
Thesis for the Degree of Lientiate of Engineering
A model identi�ation algorithm for ellsignalling pathwaysPeter Gennemark

Department of Computing SieneChalmers University of Tehnologyand G�oteborg UniversitySE-412 96 G�oteborg, SwedenG�oteborg, Sweden 2002



A model identi�ation algorithm for ell signalling pathwaysPeter Gennemark Peter Gennemark, 2002.Tehnial report no. 9LDepartment of Computing SieneChalmers University of Tehnology and G�oteborg UniversitySE-412 96 G�oteborgSwedenTelephone + 46 (0)31-772 1000G�oteborg, Sweden 2002 ii



A model identi�ation algorithm for ell signalling pathwaysPeter GennemarkDepartment of Computing SieneChalmers University of Tehnology and G�oteborg University
AbstratThe dynami behaviour of ell signalling pathways is usually studied bydi�erential equation models. In order to build suh models we have lassi�edommon biohemial reations into di�erent types that are used as struturalbuilding bloks. To ompare data from di�erent experiments we have alsolassi�ed experiments into di�erent ategories.Usually, models are manually inferred from experimental data. As the mainresult of this thesis we present a model identi�ation algorithm that au-tomatially identi�es both the struture and the parameters of a modelfrom experimental data, provided that this data is suÆiently extensive.The algorithm is a arefully designed heuristi algorithm that is eÆient forpathways of realisti size.Presently, arti�ial, but biologially plausible, models and simulated datafrom these models have been used to test the algorithm. The algorithm anpotentially handle real biologial experiments: the number of measurementpoints an be redued to aeptable levels and the algorithm an handlenoisy data.As a seondary result of this thesis we present a prototype software tool,where data simulation and model identi�ation are integrated into a singlevirtual laboratory environment.Keywords: model identi�ation, signalling pathways, biologial modelling,parameter estimation.
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Chapter 1Introdution
Signalling pathways are found in all ells and are involved in a omplexnetwork of information transfer inside the ell. The struture of a pathwayan be desribed by a graph, where the substanes (verties) are onnetedby interations (edges). A direted edge indiates that a given substanea�ets another substane, see �gure 1.1 for an example. This gives a usefuloverview of the pathway, but it is not a omplete desription, sine thestrength of the interations, the speed of the reations, the onentrationsof the substanes et. are not desribed. Despite this fat, this is the level ofdetail at whih biologists traditionally model the pathways. In part this isdue to lak of quantitative experimental data and the diÆulty to manuallyinfer the model from suh data.To reate more powerful desriptions of signalling pathways, mathematialmodels an be onsidered. One of several basi motives for reating a moreomplete model is to simulate the system. In order to be simulated, amodel must ontain both the struture and the parameters, suh as rateonstants. A suÆiently exat model may then be able to predit data fromthe orresponding real system.Ideally, it would be possible not only to simulate experimental data from amodel, but also to automatially identify a model from experimental data.Those two issues, data simulation and model identi�ation, omplement eahother as illustrated in �gure 1.2, and lose a loop between model and data.The main result of this thesis is a model identi�ation algorithm, that reon-struts both the struture and the parameters of a model from experimentaldata. The output of the algorithm is the model that best �ts the data.The algorithm simultaneously takes advantage of all experimental data in aset of experiments. This is espeially important when experiments are notdiretly omparable, whih is usually the ase in reality. For example, ex-1



Figure 1.1: A simpli�ed overview of the main omponents in the High Os-molarity Glyerol (HOG) signalling pathway in yeast. The details of thepathway are overed in setion 2.1.periments might have di�erent input stimuli and geneti bakground (genesan be deleted and the orresponding protein has zero onentration).Presently, only arti�ial, but biologially plausible, models and experimentaldata from these models have been used. There are several advantages ofusing arti�ial data. It is muh easier to improve and test the details ofthe algorithm. This is mainly beause experimental tehnial obstales areremoved and beause it takes short time to simulate an experiment. It isalso easier to develop the methodology of the work proess. A future goal isto apply the algorithm to real experimental data. This is further disussedin hapter 7.In order to evaluate the performane of the algorithm, simulated data havebeen produed and proessed in di�erent ways. As a base ase, data havebeen simulated deterministially. In an attempt to resemble real experimen-tal data, a stohasti simulation method has been employed and the datahave also been exposed to measurement noise.As a seondary result of this thesis, the funtionalities presented in �gure1.2 have been implemented in a prototype software tool. The model iden-ti�ation algorithm reonstruts the model struture and parameters based2
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pholipid yle and the synthesis and degradation of ketone bodies, werereonstruted. The phospholipid yle is the larger of the two models. It isomposed of four enzymati reations, similar to reations that will be usedin this work. The di�erene is that Koza et al. are modelling metabolipathways and therefore need reation types having several substrates and/orproduts. The onentration of eah enzymes as a funtion of time was on-sidered known and served as input to the model. For instane, an enzymeould have a linear inrease in onentration over time. Data was arti�iallyprodued from the model and taken from one out of six metabolites. Thestrength of this method is that output data is not needed from all of themetabolites. The drawbak is the high demand of omputational power andit is also unlear how the method an handle noisy data. Therefore, thereis a need for more eÆient ways of reonstruting biologial models.A related area is reonstrution of gene regulatory networks, where the ef-fets of genes on the transription of other genes are onsidered. This ap-proah is mainly foused on large-sale systems. Morohashi and Kitano haveapplied geneti algorithms in order to identify gene regulatory networks fromtime series data [3℄. Liang et al. [4℄ have reated a reverse engineering al-gorithm (REVEAL) for reonstruting geneti networks. In this approah,genes are idealised as being either on or o�.The priniple of the algorithm presented in this thesis is to determine thestruture inrementally. This approah is taken from Wedelin [5℄, who re-onstruts the statistial interation struture and parameters in multidi-mensional binary samples.
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Chapter 2Bakground
2.1 Signalling pathwaysSignalling pathways are the means by whih ells ommuniate with theirenvironment and with eah other. They sense hanges in the environmentoutside the ell or inside the ell. In general, a protein or a omplex ofproteins loated in the ell membrane (transmembrane proteins) works asa sensor. A asade of proteins in the ell transmits the signal and �nallyinitiate a transriptional response, that is, genes are expressed. The transla-tional response involves protein synthesis of the expressed genes. See �gure2.1 for an overview. Typially, a signalling pathway onsists of several pro-teins ativating/deativating eah other.
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Figure 2.1: The information ow of a signalling pathway in a yeast ell.5



The priniples of a signalling pathway might best be understood by studyingan example. Therefore, we fous on the High Osmolarity Glyerol (HOG)pathway [6, 7℄ of Saharomyes erevisiae. The HOG pathway is ativatedby external osmoti stress (an inrease in extraellular osmoti pressure dueto e.g. inreased salt onentration). Like any other ell, the yeast ellhas to adjust to altered osmoti pressure to maintain a turgor pressure1that is needed for growth and morphogenesis2, and a relative internal wateronentration for optimal eÆieny of biohemial reations. When thesolute onentration of the extraellular medium inreases, water ows outof the ell and onsequently turgor pressure and ell volume drop. Oneresponse, followed by the rapid ativation of the HOG pathway by osmotishok, is inreased glyerol prodution. Glyerol works as an osmolyte anddrives water into the ell to regain volume and turgor. With that, essentialintraellular proesses are re-established.A simpli�ed overview of the main omponents in the HOG signalling path-way is shown in �gure 1.1 in the Introdution. The response is mediatedby two independent upstream branhes that onverge on the protein Pbs2,leading to the ativation of Hog1. One branh is dependent on the Sho1transmembrane protein [8, 9, 10℄. Sho1 is not the atual sensor, but plays aruial role in the pathway. The sensor is not yet disovered. In the otherbranh, the transmembrane protein Sln1 works as an osmosensor [11℄. Twoindependent pathways arry the signal down to Pbs2, whih is phosphory-lated (ativated) by Ssk2 and Ssk22 [12, 13℄ and assoiated to the omplexSte11:Ste50 [14℄. Furthermore Pbs2 phosphorylates Hog1, whih upon a-tivation is entering the nuleus [13, 15℄ and, in turn, ativates several tran-sription fators3. Feedbak reations are believed to take plae on severallevels in the pathway and a general de-phosphatase (de-ativation) ativityis also present. The genes GPD1 and GPP2 are involved in the metabolismof glyerol, and they are both strongly up-regulated by an osmoti shok.The HOG pathway in yeast is an example of a signalling pathway ontain-ing a mitogen ativated protein kinase4 (MAPK) module, see �gure 2.2. AMAPK module onsists of three protein kinases: a MAPK kinase kinasethat ativates a MAPK kinase, whih, in turn, ativates a MAPK enzyme[16℄. Spei� phosphorylation and ativation of enzymes in the MAPK mod-ule transmits the signal down the asade, resulting in phosphorylation of1Turgor pressure - hydrostati pressure that develops within a walled ell, suh asa yeast ell, when the osmoti pressure of the ell ontents is greater than the osmotipressure of the surrounding uid.2Morphogenesis - the evolutionary or embryologial development of the physial formof an organism.3Transription fator - any protein other than RNA Polymerase that is required fortransription.4Kinase - an enzyme that transfers a phosphate group from another moleule to thesubstrate. 6
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PhoFigure 2.2: The ativation asade of a MAPK pathway. All boxes repre-sent proteins. Eah protein exists in two states, one inative and one ative(denoted pho for phosphorylated). In this ase MAPK kinase kinase is a-tivated by a sensor transmembrane protein and the ativated MAPK a�etstransription fators in the ell nuleus.many proteins with regulatory funtions throughout the ell, inluding otherprotein kinases, gene transription fators and other enzymes.Proteins that are able to bind several (di�erent) other proteins, are alledsa�old proteins. They might failitate signal transdution by formingmulti-moleular omplexes that an be rapidly ativated by an inomingsignal. In the HOG pathway, Pbs2 is believed to at as a sa�old protein[16, 17℄. In many ases, sa�old proteins are neessary for full ativation ofa signalling pathway [18, 19℄.To analyse the di�erent events in the HOG signalling pathway, genetis andmoleular biology are used in numerous ways. Cells are exposed to highosmolarity medium and the response to the hyperosmoti stress is analysed.The phosphorylation (ativation) state of Hog1 is measured to eluidatethe kinetis and the duration of the response. mRNA expression patternsof a few genes, dependent on ativated Hog1, are also studied. In orderto understand the physiologial response to the stress, the rate of glyerolprodution and intraellular levels of glyerol are measured.2.2 Mathematial modelling of biologial systemsIn a biologial system, a substane X an have several states, X1;X2; ::Xn.Di�erent states usually orrespond to di�erent levels of ativity within thesystem. From now on, the short notation Xi(t) will be used (instead ofthe ordinary [Xi(t)℄) for denoting the onentration of Xi at time t. The7



