interceptor enters a frame (i.e. when the closure is
forced) it executes as follows:

1. Increment stack depth D, push frame on the stack.

2. Check all break points for event EnteredFrame. If
break points vote to break, send event information to
the user and execute eval loop. If command returns
Escape, then go to the last step. If command returns
Crash msg go to last step, but instead of returning the
wrapped expression return error msg. If command
returns Continue, then continue.

3. For each frame argument: check if current depth
is less or equal than current eager limit D ≤

EL. If true, force the argument using seq func-
tion and when it returns check break points for event
ArgReturned i err, where i is argument’s index and
err tells whether the argument failed with an error.
After that execute eval loop if needed and act accord-
ing to command’s return value.

4. Check if current depth is less or equal to current stack
limit D ≤ SL. If false, go to the last step with-
out forcing the expression. It will be forced imme-
diately anyway, but the frame will not be recorded on
the call stack. Otherwise force the expression with
seq and when it returns check break points for event
ExprReturned err. After that execute eval loop if
needed and act according to command’s return value.

5. Decrement stack depth D, pop current frame from the
call stack and return the wrapped expression.

Note that each time frame is entered/returns and argu-
ment/expression are forced/return, corresponding event is
recorded in stack trail.

Interceptor drives execution order by applying seq to the
closures. For instance, when in eager evaluation mode it first
forces frame arguments before forcing the expression itself.
seq forces a closure only into weak head normal form, how-
ever if doing seq on an argument reaches a new frame, this
new frame can force its arguments again and this gives eager
evaluation mode until stack depth reaches eager limit ED.
Notably, if some closure representing a data structure has
been evaluated eagerly until some depth, we cannot apply a
new eager evaluation with greater depth because seq would
just reach a data constructor without executing any inter-
ceptors. Of course, we can always find unevaluated nodes of
the data structure and force them.

2.3 Domain Specific Language
As we have already mentioned, all debugger commands
would be implemented as values in IO monad to be com-
piled and executed in eval loop, whereas the following the
following information is available to the executed commands
through a let clause:

• info - information about the current event,

• frame - current frame,

• args - arguments of the frame,

• expr - the wrapped expression,

• bindings - local bindings; all bindings are also acces-
sible by their real names,

We propose the following set of elementary statements:

• Accessing the values of bindings, arguments, and the
expression itself: force and cast. The latter is needed
to read the value and will be explained later.

• Driving execution: continue, escape, crash msg—
corresponding to the command return values described
above. Further, statement return str allows return-
ing values from a command and ask is equivalent to
return "". These statements should be the last ones
in a command.

• Altering strategy: currentStrategy allows to see and
alter the current strategy and withStrategy allows to
execute arbitrary IO statement within modified copy
of current strategy pushed on the stack.

• Breakpoints: addBreakPoint and removeBreakPoint

with obvious semantics.

• Information: getStack and getTrail that allow read-
ing current call stack and trail.

Of course, for usability, one could (and should) build a much
more sophisticated DSL (if not GUI) using these commands
as elementary blocks.

2.4 The Big Picture
With such debugging engine one could for instance do the
following things, which is actually much more than one can
do in conventional eager and/or imperative language debug-
gers:

• Set some break points with level L = 1.

• Set break level BL = 1 to avoid tracing all events.

• Execute lazily but with stack limit SL = 1000.

• On break points look at the trail and ”lazy” stack.

• Force/show some local binding, frame argument, the
closure itself, or arbitrary expression comprising them
within a new strategy with eager limit EL = 1000.

• On break points look at ”eager” call stack.

• After seeing return value of some closure evaluate ex-
pression equivalent to it with break level BL = 0 to
trace how it was computed.

• When tracing, step over some computations without
tracing and break points by forcing them within strat-
egy with BL = 2.



3. PROTOTYPE
We have implemented a prototype (three man-weeks) of pre-
viously described debugging engine using Glasgow Haskell
Compiler. Source-to-source transformation is made with
haskell-src-exts. We don’t instrument currently any li-
brary code and consequently all library functions are ex-
ecuted as atomic blocks and their execution cannot be
traced. Unfortunately, haskell-src-exts does not give
precise enough information about source locations of ele-
ments of abstract syntax tree (AST) and consequently is
not suitable for generating symbol information needed for
the frames, however it can be easily corrected to do that. In
the meantime we just pretty-print expressions and use this
as symbol information.