total onentration of all states of X, Xtot, an be assumed onstant duringshort time periods (minutes). The assumption being that prodution anddegradation are both zero (or that their sum is zero).Signal transmission in biologial systems ours mostly through two meh-anisms [20℄: (1) protein-protein interations (two substanes bind to eahother) and (2) enzymati reations suh as protein phosphorylation and de-phosphorylation. The Mihaelis-Menten model ombines those two meha-nisms and aounts for the kineti properties of many enzymes [21℄. As anexample, we onsider this model more in detail, sine it illustrates funda-mental priniples of biologial modelling.A substane state X1 is turned into another state X2 by an enzyme Eaording to the following reationE +X1 k1 !k2 EX1 k3�! E +X2where EX1 = transition state omplex, k1 = reation onstant of E+X1 �!EX1, k2 = reation onstant of EX1 �! E+X1 and k3 = reation onstantof EX1 �! E +X2. It is assumed that the reation E +X2 �! EX1 doesnot our. An impliit assumption is that X1 >> E. This assumptionis usually valid for metaboli systems, but may not be valid for signallingpathways.We want to obtain an expression for the rate of produt formation in thevariables X1, E and rate onstants. Initially, we haveddtX2(t) = k3EX1(t): (2.1)The onentration of E an be expressed asE(t) = Etot �EX1(t): (2.2)A relationship between E, X1 and EX1 an be identi�ed. First note thatthe rate of formation of EX1 equals k1EX1 and that the rate of breakdownof EX1 equals (k2 + k3)EX1. At atalyti steady-state we obtainEX1(t) = E(t)X1(t)KM (2.3)where KM = k2+k3k1 . Substitute equation 2.2 into equation 2.38



EX1(t) = (Etot �EX1(t))X1(t)KM : (2.4)We rearrange and solve for EX1EX1(t) = EtotX1(t)X1(t) +KM : (2.5)Finally, equation 2.5 is substituted into equation 2.1ddtX2(t) = k3EtotX1(t)X1(t) +KM : (2.6)Equation (2.6) gives the sought expression: the produt formation in termsof X1, E and rate onstants. By assuming KM � X1 in equation 2.6, alinear approximation is obtained. We want to point out that there are otherways of modelling the enzymati reation onsidered above. There alsoexist other kinds of reations in a ell, whih must be onsidered in orderto model ellular systems. One example of this ould be reations havingseveral substrates and/or produts. We would also like to emphasize thathigher order derivatives are usually not onsidered in this kind of modelling.By ombining a set of substanes with reations (like the reation presentedabove), a full di�erential equation model of biologial system an be reated.For instane, several models of MAPK pathways an be found in the litera-ture. Huang and Ferrell [22℄ developed a model to desribe MAPK ativationin Xenopus ooytes. Within a large model of seond messenger asades inneurons, Bhalla and Iyengar [20℄ also onsider the MAPK module. Anothermodel, desribed by Asthagiri and Laufenburger [23℄, illustrates adaptationof a MAPK asade. Other referenes overing biologial modelling of sig-nalling pathways are found in [16, 18, 19, 24, 25, 26, 27, 28℄.2.3 Simulation of biologial modelsSystems of di�erential equations are often diÆult to solve analytially, butan be simulated by numerial methods. The simplest method is Euler'smethod, whih will be used within the sope of this thesis. The formula forthe method is X(t+�t) = X(t) + �tX 0(t) (2.7)9



This proedure is repeated for all substanes and for the desired number ofiterations (time). We note that the formula is asymmetrial: it advanesthe solution through an interval �t, but uses derivative information only atthe beginning of that interval. Several better integration methods exist, butthe basi priniple for them is the same as in Euler's method.In signalling pathways, the number of moleules of eah substane is onlyin the order of 1000 per ell. For that reason, it may be useful to on-sider eah moleule individually. In that ase, we shift from ontinuousmodels represented by di�erential equations whose variables are onentra-tions, to disrete models, represented by stohasti proesses whose variablesare numbers of moleules. In the real world, the onentrations undergostohasti utuations. When the onentrations are low, as they might bein signalling pathways, the utuations should not be negleted. In order tosimulate suh systems in a more realisti way, stohasti simulation an beapplied.A reation based on di�erential equations (like the Mihaelis-Menten rea-tion), an easily be adapted to the disrete ase. Instead of onsidering Xas onentration of a substane, we let it reet the number of moleules ofthat substane. In the di�erential equation model, the reation onstants arealled marosopi or deterministi rate onstants. In the disrete model,we instead onsider mesosopi rate onstants, whih are related to, butnot idential to, marosopi rate onstants [29℄. When onverting frommarosopi to mesosopi rate onstants we must take into aount thatthe number of moleules are absolute values and not onentrations. Thereare standard methods to perform stohasti simulation on biologial models.2.4 Literature dataAn ordinary signalling pathway inludes a number of reations and therebya number of parameters. It is diÆult to experimentally measure onen-trations and values of parameters, but there are some values given in theliterature. The origin of those values are usually in vitro5 experiments andit is not obvious that the orresponding parameter values in vivo6 are thesame. In table 2.4 values of total onentration of MAPK:s are presented.The values are olleted from the literature [19, 20, 22, 26, 27, 30℄. Thedi�erenes of the values in table 2.4 have two main origins: (1) the valuesare low and diÆult to measure, and (2) di�erent ell types and di�erentMAPK pathways have been studied.5Latin, literally "in glass." Refers to tests or reations taking plae outside a livingorganism, on a mirosope slide, in a test tube, et.6Latin, literally "in life." Refers to tests or reations taking plae in a living organism.10



Ref. Ref. Ref. Ref. Ref. Ref.[19℄ [20℄ [22℄ [26℄ [27℄ [30℄Protein �M �M �M �M �M �MMAPKKK 0.3 < 0:0151 0.1MAPKK 0.2 0.18 > 0:242 > 0:66 0.3 < 0:0354MAPK 0.4 0.36 0:243 > 0:37 0.3 0:15Table 2.1: Total onentration given in the literature of di�erent MAPK:s.Notes: 1. The MAPKKK Mos modelled between 0.6nM -0.015�M 2. TheMAPKK Mek-1 modelled between 0.24-6�M 3. The MAPK p42 modelledbetween 0.24-6�M 4. Ste7p 5. Kss1p and Fus3p 6. MAPKK modelledbetween 0.6-1.3�M 7.The MAPK p4/p442 modelled between 0.3-2.8�M .It is even harder two �nd estimates of the reation parameters. For Mihaelis-Menten reations, parameter k is proposed to be 0.01-0.1 s�1 [19, 27℄, pa-rameter d proposed to be 0.05-0.8 s�1 [19℄ and parameter a proposed to be0.5-20 �M�1s�1 [19℄. Values of KM = d+ka are also presented in the litera-ture and range from 0.01 to 1.5 �M [22, 27℄. An assumption that d = 4 � kis also mentioned [20℄.We onlude that it is diÆult to experimentally measure onentrations andparameters of signalling pathways, but that the order of their magnitude anbe estimated from the literature.
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Chapter 3Modelling of signallingpathways
By studying the HOG pathway, and analysing the kineti equations for thatspei� pathway, we have identi�ed several di�erent general reation types.By ombining suh building bloks, also other pathways (in yeast and otherell types) are possible to model. For the purposes of this work, four reationtypes were seleted. They inlude a sensor reation, a non-atalysed reationand two di�erent atalysed reations. This olletion is large enough to letus build interesting and non-trivial test models and was therefore seletedat this stage. However, we wish to point out that the four reation typesare not suÆient to fully model the HOG signalling pathway, why otherreations must also be onsidered in the future.It is assumed that other reatants (ATP, water et.) are present at on-stant onentration and so an be inluded in the rate onstants. Similarassumptions an be found for instane in referene [22℄.3.1 Reation typesSensor reation (reation 1) is used when a physial e�et (pe) a�etsone substane X to hange state from X1 to X2.X1 pe�! X2As an example, the physial e�et might be osmoti stress, whih meansinreased salt onentration around the ell. The magnitude of the physial13



e�et (e.g. salt onentration) over time is given by the funtion f(t). Therate of formation of the substane aording to this reation is given byddtX1(t) = � ddtX2(t) = �kpeX1(t)f(t): (3.1)where kpe is a parameter for the e�et of pe on the reation. The simplestform of f(t) is a step funtion being high after a given stimulation timepoint, that is f(t) = ( l1; t � tsl2; otherwise (3.2)where l1 and l2 are onstants and ts is the stimulation time point.Spei�ally, we de�ne step(ts) to be a step funtion with l1 = 0 and l2 = 1aording to step(ts) = ( 1; t � ts0; otherwise (3.3)Furthermore, we de�ne stairs(t1; t2) to be a double step funtion aordingto stairs(t1; t2) = 8><>: 1; t � t20:5; t1 � t < t20; otherwise (3.4)The two funtions, step and stairs, will be used as examples when testingthe model identi�ation algorithm.Non-atalysed reation (reation 2) is used for the spontaneous tran-sition between two states, X1 and X2.X1 k�! X2where k is the reation onstant. The rate of formation of the substaneaording to this reation is given by14



ddtX1(t) = � ddtX2(t) = �kX1(t): (3.5)Catalysed reation (reation 3) is used for a atalysed transition be-tween two states, X1 and X2.X1 +E k�! X2 +Ewhere k is the reation onstant and E is a substane working as atalyst(E=Enzyme). The rates of formation of the substanes aording to thisreation are given byddtX1(t) = � ddtX2(t) = �kX1(t)E(t): (3.6)The enzyme is not a�eted by this reation.Catalysed reation of the Mihaelis-Menten type (reation 4) isused for a atalysed transition between two states, X1 and X2. Thus, rea-tion 4 is the non-linear alternative to reation 3.X1 +E k;KM�! X2 +Ewhere k is the reation onstant, KM is the Mihaelis-Menten onstant andE is a substane working as atalyst (E=Enzyme). The rates of formationof the substanes aording to this reation are given byddtX1(t) = � ddtX2(t) = � kE(t)X1(t):X1(t) +KM (3.7)The enzyme is not a�eted by this reation.A simpli�ed model of a signalling pathway an be onstruted by de�ninga set of substanes, their di�erent states and a set of reations of type 1-4.In general, a model is de�ned by a struture and a set of parameters. Thestruture is omposed of substanes with reations between them. Examplesare presented in the next setion. 15



3.2 Test modelsWe present two arti�ial, but biologially plausible models of signalling path-ways. Those will serve as test models when evaluating the algorithm. Theyalso exemplify the way of ombining several reations to a model of a biolog-ial system. The struture of the test models are similar to the struture ofa MAPK signalling pathway. However, a spei� model of the HOG path-way has presently not been onsidered. Instead, the main e�ort has beento develop the model identi�ation algorithm in order to lose the loop be-tween model and data. The appliation of the HOG pathway on the modelidenti�ation algorithm is disussed in hapter 7.
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Type Substanes Parameter1 A1 �! A2 kpe = 0:042 A1 �! A2 k1 = 0:022 A2 �! A1 k2 = 0:022 B1 �! B2 k3 = 0:022 B2 �! B1 k4 = 0:062 C1 �! C2 k5 = 0:022 C2 �! C1 k6 = 0:063 B1 �! B2 (A2) k7 = 0:103 C1 �! C2 (B2) k8 = 0:063 A2 �! A1 (C2) k9 = 0:20

Type Substanes Parameter1 A1 �! A2 kpe 1 = 0:041 D1 �! D2 kpe 2 = 0:082 A1 �! A2 k1 = 0:022 A2 �! A1 k2 = 0:022 B1 �! B2 k3 = 0:022 B2 �! B1 k4 = 0:062 C1 �! C2 k5 = 0:022 C2 �! C1 k6 = 0:062 D1 �! D2 k7 = 0:042 D2 �! D1 k8 = 0:082 E2 �! E1 k9 = 0:063 B1 �! B2 (A2) k10 = 0:104 C1 �! C2 (B2) k11 = 0:06KM = 0:23 A2 �! A1 (C2) k12 = 0:203 E1 �! E2 (D2) k13 = 0:083 E2 �! E1 (B2) k14 = 0:14Table 3.1: Reations in Test models I (left) and II (right)Test model I an be obtained asddtA2(t) = kpeA1(t)f(t) + k1A1(t)� k2A2(t)� k9A2(t)C2(t) (3.8)ddtB2(t) = k3B1(t)� k4B2(t) + k7B1(t)A2(t) (3.9)ddtC2(t) = k5C1(t)� k6C2(t) + k8C1(t)B2(t): (3.10)The di�erential equations for A1, B1 and C1 are not needed to integrate thesystem, sine only two states of eah substane exist (A1(t) = Atot � A2(t)et.). The system of di�erential equations for Test model II an be derivedin the same way and are left out here.
17
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Chapter 4Spei�ation and simulationof experiments
In order to analyse models of biologial systems, we must onsider experi-mental data. There are a lot of di�erent laboratory tehniques in this �eldof biology and for that reason it is important to �nd a way of speifyingexperiments. In the �rst part of this hapter we fous on these questions.We end this hapter with simulation of experimental data and some otherdata related issues.4.1 Spei�ation of experimentsWe de�ne an experiment to be a measurement of a single variable from amodel or biologial system over time. For example, the variable may bethe onentration of a substane in a given state. As mentioned in hapter1, experiments measure models or systems that may have di�erent genetibakground and input stimuli, but there are also other attributes that haveto be spei�ed in order to fully desribe an experiment. In table 4.1, wepropose a template of the information needed. In this thesis we mainlyonsider four of the attributes from the table: geneti bakground, physiale�et, measured variable and time series data. All other attributes areonsidered onstant. They play a role in real experiments, but are hard tointrodue in a model. Thus, at this stage we do not inlude them.Based on the attributes in table 4.1, we de�ne an experiment ategory to be aset of experiments that have the same genomi bakground, physial e�ets,experimental tehnique, speies, strain, experimental set-up, ell state andtime series start and stop time. Consequently, the only di�erene betweenexperiments in a ategory is the measured variable and the time series data19



(the unit ould di�er, but that is not onsidered in this work). Thus, anexperiment ategory is a set of experiments that measure the same system.The use of di�erent experiment ategories is very ommon, when studyingbiologial systems. For instane, by deleting a partiular gene a�eting afeedbak loop, it is possible to ut o� the loop in order to better understandthe system. Grouping into experiment ategories is important for the modelidenti�ation algorithm, sine all experiments in a ategory an be generatedin a single simulation.In table 4.2 we speify the experiments for Test models I and II that areused in this work. Two physial e�ets are used: step(20) and stairs(20; 50)(equations 3.3 and 3.4 in setion 3.1). In Test model I there are three exper-iment ategories, namely [wild-type, step(20)℄, [Gene deletion B, step(20)℄and [Gene deletion C, step(20)℄. In Test model II there are �ve experimentategories, namely [wild-type, step(20)℄, [wild-type, stairs(20; 50)℄, [Genedeletion B, step(20)℄, [Gene deletion C, step(20)℄ and [Gene deletion D,step(20)℄.

20



Attribute Explanation and/or examples Consideration inthis thesisGenomibakground Wild-type, gene deletion, funtional mutant or overexpression. Wild-type and genedeletion.Physial ef-fets Time-dependent input to the experiment. Note thatthere might be several physial e�ets belonging tothe same experiment. Eah e�et must de�ne a vari-able (e.g. temperature or external osmoti pressure),a unit and a funtion of time. The funtions Stepand stairs, de�ned insetion 3.1.Measuredvariable A substane in a given state, reation parameteror physial parameter (volume for instane) that ismeasured. The variable must exist in the model. The onentration ornumber of moleulesof a substane state.Unit Relative or absolute (e.g. Molar and number ofmoleules). Absolute values as-sumed.Time seriesdata The experiment may also onsider loation sale (theloation is in its most general form x,y,z-oordinates,but may be simpli�ed to di�erent ompartments inthe ell). However, eah loation may be viewed asone experiment and then only time series data needto be onsidered.
Time series data for8-201 data points.

Experimentaltehnique E.g. northern blot, western blot, protein phosphory-lation and miroarray. Constant.Speies E.g. S. erevisiae. Constant.Strain E.g. S288C. Constant.Experimentalset-up E.g. size of ultivation wells, stirring, ell medium,bath/hemostate. Constant.Cell state Lag phase, exponential phase or stationary phase.Time-dependent if the experiment is run over longtime. Constant.Table 4.1: Experimental attribute template. Additional minor attributesmight be inluded as well: experimentalist, date of experiment, referenesand omments. Those attributes need no further explanation.
21