The biggest problem that we have faced is representing ar-
bitrary values (bindings, frame arguments, the expression
itself) as a data type that can be kept say in Map. The
solution that we have chosen is to store them in

data AnyValue = forall a. AnyValue a

By using unsafeCoerce the user can access any value, but
alas if he forces values to the wrong type he usually gets a
segfault. Alternatively, we could also wrap values in

data AnyTypeable =

forall a. (Typeable a) => AnyTypeable a

that allows doing safe casting of values. As not all values are
Typeable we need somehow to decide which values can be
wrapped into AnyTypeable and which not. This requires in
general inter-modular analysis of programs if, for instance,
a polymorphic function in one module is applied to a non-
Typeable value in another module. However, even expres-
sions like AnyTypeable 1 give ambiguous type variable error
and require giving explicit type annotation 1::Int. Similar
problems arise with AnyValue show that require adding a
type annotation, e.g. show::Int->String. Altogether our
current implementation of code instrumentation transforma-
tion is partial (only function/data constructor applications
are transformed) and doesn’t work in many border-line cases
outlined above.

The interceptor is a polymorphic function

interceptor :: Frame -> a -> a

interceptor frame expr = unsafePerformIO $ do

...

return expr

where the second argument is the expression wrapped and
eventually it returns this expression. The function itself is
implemented with unsafePerformIO and interceptor logic
works in IO monad. The interceptor is completely working,
but is quite inefficient. Altogether this probably slows down
the program 100x (no real measurements). For compiling
user commands we used hsPlugins [4]. It seems to fit quite
well, although it is a bit slow. However we found an annoy-
ing problem with implementing a singleton pattern needed
for interceptors to access the global mutable state:

globalState = unsafePerformIO (newMVar ...)

Although it works perfectly with statically compiled pro-
grams, it creates a new instance of globalState with dy-
namically loadable modules even when inlining is turned
off. A related problem is that Haskell doesn’t have thread-
local variables needed to represent interceptor’s state per
thread (call stack, etc), but this can be emulated with a
singleton map from thread IDs to thread info. As a re-
sult, when user commands try to access thread state, a new
debugger instance is started. To solve this problem, user
commands get explicit reference to the thread state. Un-
fortunately, this also means that commands cannot execute
expressions containing instrumented functions, but they can
still reference all values explicitly passed to them (bindings,
arguments, the closure itself) and, of course, they can use
all non-instrumented functions from standard libraries.

Finally, we have developed a simple command-line based
user interface to interact with the debugger. In Appendix A
we show how to compile the debugger, instrument and com-
pile a program, run it, and then debug it using the debugger
client. In Appendix B we give an example of debugging ses-
sion.

4. CONCLUSIONS AND FURTHER DI-
RECTIONS

A real implementation of a debugger would have to be writ-
ten quite differently. First, we find that the right solution
would be to embed code instrumentation transformation
into Haskell compiler or use GHC API. The biggest chal-
lenge is to provide safe access to all possible values arising
during the execution of the program. We think that the best
option is for Haskell runtime to have a Java-like reflection
API that would allow to navigate program data graphs and
check if a closure was forced already.

Currently, executing interceptor at each frame incurs quite
large run-time overhead. Although our implementation is
completely working, a much more efficient solution would be
to embed its logic into Haskell runtime, which is of course
quite much labour. Another useful addition to Haskell run-
time would be a possibility to escape from a computation
without rising an error so that later the closures would have
to be recomputed again. This would be useful for escaping
from computations that are not necessary if a user wishes
to do that.

Finally, it is essential for a debugger to have an advanced
graphical user interface allowing to navigate source code and
all the information provided by the debugger engine. Hap-
pily, there are good examples from the imperative world.

Although we have tried the debugger on simple programs
we find that this debugger concept should be tested on real
programs that use specific features of Haskell such as mon-
ads and rely heavily on lazy evaluation (e.g. tying the knot,
Fudgets [2], etc). Some probable additions needed to conve-
niently debug such programs would be:

• Marking specific parts of program to be always exe-
cuted lazily/eagerly.



• Specialized support for monads, e.g. allowing to see
state in state monads.
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APPENDIX
A. RUNNING THE PROTOTYPE
Requirements:

• Glasgow Haskell Compiler 6.4+,

• POSIX (excludes GHC on MinGW, but not Cygwin).

Directions:

1. Download and unpack rectus.tar.gz.

2. Go to directory rectus/src/ and run

bash build.sh

This builds Rectus.

3. Go to directory rectus/work/programs/ and run

bash instrument.sh objects/bugs/Main.hs \

../server/objects/bugs/ \

../client/objects/bugs/

This instruments one program file. Instrumented pro-
gram files goes to directory ../server/objects/bugs/

and pretty-printed version of input file goes to direc-
tory ../client/objects/bugs/. The latter is useful
for setting breakpoints by matching on pretty-printed
representation of frame’s Haskell code.

4. Go to directory rectus/work/server and run

bash conf.sh

This prepares instrumented program to be debugged.
This includes copying needed Rectus server files,
compiling them and generating a configuration file
rectus_server.conf.