Measured Genomi Physialvariable bakground e�etA2 Wild-type step(20)B2 Wild-type step(20)C2 Wild-type step(20)A2 Gene del. B step(20)C2 Gene del. B step(20)A2 Gene del. C step(20)B2 Gene del. C step(20)
Measured Genomi Physialvariable bakground e�etA2 Wild-type step(20)B2 Wild-type step(20)C2 Wild-type step(20)D2 Wild-type step(20)E2 Wild-type step(20)A2 . . . E2 Wild-type stairs(20; 50)A2, C2 . . . E2 Gene del. B step(20)A2,B2,D2,E2 Gene del. C step(20)A2 . . . C2, E2 Gene del. D step(20)Table 4.2: Spei�ation of experimental data for Test models I (left) andII (right). The physial e�ets step(20) and stairs(20,50) are explained insetion 3.1. Time series data are spei�ed to go between 0 and 100 (arbitraryunit). The experiments are divided into di�erent ategories. Experimentswithin the same ategory belong to the same box in the table. Note that thefour last ategories of Test model II are ondensed to one row eah in thetable.
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4.2 Simulation of experimentsIn order to simulate a partiular experiment, all attributes of the experimentand the parameters of the model must be spei�ed. For example, assumeexperiments of the ategory [Gene deletion B, step(20)℄ are to be simulatedfrom Test model I. Thus, the system of di�erential equations 3.8-3.10 issimulated. The initial onentrations are taken from steady state, but sineB is deleted, its initial onentration is set to zero. Thus, the onentrationsof B1 and B2 will remain zero for the whole simulation. The physial e�etfuntion (step(20)) spei�ed by the experiment ategory is used and the �nalresult is simulated time series data for all substane states.Deterministially simulated experimental time series data were produedfrom the two test models by integrating the system of di�erential equationswith Euler's method. An overview of the di�erent experiments produed forTest model I and II is shown in table 4.2. Time series data goes from 0 to100 (arbitrary unit) with a step-size of 0.5, giving rise to 201 measurementpoints. In order to reate a smaller set of measurement points, we samplefrom the 201 measurement points. Plots of the experiments are found inAppendix A.The same experiments were stohastially simulated using the Diret method[31℄ that is briey presented below.In a given state, the number of moleules of eah substane state is known.The algorithm alulates probabilistially, whih reation ours next andwhen it ours. For eah reation a probability (propensity) is omputed bymultiplying the rate onstant of the reation with the onentration of itssubstrates. Then a random number is used to perform a seletion aordingto the relative probabilities of all reations, and a seond random numberdetermines the exeution time used for this reation. The exeution time istaken from an exponential distribution, where the parameter is the sum ofall propensities. The hosen reation is exeuted. For example, assume thereation X1 �! X2 atalysed by E is hosen. Then X1 is dereased by onemoleule and X2 inreased by one moleule. The algorithm is summarizedas1. Initialise (set initial numbers of moleules and set time = 0).2. Calulate the propensity funtion Ai for all reations i.3. Choose one reation aording to the relative propensities.4. Choose �t from the distribution Exp(PiAi):5. Update number of moleules to reet exeution of the reation.6. Set time = time+�t.7. Go to step 2. 23



As mentioned in setion 2.3, reations represented as di�erential equationsan easily be adapted to the disrete ase. The volume was set to oneand the total number of moleules of eah substane was set to 1000. Inorder to hange from marosopi to the mesosopi sale, the parametersin the atalysed reations are saled to new values. In reation type 3, theparameter k is divided by 1000 and in reation type 4, the KM is multipliedby 1000. Sine a real experiment usually is not a single-ell experiment,several ells were simulated and the average value was onsidered in sometest ases.Noise from di�erent soures in the measurement proess disturbs a realbiologial experiment. In this work all soures is treated as one, alled mea-surement noise. The variane of the measurement noise at a measurementpoint ti is assumed to be var(ti) =  � e(ti) (4.1)where  is a onstant and e(ti) is the experimental value at time ti. Normaldistribution is assumed. The di�erent simulations are presented in table 4.3and plots of the experimental data are found in Appendix B.Simulation Number Measurementof ells noise onstant1 1 02 50 03 50 0.24 50 0.55 50 1.0Table 4.3: Stohasti simulations of Test Models I and II.4.3 Interpolation of experimental dataIn the model identi�ation algorithm it is neessary to estimate onen-trations and derivatives of onentrations at arbitrary time points, withinthe time range of an experiment. The most basi approah is to use linearinterpolation. For the derivative, it is natural to use the forward di�ereneddt bX(t) = X(tj+1)�X(tj)tj+1 � tj (4.2)for an estimation on the interval between tj and tj+1.24



The above methods are rough estimates. In order to improve the estima-tion we use ubi spline interpolation [32℄, whih is a standard method innumerial analysis. The method is built on the same priniple as the linearinterpolation, but a ubi polynomial is used instead of the linear.4.4 Model ambiguity of experimental dataIt an happen that two di�erent biologial models reate the same experi-mental data. We illustrate this point by an example.
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Maeda, Takekawa and Saito [11℄ when revealing the basi struture of theHOG signalling pathway.
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Chapter 5The model identi�ationalgorithm
In this hapter the algorithm for reonstruting signalling pathways fromexperimental data is presented. The input to the algorithm is an initialstruture and a set of experiments. The initial struture ontains all sub-stanes, the sensor reations (type 1) and any number of other reationsof the model. It orresponds to the established knowledge of the system.In this thesis we onsider only the worst-ase examples, where the initialstrutures lak all reations of type 2-4, see �gure 5.1. All parameters areassumed unknown.
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error of the model is alulated by summing the errors for all experiments.Thus, the objetive of the algorithm is expressed asminXe2EXti2e (e(ti)� esim(ti))2 (5.1)where E is the set of all experiments, e(ti) is the measured onentration inexperiment e at time point ti and esim(ti) is the simulated value of e at timeti using the model. The searh for a better struture ends when a ertaintermination riterion is satis�ed.The present version of the algorithm has the following data requirements:� It is only possible to have two states of eah substane.� Experimental data points are given with orret units (non-normalized).� The total onentration Xtot of eah substane is known.� Experimental data for at least one state of every substane must begiven. This is usually not the ase in reality. In setion 5.8, we demon-strate that this restrition an probably be relaxed in the future.The requirements are analysed further in the disussion of hapter 7.5.1 Top level algorithmTo explain the algorithm we �rst onsider only one experiment ategory asinput. For example, for Test model I only the experiments of ategory [wild-type, step(20)℄ are present, i.e. we onsider the three experiments where A2,B2 and C2 are measured in a wild-type geneti bakground and with a stepfuntion as input.The main priniple of the algorithm is a heuristi that reonstruts themodel struture inrementally. A best struture and a best set of parametersare always maintained. In a pre-proessing step, all possible non-atalysedreations (type 2) are added to the initial model and the error is alulated.Then, every possible atalysed reation (type 3 and type 4) is temporarilyadded to the model one by one. For eah reation that is tried, the errorof the resulting model is alulated. The best reation is added and theproess is repeated until a termination riterion is ful�lled. At the end ofeah iteration, reations of type 2-4 that have a small rate parameter areremoved. 28



The evaluation of a partiular model struture an be divided into threesteps: parameter estimation, simulation and error alulation. First theparameters are estimated, then the model is simulated and �nally the erroris alulated by equation 5.1. When simulating, a deterministi method isalways used. The initial onentration is taken from the �rst experimentaldata point of the substane.The algorithm in pseudo-ode is presented below.INPUT:S - initial strutureE - set of experimentsOUTPUT:S - struture of estimated modelP - parameters in estimated model// PRE-PROCESSINGR2 := allPossibleReationsType2(S)R3 := allPossibleReationsType3(S)R4 := allPossibleReationsType4(S)R3UR4 := R3 [ R4S := S [ R2P :=estimateParameters(S;E)Esim:=simulate(S; P;E)�min:=alulateError(Esim; E)// TEST CATALYSED REACTIONSLOOPFOR ALL testReation 2 R3UR4 DOS := S + testReationPloal:=estimateParameters(S;E)Esim:=simulate(S; Ploal; E)�testReation:=alulateError(Esim; E)S := S � testReationENDr :=bestReation(R3UR4; �)IF (terminationCriterion(�min; �r; P; r)) THENBREAKELSE BEGINS := S + rremoveReationsWithSmallRates(S,P)P :=estimateParameters(S;E)Esim:=simulate(S; P;E) 29



�min:=alulateError(Esim; E)ENDENDRETURN S; P; �minThe parameter estimation and the termination riterion are overed morein detail in the following setions.5.2 Parameter estimationWe ontinue to onsider only one experiment ategory as input. In orderto obtain a low error, we want to �nd the best parameters for a partiularstruture. For any experiment, the substane onentration for a ouple ofmeasurement points are given. The derivative of the onentration an beestimated. With these data, the set of di�erential equations orrespondingto the struture is redued to an overdetermined set of equations in theunknown parameters. Eah measurement point gives one equation. Theoverdetermined system of equations is solved with the least-square methodif it is linear. If a atalysed reation of type 4 is involved in the equationit beomes non-linear, and Marquardt's method [32, 33℄ is used instead. Inpratie, every di�erential equation is onsidered separately, and the dif-ferential equations are handled in turn. The parameter estimation is nowdesribed by an example.Consider Test model I and the di�erential equation of A2, see equation3.8. Eah term on the right hand side orresponds to one reation. Theparameters to estimate are kpe, k1, k2 and k12. By estimating ddtA2(t) andall onentrations on the right hand side from experimental data, equation3.8 gives us a linear equation. Eah data point in the experiment whereA2 is measured gives one suh equation. The notation Xi(t) will denotea onentration estimation of substane Xi given data from the onsideredexperiment ategory. The full system an be writtenMk = b (5.2)whereM = 0BBBB� A1(t1)f(t1) A1(t1) �A2(t1) �A2(t1)C2(t1)A1(t2)f(t2) A1(t2) �A2(t2) �A2(t2)C2(t2)... ... ... ...A1(tn)f(tn) A1(tn) �A2(tn) �A2(tn)C2(tn) 1CCCCA ; (5.3)30



k = 0BBB� kpek1k2k9 1CCCA (5.4)and b = 0BB� ddtA2(t1)...ddtA2(tn) 1CCA : (5.5)In equation 5.3, t1 and tn refer to the �rst and last experimental time pointrespetively. The system of equations is overdetermined and is solved bythe least-square method, whih minimizes the Eulidean norm between Mkand b [34℄, that is mink k b�Mk k2 : (5.6)If the olumn vetors are linearly independent (MTM positive de�nite), thesolution to the least-square problem is obtained from the linear systemMTMk =MT b: (5.7)It is important to note that the minimization funtion 5.6 oinides with theoriginal minimization funtion 5.1 only if the model struture is orret. Thisis beause experimental data are used in order to estimate the onentrationsand the derivatives. Thus, the best parameters in terms of the originalminimization funtion are obtained only in this ase. This is an algorithmishort-ut in order to speed up the algorithm and it works beause we havea omplete data set. This is also why we need a subsequent simulation stepin the algorithm to determine the true error of the urrent model.If there is a atalysed reation (type 4) in the di�erential equation, the or-dinary least-square method will not do. Instead we employ Marquardt'smethod for least-squares estimation of non-linear parameters [32, 33℄. Mar-quardt's method works well in pratie and has beome a standard for non-linear least-squares. Briey, the method varies smoothly between two meth-ods, the inverse-Hessian method and the steepest desent method. Thelatter method is used far from the minimum, swithing ontinuously to theformer as the minimum is approahed. The method is not overed morethoroughly here. 31



5.3 Termination riterion and thresholdsThe searh for new reations of type 3 and 4 is terminated when:�r > �min � � OR kr < Æi (5.8)where �r is the lowest error found when testing new atalysed reations,�min is the presently best (lowest) error, � � 1, kr is the rate onstant ofthe reation proposed to be added to the model, Æi > 0 and i 2 3; 4. Theonstants, � and Æi are spei�ed by the user of the algorithm. Æ3 and Æ4are used when the added reation is of type 3 or 4, respetively. Thus, thesearh ends when either the derease of the error is too small or when thereation to add has to small rate onstant.In a �nal step of the loop in the algorithm, reations of type 2-4 mightbe removed from the model (removeReationsWithSmallRates(S,P) in thepseudo-ode), the riterion being k < Æi (5.9)where k belongs to a reation of type i 2 2; 3; 4 and, as previously, Æi > 0.In general, a model with a omplex struture is more likely to have low error,beause the parameter spae is large and the model an be �ne-tuned to �texperimental data. Presently, the omplexity of the model is not expliitlyonsidered in the minimization funtion and is only impliitly onsidered inthe termination riterion, whih is neessary to avoid over�tting. There areseveral ways to punish high omplexity, but this is a omplex issue and willbe onsidered in the future.5.4 Extension to several experiment ategoriesWe now generalize the algorithm to handle several experiment ategories.Again, onsider Test model I, but let all experiment ategories presentedin table 4.2 be inluded. The parameter estimation and the top level algo-rithm are both a�eted by the hange. In the parameter estimation, eahdi�erential equation is still onsidered separately, but the experiments fromall experiment ategories are merged and onsidered simultaneously. In themain algorithm, simulation is then performed for eah experimental ate-gory. The simulation itself and the error alulation are not a�eted.As an example, onsider Test model I and the di�erential equation of A2,see equation 3.8. In order to take all experiments where A2 is measured into32



aount, all suh experiments are merged in matrix M (equation 5.3). Theexperiments are [A2, wild-type, step(20)℄, [A2, Gene deletion B, step(20)℄and [A2, Gene deletion C, step(20)℄. Eah data point in eah experimentwhere A2 is measured gives one row in M . The number of olumns inthe matrix is not a�eted, sine the number of unknown parameters is thesame. The number of rows orresponds to the total number of experimentalmeasurement points of A2 in all experiment ategories. As before, the systemof equations is overdetermined and is solved by the least-square method. Thesame approah holds for the non-linear ase with Marquardt's method.5.5 Methods for inreasing the speedThe short-ut of not minimizing the original error funtion 5.1 signi�antlyredues the omputational time of the algorithm. This simpli�ation alsogives us the opportunity to further inrease the speed of the algorithm. Wemake one observation:When adding (testing) a atalysed reation (type 3 or 4) a�eting substaneX, only parameters in the di�erential equation for X need to be re-estimated.All other parameters are una�eted by the hange of the model. From thisfollows that only the di�erential equation of X needs to be simulated and thatonly experiments measuring X need to have their errors re-alulated. Asan example, onsider Test model I (setion 3.2). Assume we want to add thereation A1 �! A2 atalysed by B1 to the model. Only the parameters inthe di�erential equation of A2 (equation 3.8) need to be onsidered. All otherparameters remain the same. Furthermore, only the di�erential equation ofA2 must be simulated, and onsequently, only those experiments measuringA2 must have their errors re-alulated.The basi proedure of estimating parameters remains the same. The di�er-ene is that eah di�erential equation is not onsidered when re-alulatingthe new set of parameters. Only the di�erential equation for the substanethat is hanging state is onsidered.The simulation is a�eted too: instead of simulating the full set of di�er-ential equations, we only simulate one di�erential equation. As before, theinitial onentration is taken from the �rst experimental data point of thesubstane. Conentrations of other substanes ourring in the di�erentialequation are estimated from experimental data. For example, assume thattime series data for the substane A2 are simulated given Test model I andthe experimental attributes of experiment e. Thus, the di�erential equation33



3.8 is simulated. The initial onentration value of A2 is taken from exper-imental data, while all other data points are simulated. Conentrations ofother substanes (C2 in this ase) ourring in the di�erential equation areestimated from experimental data, they are not simulated. As before, theparameters k1, k2 and k12 must have been estimated in advane. The resultis simulated time series data for substane A2. Sine only parts of the modelis simulated and the other parts estimated from data, the result may notbe the same as if the whole model was simulated. Again, we note that wedepend on a omplete data set in order to use this short-ut.In the top level algorithm, the error of eah individual experiment (denoted�e) must be monitored. The abbreviation at is used for ategory. Thealgorithm in pseudo-ode is given below.INPUT:S - initial strutureE - set of experimentsOUTPUT:S - struture of estimated modelP - parameters in estimated model// PRE-PROCESSINGR2 := allPossibleReationsType2(S)R3 := allPossibleReationsType3(S)R4 := allPossibleReationsType4(S)R3UR4 := R3 [R4S := S [R2P :=estimateParameters(S;E)FOR ALL at 2 E DOEatsim:=simulate(S; P;E; at)ENDFOR ALL e 2 E DO�e:=alulateError(Esim; e)END�min :=Pall e2E �eLOOPFOR ALL e 2 E DO�eold:=�eENDFOR ALL testReation 2 R3UR4 DOFOR ALL e 2 E DO�e; testReation:=�eold34



ENDS := S + testReations:=substaneChangingState(testReation)Ed:=fe 2 E j e:measured variable 2 sgP testReation:=estimateParametersSingle(S; P;E; s)FOR ALL e 2 Ed DOesim:=simulateSingle(S; P testReation; s; E; e)�e; testReation:=alulateErrorSingle(esim; e)END�testReationE :=Pall e2E �e; testReationS := S � testReationENDr :=bestReation(R3UR4; �E)IF (terminationCriterion(�min; �rE; P; r)) THENBREAKELSE BEGINS := S + rremoveReationsWithSmallRates(S,P)P :=estimateParameters(S;E)FOR ALL at 2 E DOEatsim:=simulate(S; P;E; at)ENDFOR ALL e 2 E DO�e:=alulateError(Esim; e)END�min :=Pall e2E �eENDENDRETURN S, P , �minThere are other possible short-uts. We note that reations of type 3 and4 are similar in the sense that they are both atalysed reations. If a lowerror is obtained by adding a partiular reation of type 3, the orrespondingreation of type 4 will probably also give a low error when added, and vieversa. Sine the non-linear parameter estimation demands more omputa-tional time, we �rst test the reation of type 3. If the error of that model issuÆiently bad, no test of the orresponding reation of type 4 ours. Weformulate the following ruleIF (�r3 >  � �min) THENskip test of orresponding r4where  > 1 is a onstant. The above ode-fragment an easily be inluded35



in the main loop of the top-level algorithm. This short-ut has been used inthis thesis with  = 1:2.5.6 Computational time of the algorithmThe omputational time of the algorithm is diÆult to exatly formulate,sine the hoie of parameter estimation method depends on the spei�model. Without reations of type 4 the least-square method is applied,otherwise the omputational muh more expensive Marquardt's method isused. In this setion we onsider a base ase where reations of type 4 arenot inluded at all. This simpli�ation an partly be justi�ed by the quitesparse use of Marquardt's method when the short-ut of skipping some testsof reations of type 4 is employed (setion 5.5).We onsider the omputational time as a funtion of the variables presentedin table 5.1.Variable Desriptionns Number of substanes in the model.ne Number of experiment ategories.ndp Total number of experimental data points,measuring a partiular substane.�t Step size in simulation.tsim Simulation time.Table 5.1: Variables used in alulation of omputational time. For simpli-�ation, we assume that ndp is equal for all substanes and that tsim is equalfor all experiments.The time omplexity of the algorithm, Talg, an be expressed asTalg = NloopsNtests (Tpe + Tsim + Terr) (5.10)where Nloops is the number of loops in the algorithm, Ntests is the number ofreation tests within one loop and Tpe, Tsim and Terr are the time omplex-ity for one parameter estimation, one simulation and one error alulation,respetively.It is diÆult to estimate Nloops, sine it is dependent on the iterative be-haviour of the algorithm. In partiular, Nloops is strongly a�eted by thetermination riterion. A typial value for Nloops involves the variable nr36