5. Run the debugged program

./objects/bugs/a.out

The server will block waiting for the client to connect:

<...>.Engine: Creating new thread ’ThreadId 1’

<...>.Core: initializing core

<...>.Core: waiting for connection...

6. Open a new terminal in directory rectus/work/client

and run

bash client.sh localhost 1979

This connects the client to the server.

7. Currently, server prints a lot of debug output including
all occurring events and Haskell source code of executed
commands.

Generally, the work of Rectus client consists of:

1. Receiving an event from a server.

2. Asking for user command to execute and sending it to
the server.

3. Showing command result after the command com-
pletes. Note that generally multiple new events can
happen between sending a command and receiving
command results.

4. If there is no events from the server and Ctrl-C is
pressed, ask user which thread to break and send cor-
responding command to the server.

When entering user commands the following syntax is used:

• Zero or more lines starting with import clause.

• Zero or more lines of the command that will be wrapped
into a monadic do syntax. No indentation is needed.

• The command ends with first empty line.

• Empty command is equivalent to rctContinue.

B. SAMPLE DEBUG SESSION
We intend to debug the program on
Figure 1. It can be also found in
rectus/work/programs/objects/bugs/commands.txt.
Type the following commands into the client and observe a
complete debugging session:

1. Evaluate eagerly and keep the stack:

rctSetEagerLimit rctThread 1000

rctSetStackLimit rctThread 1000

rctAsk

2. Continue to the next event (run twice):

rctContinue

3. Print the first argument:

rctReturn $ show (

(rctUnsafeCast (head rctArgs))::[Int]

)

4. Continue to the next event (run twice):

rctContinue

5. Step over the argument (run twice):



main = putStrLn (show $

msort ([10, 3, 7, 1, 8] :: [Int])

)

msort :: (Ord a) => [a] -> [a]

msort = merging . map unit

where unit x = [x]

merging :: (Ord a) => [[a]] -> [a]

merging [xs] = xs

merging xss = merging (pairwise xss)

pairwise :: (Ord a) => [[a]] -> [[a]]

pairwise (xs : ys : xss) =

xs ‘merge‘ ys : pairwise xss

pairwise xss = xss

merge :: (Ord a) => [a] -> [a] -> [a]

merge [] ys = ys

merge xs [] = xs

merge (x : xs) (y : ys)

| x <= y = x : (xs ‘merge‘ ys)

| otherwise = y : (xs ‘merge‘ ys)

Figure 1: The program to debug.

rctWithStrategy rctThread (do

-- Turn off tracing

rctSetBreakLevel rctThread 1

-- Step over the argument

rctForce (head rctArgs)

)

rctEscape

6. Print value of local binding xss:

rctReturn $ show (

(rctUnsafeCast (xss))::[[Int]]

)

7. Continue to the next event (run trice):

rctContinue

8. Print value of local binding ys:

rctReturn $ show (

(rctUnsafeCast (ys)::[Int])

)

9. Add break point:

rctAddBreakPoint

rctThread

"myBreakPoint"

1

(rctSimpleBreakPoint

("Main", "merge (xs) (ys)")

RctEventEnterFrame

)

rctAsk

10. Go on without tracing:

rctSetBreakLevel rctThread 1

rctContinue

11. Print the call stack:

stack <- rctGetStack rctThread

list <- rctStackRead 0 1000 stack

let

format i = rctSymbolUID

(rctFrameSymbol (rctInvocationFrame i))

symbols = Prelude.map format list

rctReturn $ unlines symbols

12. Print value of local bindings xs and ys:

rctReturn $ show (

((rctUnsafeCast (xs))::[Int]),

(rctUnsafeCast (ys))::[Int]

)

13. Step over the computation:

rctWithStrategy rctThread (do

-- Turn off tracing

rctSetBreakLevel rctThread 2

-- Step over the argument

rctForce (head rctArgs)

-- Step over the expression

rctForce (rctExpr)

)

rctAsk

14. Print value of expression result:

rctReturn $ show (

(rctUnsafeCast (xs))::[Int],

(rctUnsafeCast (ys))::[Int],

(rctUnsafeCast (rctExpr))::[Int]

)

15. Work some more:

rctContinue

16. Print the call stack:

stack <- rctGetStack rctThread

list <- rctStackRead 0 1000 stack

let

format i = rctSymbolUID

(rctFrameSymbol (rctInvocationFrame i))

symbols = Prelude.map format list

rctReturn $ unlines symbols

17. Remove breakpoint:

rctRemoveBreakPoint rctThread "myBreakPoint"

rctAsk

18. Sleep 15 seconds and then run until the end:

import Control.Concurrent

threadDelay 15000

rctContinue

19. Within next 15 seconds press Ctrl-C and enter thread
ID to break ”ThreadId 1”.

20. Run until the end:

rctContinue