whih is the number of atalysed reations that are not inluded in the ini-tial struture but belong to the orret struture of the model. Assumingthat we �nd the orret struture we obtainNloops = nr + 1 (5.11)whih an be motivated by an example: In Test model I the number ofloops is ideally four, three loops for identifying eah of the three atalysedreations and one loop for reahing the termination riterion.If all possible reations are added to the model, Nloops is dramatially in-reased: one loop for eah possible atalysed reation is required. Sineevery substane reats in two diretions (X1 �! X2 and X2 �! X1) andthe enzyme an be any other substane, eah existing in two di�erent states,(2(ns � 1)), we obtain the funtionNloops = 4ns(ns � 1) 2 O(n2s): (5.12)There is also a possibility that the algorithm shows a yli behaviour. Inthat ase, Nloops may potentially go to in�nity, given the urrent terminationriterion.One yle of the loop ontains tests of all possible atalysed reations. Thesame reasoning as for equation 5.12 gives usNtests = 4ns(ns � 1) 2 O(n2s): (5.13)For eah reation that is tested, the resulting model is subjeted to param-eter estimation, simulation and error alulation. Before analysing themin turn, we de�ne nr to be the number of reations a�eting a partiularsubstane. We obtain an upper bound for nr by observing that nr equals4(ns � 1) reations of type 1 and 3 respetively (ompare to equation 5.13)and two reations of type 2 in worst ase. Thus,nr = 8(ns � 1) + 2 2 O(ns): (5.14)The parameter estimation is performed by the least square method, wherethe matrix is of size ndp�nr (equation 5.3). The method runs in polynomialtime, sine it requires n2rndp � n3r=3 multipliations and a similar numberof additions (QR fatorisation) [35℄. Substituting nr for ns aording toequation 5.14, an upper bound for Tpe is obtained asTpe 2 O(n2sndp): (5.15)37



One simulation is performed for eah experiment ategory and the runningtime of eah simulation depends on �t, tsim and nr. Substituting nr for ns,Tsim is obtained as Tsim 2 O(ne tsim�t ns): (5.16)The time omplexity of the error alulation is linear in time w.r.t. ndp,giving Terr 2 O(ndp): (5.17)Inserting equation 5.15, 5.16 and 5.17 into equation 5.10, we obtain the timeomplexity of the algorithm asTalg = NloopsNtests �O(n2sndp) +O(ne tsim�t ns) +O(ndp)� : (5.18)Most omputational time of the algorithm is spent evaluating di�erent re-ations added to the model. Test runs indiate that Terr always an benegleted in omparison to Tpe and Tsim. However, the relationship be-tween Tpe and Tsim is not straightforward. For large ndp, Tpe > Tsim, whilefor small ndp, Tpe < Tsim. For example, given Test model I and experimentswith 201 data points, the parameter estimation takes about 4 times longertime as the simulation. For 8 or 16 data points per experiment the simula-tion takes about 9 times longer time as the parameter estimation. Thus, forsmall ndp, an approximation to equation 5.18 an be obtained asTalg � NloopsNtestsO(ne tsim�t ns) (5.19)and for large ndp, a similar approximation is obtained asTalg � NloopsNtestsO(n2sndp): (5.20)We would also like to emphasize that for non-linear models usually Tpe �Tsim.Based on the analysis of the omputational time above, we an give a roughestimate of the di�erene in running time between Test model I and II.In those ases we assume that Nloops equals its typial value aording toequation 5.11. This atually turns out to be true for our test ases. ForTest model I, nr = 3, ns = 3 and ne = 3, and for Test model II, nr = 5,ns = 5 and ne = 5. ndp is proportional to ne, sine the number of data38



points in eah experiment is onstant. Using equation 5.19, the di�erene inomputational time would approximately be a fator of 13 when the numberof data points per experiment is 8 or 16. Using equation 5.20 and onsidering201 data points per experiment, the same fator would approximately be 21.The running time of the algorithm on Test models I and II are given in theresults setion (5.7).Sine we use an heuristi approah and the inrease of omputational e�ortis typially polynomial w.r.t. number of substanes and amount of exper-imental data, we argue that signi�antly larger models than Test model IIare possible to identify with reasonable omputational e�ort using this or asimilar algorithm.5.7 Test resultsThe algorithm has been implemented in Java as a part of the integratedenvironment (hapter 6). A linear algebra pakage for Java, JAMA [36℄,was used for basi linear algebra manipulations. As mentioned before, Eu-ler's method has been used for simulations. A more aurate method, the�fth order Runge-Kutta Method with adaptive step-size [32℄ has also beenemployed, both to produe experimental data and to run the simulations inthe algorithm. However, for our present purposes the hoie of integrationmethod did not give an evident e�et of the performane of the algorithm.For that reason, only Euler's method is used to produe the test results.The performane of the algorithm is presented in terms of test runs of Testmodels I and II. All tests were run on a Sun Enterprise 450, Dual UltraSpar300 MHz, 512 MB RAM.Results with deterministially simulated dataWe �rst onsider experimental data simulated deterministially and withoutany noise (see setion 4.2). In order to test the algorithm under best possibleonditions, all (201) simulated data points of eah experiment served asinput. In this ase the trivial linear interpolation was used, instead of theubi spline interpolation. This is beause the data is simulated using Euler'smethod and therefore the forward di�erene (equation 4.2) is the exat one.The algorithm was able to orretly reonstrut both the struture and theparameters of Test model I and II from the initial strutures (�gure 5.1) andthe experimental data given.In order to test the algorithm under more realisti onditions, the number ofexperimental data points per experiment was redued. In this ase, the ubispline interpolation was used. For both Test model I and II the number of39



data points per experiment ould be redued down to eight before the orretstruture was not found any more. See table 5.2 and 5.3 for detailed results.The running time of the algorithm is also presented in the tables. Therunning times of Test model I and II di�er by a fator of 16, 10, and 15for the three di�erent test runs with di�erent number of data points. Thosefators are reasonable onsidering the theoretial alulation in setion 5.6,where the fators were roughly alulated to 21, 13 and 13 respetively.Type Substanes Corret Estimated Estimated Estimatedparameter parameter parameter parametern=2011 n=16 n=81 A1 �! A2 0.04 0.040 0.026 0.0192 A1 �! A2 0.02 0.020 0.013 0.0112 A2 �! A1 0.02 0.020 0.012 0.00882 B1 �! B2 0.02 0.020 0.020 0.0172 B2 �! B1 0.06 0.060 0.061 0.0532 C1 �! C2 0.02 0.020 0.020 0.0192 C2 �! C1 0.06 0.060 0.059 0.0583 B1 �! B2 (A2) 0.10 0.10 0.10 0.0893 C1 �! C2 (B2) 0.06 0.060 0.059 0.0583 A2 �! A1 (C2) 0.20 0.20 0.13 0.10Running time (s) 16 4.4 1.9Table 5.2: Results from reonstrution of Test model I, n is the number ofdata points per experiment. Parameters Æ2 = 0:002, Æ3 = 0:001, Æ4 = 0:001and � = 0:85. 1) Linear interpolation.
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Type Substanes Corret Estimated Estimated Estimatedparameter parameter parameter parametern=2011 n=16 n=81 A1 �! A2 0.04 0.040 0.022 0.0371 D1 �! D2 0.08 0.080 0.036 0.0922 A1 �! A2 0.02 0.020 0.0092 0.0232 A2 �! A1 0.02 0.020 0.0088 0.0202 B1 �! B2 0.02 0.020 0.019 0.0142 B2 �! B1 0.06 0.060 0.056 0.0412 C1 �! C2 0.02 0.020 0.018 0.0162 C2 �! C1 0.06 0.060 0.056 0.0502 D1 �! D2 0.04 0.040 0.015 0.0542 D2 �! D1 0.08 0.080 0.032 0.0982 E2 �! E1 0.06 0.060 0.056 0.0373 B1 �! B2 (A2) 0.10 0.10 0.094 0.0684 C1 �! C2 (B2) k=0.06 k=0.060 k=0.066 k=0.071KM=0.20 KM=0.20 KM=0.34 KM=0.503 A2 �! A1 (C2) 0.20 0.20 0.10 0.203 E1 �! E2 (D2) 0.08 0.080 0.075 0.0513 E2 �! E1 (B2) 0.14 0.140 0.13 0.089Running time (s) 260 44 28Table 5.3: Results from reonstrution of Test model II, n is the number ofdata points per experiment. Parameters Æ2 = 0:002, Æ3 = 0:001, Æ4 = 0:001and � = 0:85. 1) Linear interpolation.
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Results with stohastially simulated data with added noiseWe now onsider data simulated by the stohasti method and with mea-surement noise added. Again, we refer to Appendix B where plots of thedata are shown.To get an idea about to what extent data are disturbed, we �rst ran theparameter estimation by itself given the orret strutures of Test modelsI and II. Note that we are not running the model identi�ation algorithm.The results are presented in Appendix C, table C.1 and C.2. They showthat parameters estimated from stohastially simulated data di�er fromthe original parameters, but that the di�erene gets smaller, with data thatwere averaged over several simulations, whih is to be expeted. Data witha higher level of added noise, naturally, make the result worse.We now onsider model identi�ation from stohastially simulated data.Note that it is only the data that are simulated in a stohasti manner,the simulations within the algorithm are still deterministi. The resultsobtained for Test models I and II are summarized in table 5.4 and 5.5. Boththe struture of Test model I and II were identi�ed using data averaged fromseveral stohasti simulations. The models were almost fully identi�ed usingdata with moderate levels of added noise. For some of the non-identi�edreations, the orresponding reation of type 4 was found instead of theorret reation. Thus, the prinipal struture of the pathway, but not theorret kineti behaviour was identi�ed.The reason why the orret struture is not found in some ases is beause ofthe noisy data. The struture found gives an error (aording to our urrenterror funtion 5.1) that is lower than the error of the orret struture. Wenote that adjustment of the error funtion may improve the ability of thealgorithm to �nd the orret struture. We also note that the reations thatare not found by the algorithm generally have small rate onstants.The running times of the algorithm are similar to those presented in table5.2 and 5.3.
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Type Substanes Corret ells=50 ells=50 ells=50 ells=50parameter =0 =0.2 =0.5 =1.01 A1 �! A2 0.04 0.027 0.025 0.021 0.0322 A1 �! A2 0.02 0.012 0.011 0.0093 0.0202 A2 �! A1 0.02 0.012 0.011 0.0086 0.0172 B1 �! B2 0.02 0.018 0.031 0.036 0.0452 B2 �! B1 0.06 0.054 0.080 0.088 0.0162 C1 �! C2 0.02 0.012 0.019 0.029 -2 C2 �! C1 0.06 0.036 0.058 0.090 -3 B1 �! B2 (A2) 0.10E-3 0.093E-3 - - -3 C1 �! C2 (B2) 0.06E-3 0.038E-3 - - -3 A2 �! A1 (C2) 0.20E-3 0.13E-3 0.12E-3 0.10E-3 -4 B1 �! B2 (A2) - - k=0.13 k=0.17 -- - KM=580 KM=810 -4 C1 �! C2 (B2) - - k=0.062 k=0.13 -- - KM=480 KM=810 -4 A2 �! A1 (C2) - - - - k=0.25- - - - KM=9904 B2 �! B1 (A1) - - - - k=0.041- - - - KM=290Table 5.4: Typial results from model identi�ation of Test model I givenstohasti data. ells = number of ells (simulations) from whih the averagevalue is alulated.  = measurement noise onstant (see equation 4.1).The symbol - indiates that a reation is not present in the struture. Thefour last reations are not inluded in the orret struture. The numberof experimental data points per experiment is 25 in all runs. ParametersÆ2 = 0:002, Æ3 = 0:001E � 3, Æ4 = 0:001E � 3 and � = 0:9.
43



Type Substanes Corret ells=50 ells=50 ells=50 ells=50parameter =0 =0.2 =0.5 =1.01 A1 �! A2 0.04 0.028 0.027 0.021 0.0211 D1 �! D2 0.08 0.050 0.049 0.045 0.0392 A1 �! A2 0.02 0.014 0.013 0.011 0.0212 A2 �! A1 0.02 0.013 0.013 0.0093 0.0142 B1 �! B2 0.02 0.020 0.027 0.040 0.00602 B2 �! B1 0.06 0.061 0.065 0.10 0.0162 C1 �! C2 0.02 0.018 0.014 0.040 -2 C2 �! C1 0.06 0.054 0.042 0.12 0.00182 D1 �! D2 0.04 0.025 0.025 0.023 0.0212 D2 �! D1 0.08 0.049 0.048 0.044 0.0382 E2 �! E1 0.06 0.060 0.034 - -3 B1 �! B2 (A2) 0.10E-3 0.10E-3 - - 0.026E-34 C1 �! C2 (B2) k=0.06 k=0.064 k=0.047 k=0.19 -KM=200 KM=340 KM=270 KM=630 -3 A2 �! A1 (C2) 0.20E-3 0.14E-3 0.13E-3 0.11E-3 -3 E1 �! E2 (D2) 0.08E-3 0.080E-3 0.048E-3 - -3 E2 �! E1 (B2) 0.14E-3 0.14E-3 0.083E-3 - -4 B1 �! B2 (A2) - - k=0.12 k=0.22 -- - KM=780 KM=1000 -4 A2 �! A1 (C2) - - - - k=0.095- - - - KM=3203 C1 �! C2 (B2) - - - - 0.0053E-33 E1 �! E2 (D1) - - - - 0.0048E-33 E2 �! E1 (B1) - - - - 0.0064E-3Table 5.5: Typial results from model identi�ation of Test model II givenstohasti data. ells = number of ells (simulations) from whih the averagevalue is alulated.  = measurement noise onstant (see equation 4.1).The symbol - indiates that a reation is not present in the struture. The�ve last reations are not inluded in the orret struture. The numberof experimental data points per experiment is 25 in all runs. ParametersÆ2 = 0:002, Æ3 = 0:001E � 3, Æ4 = 0:001E � 3 and � = 0:9.
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5.8 Extension to handle an inomplete datasetThe parameter estimation presented in setion 5.2 will not do for an in-omplete experimental dataset, where data from at least one substane ismissing. In an �rst attempt to show the feasibility of methods of this kindwhen some of the data is missing we apply a more general method, Powell'smethod [32℄. It minimizes the error funtion by searhing the full parameterspae for a given model struture. In general, Powell's method is used to�nd a parameter set that minimizes a funtion, for whih the gradient annot be alulated. The searh starts at a point P in the N-dimensional pa-rameter spae, and proeeds from there in some vetor diretion. In order toalulate the length of the step, a line minimization sub-algorithm is alled.The method onsists of sequenes of suh line minimizations. At eah step,the next diretion to try is hosen. This is done by testing several (N) di-retions and alulate the best possible diretion (by an heuristi funtionof the test results). For a more thoroughly desription of Powell's method,we refer to [32℄.This approah is more aurate than the former parameter estimation method(setion 5.2), beause the orret error funtion is minimized. However, thedrawbak is a dramatially extended omputational time. The algorithmmakes several funtion evaluations. In order to evaluate the error funtion,the model must be simulated and the error alulated. Thus, most of theomputational time is spent on simulation and error alulation. The prin-iple of the model identi�ation algorithm is not a�eted by the hange ofparameter estimation method.An inomplete dataset was reated by removing the experiments [B2, wild-type, step(20)℄ and [B2, Gene deletion C, step(20)℄ from the set of experi-ments belonging to Test model I. The algorithm suessfully identi�ed theparameters given the orret struture.It was also possible to reonstrut the struture of Test model I from theredued dataset. In this ase, the steady-state onentrations of B1 and B2were assumed known. Furthermore, the input struture presented in �gure5.1 was slightly modi�ed. The reation C1 �! C2 (B2) was added. Withoutthis hange substane B would have no onnetion to the other substanes inthe model. We would also like to emphasize that it is impossible to preditboth struture and parameters of a model, if a substane that misses datahas no strutural onnetion to other substanes. The running time wasabout 8 hours. Test model II was not tested with an inomplete dataset,sine the present algorithm is not fast enough.To summarize, we have demonstrated that it is possible to run the modelidenti�ation algorithm with a redued data set. The omputational time is45



dramatially inreased, but this was not our main fous at this stage. It isprobably possible to signi�antly redue the omputational time of similaralgorithms in the future.
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Chapter 6The prototype software tool
The prototype software tool realizes the integrated data simulation andmodel identi�ation environment presented in �gure 1.2 in hapter 1. Itis possible to work with models of biologial systems and experimental datawithin the same appliation. These two omponents are ombined by thepossibility to run simulations and use the model identi�ation algorithm togo bakwards from experiment to model. The software tool is not builtfor a spei� biologial type of system, but is intended to be as general aspossible.

Figure 6.1: Snapshot of the model panel.There are two main panels within the appliation: the model panel and the47



Figure 6.2: Snapshot of the experiment panel.experiment panel. In the model panel, a model an be built by de�ning aset of substanes and by onneting them with reations. In �gure 6.1, Testmodel II is shown. All substanes and reations are represented as boxesin the graphial user interfae. When a substane box or a reation box isdouble-liked, a dialog for setting the attributes (parameters et.) appears.To reate and remove objets, Add and Remove in the main menu are used.In the experiment panel, experiments are spei�ed and visualised. In �gure6.2, the spei�ation of the experiments for Test model II is shown. Allattributes of an experiment are easily set within the appliation.From the model panel, it is possible to simulate the model. Two simulationalgorithms are implemented, Euler's method and �fth order Runge-KuttaMethod with adaptive step-size. In �gure 6.3 a plot frame of the experimentaldata of Test model II is shown. The plot frame shows up at the end ofa simulation. The analysis algorithm is started and monitored from ananalysis panel, whih is also shown in �gure 6.3.The main target group of the software tool are biologists and bioinformati-ians. In the future development the usability of the software system isof great importane. That involves improvements of the graphial user in-terfae, but also to arefully deide whih mathematial and algorithmidetails, that should be presented for the user and whih should be hidden.To fully make use of the expertise of the biologists, they should be foredto translate their knowledge into mathematial expressions valuable for a48



Figure 6.3: Snapshot from the software tool showing a plot frame (upper)and the ontrol frame for the analysis algorithm (lower).model. Partly, that an be done by letting the software tool ask relevantquestion in a non-mathematial language.Another important issue in the future development of the software is toimprove the eduational use of the program, for biologists and bioinformati-ians, but also for mathematiians and omputer sientists. A software toolould help people from these disiplines to learn more about the other sub-jets. The tool ould also failitate ommuniation between these groupswhen exhanging ideas.The prototype software tool is implemented in Java and is thus portablebetween di�erent operating systems.
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Chapter 7Disussion
The main result of this thesis is an algorithm for reonstruting signallingpathways from time series data. The algorithm reonstruts both the stru-ture and the parameters of two test models given deterministially simulateddata. The algorithm takes advantage of data from several di�erent experi-ment ategories at the same time. It is possible to inlude non-linear rea-tions w.r.t. the parameters by applying a non-linear parameter estimationalgorithm.The test results indiate that the algorithm an potentially handle biologi-ally realisti situations. First of all, the number of measurement points anbe redued to aeptable levels. Seondly, the algorithm an handle datathat are simulated stohastially and that have measurement noise addedto them. Finally, we have demonstrated that it is possible to use an inom-plete dataset in order to identify a model. We would like to emphasize thatthe worst-ase model identi�ation senarios have been tested, sine only abasi initial struture has been assumed. In reality, parts of the strutureare usually known.The main e�ort in the development of the model identi�ation algorithm hasbeen to inrease its speed, both in order to make it attrative to users andto enable us to study its behaviour onveniently. The running time of thealgorithm is onsiderably lower than other model identi�ation algorithmsin the literature.7.1 Modelling of signalling pathwaysIn this work only four di�erent types of reations are used. As mentionedin hapter 3, this is a too small set to fully model a signalling pathway.However, it is straightforward to inlude additional reation types. For51



instane, a two-substrate and two-produt reation ould be added. It is alsopossible to have di�erent reation types with the same variables, somethingthat was demonstrated by the two atalysed reations (reation types 3 and4).It is not only the available number of reation types that limits the possi-bility to reate realisti models. Also the response of the pathway must betaken into onsideration in order to properly model the HOG pathway. Thepathway stimulates glyerol prodution in order to inrease the intraellularturgor pressure, and a model must probably inlude parts of the metabolismto be realisti. Thus, the set of available reations has to be extended inorder to handle transmembrane transport (ytosol to nuleus), transrip-tion (DNA to mRNA) and translation (mRNA to protein). Furthermore, athermodynami model of osmoregulation inluding variables suh as turgorpressure and volume must probably also be inluded.7.2 Analysis of real experimental dataAt this stage the algorithm has not been tested on real experimental datafrom the HOG pathway. As mentioned in setion 7.1, the modelling itselfdemands additional omponents in order to be realisti. Besides, there is agap between the struture and data requirements of the algorithm on oneside and the available experimental data on the other side. The gap is due toseveral di�erent auses, whih indiate the limitations of the present versionof the algorithm, as well as the limitations of available experimental data.The limitations disussed below are divided into two groups: minor andmajor limitations.Minor limitations� The algorithm allows at most two states of eah substane. In biolog-ial systems several states may be present. For instane, in the HOGsignalling pathway there are at least three di�erent states of Hog1;Hog1, Hog1P and Hog1PP . It is easy to allow for several states inthe algorithm, but the demand for data would inrease. In the aboveexample, data for at least two of the three states would be neessary.In general, data from (n-1) out of n states are required.� The algorithm requires experimental data points given with orretunits (non-normalised). In reality, time series data are normalisedbetween 0 and 1. Although the data is normalised, the struture isnot dependent of the saling. Thus, the struture will be orret but52



the parameters will not. Resaling of the parameters might adjustfor that, if partial knowledge of the orret model is known. Suhknowledge inlude steady-state distribution of the states, that is, whatfration of the moleules is in state i at steady state. In priniple, itis easy to onstrut suh an algorithm.� The total onentration Xtot of eah substane is assumed known inthe algorithm. The real onentrations are not known but an beestimated from the literature, see setion 2.4.� The priniple of inrementally adding one reation to the model, maynot be suÆient in all situations. It is possible to ome up with sit-uations where it is neessary to test all di�erent ombinations of tworeations in order to get the orret result. It is simple to hange thetop level algorithm to do this. The ost is an inrease in omputingtime.Major limitations� The algorithm requires time series data for all substanes in the modelin order to be fast in pratie. Presently, experimental time seriesdata is only available for a ouple of the substanes involved in theHOG signalling pathway. Missing data is a fundamental algorithmidiÆulty, whih an be takled in several di�erent ways. In general,algorithms that an handle this are onsiderably slower, omparedto the �rst algorithm presented (based on the least-square methodparameter estimation).Using Powell's method for parameter estimation, we demonstrate thatit is possible to run the algorithm with an inomplete dataset, but it ispresently too slow to be attrative. However, there are ways of speed-ing up the method. It might also be possible to use the least-squareapproah for all possible situations and then automatially swith tomethods like Powell's method for unresolved sub-problems.We would also like to emphasize that there are other ways to dereasethe omplexity of the analysis. For example, it ould be possible toinlude onstraints on the full model in order to limit the spae of possi-ble models. Suh onstraints ould be extrated from publi databasesof the yeast proteins. The main diÆulty is that the information isgiven in textual format. Thus, one has to translate the informationinto mathematial or logial form.� Due to limited resoures, time series data from biologial experimentsare usually olleted from less than ten measurement points. Besides,53



there are several soures of measurement error as disussed in setion4.2. This further restrits the apaity of the algorithm working onreal data. The solution to these problems is not easy. Further develop-ment of the used error funtion (and/or the termination riterion), agood model of the measurement errors, proper �lter and interpolationmethods et. help to extrat the information. From the experimentalside, new tehniques suh as protein hips, may lead to larger datasetswith higher quality.� As mentioned, the number of signalling proteins in a ell is not veryhigh. Therefore, stohasti utuations may be large enough to a�etthe system. To measure the average value of several ells lead to a moredeterministi shape of the experimental time series, but a systematierror may be present. This is espeially true, if there are non-linearreations in the model. As an example, the e�ets of stohasti u-tuations of proteins in E. oli ells have been studied by Bray ando-workers [28, 37, 38, 39℄. They have built a di�erential equationmodel of the biohemial reation steps behind the way the swimmingbehaviour of the ells. By introduing stohastiity into the model,they found that the model an predit the distribution of individualells with di�erent swimming behaviours. This example highlights theneed to onsider stohasti utuations in signalling systems. In orderto inlude stohasti aspets in the model identi�ation algorithm, es-timates of the varianes must be onsidered. One way of doing thisis to perform series of stohasti simulations. However, that would bea very time-onsuming strategy, sine stohasti simulation requiresmore omputing time than deterministi simulation do.The result presented in this thesis is an important �rst step in order torealize the future plans, where real biologial systems and real experimentaldata will be onsidered.
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Appendix APlots of deterministi data
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Figure A.1: Test model 1, deterministi simulation of wild-type experiments,step(20) as physial e�et.
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Figure A.2: Test model 2, deterministi simulation of wild-type experiments,step(20) as physial e�et.
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Figure A.3: Test model 2, deterministi simulation of wild-type experiments,stairs(20,50) as physial e�et. 56



Appendix BPlots of stohasti data
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Figure B.1: Test model 1, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment, 1ell, no measurement noise (measurement noise onstant=0).
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Figure B.2: Test model 1, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment,average values of 50 ells, no measurement noise (measurement noise on-stant=0).
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Figure B.3: Test model 1, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment,average values of 50 ells, ,measurement noise is added (measurement noiseonstant=0.2). 58
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Figure B.4: Test model 1, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment,average values of 50 ells, measurement noise is added (measurement noiseonstant=0.5).
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Figure B.5: Test model 1, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment,average values of 50 ells, measurement noise is added (measurement noiseonstant=1). 59
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Figure B.6: Test model 2, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment, 1ell, no measurement noise (measurement noise onstant=0).
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Figure B.7: Test model 2, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment,average values of 50 ells, no measurement noise (measurement noise on-stant=0). 60
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Figure B.8: Test model 2, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment,average values of 50 ells, measurement noise is added (measurement noiseonstant=0.2).
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Figure B.9: Test model 2, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment,average values of 50 ells, measurement noise is added (measurement noiseonstant=0.5). 61
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Figure B.10: Test model 2, stohasti simulation of wild-type experiments,step(20) as physial e�et. 25 measurement points for eah experiment,average values of 50 ells, measurement noise is added (measurement noiseonstant=1.0).
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Appendix CParameter estimation fromstohasti data
Type Substanes Corret Estimated Estimated Estimatedparameter parameter parameter parameterells=1 ells=50 ells=50=0 =0 =0.51 A1 �! A2 0.04 0.026 0.026 0.0292 A1 �! A2 0.02 0.012 0.012 0.0132 A2 �! A1 0.02 0.012 0.012 0.0132 B1 �! B2 0.02 0.0083 0.019 0.00532 B2 �! B1 0.06 0.021 0.060 0.0102 C1 �! C2 0.02 0.0012 0.013 0.000512 C2 �! C1 0.06 0.0034 0.039 0.00143 B1 �! B2 (A2) 0.10E-3 0.0037E-3 0.040E-3 0.0034E-33 C1 �! C2 (B2) 0.06E-3 0.13E-3 0.13E-3 0.14E-33 A2 �! A1 (C2) 0.20E-3 0.036E-3 0.10E-3 0.016E-3Table C.1: Results from parameter estimation of Test model I given theorret struture and stohasti data, the number of experimental data pointsper experiment is 25 in all runs. ells = number of ells (simulations) fromwhih the average value is alulated.  = measurement noise onstant (seeequation 4.1).
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Type Substanes Corret Estimated Estimated Estimatedparameter parameter parameter parameterells=1 ells=50 ells=50=0 =0 =0.51 A1 �! A2 0.04 0.025 0.028 0.0211 D1 �! D2 0.08 0.044 0.050 0.0452 A1 �! A2 0.02 0.013 0.014 0.0112 A2 �! A1 0.02 0.012 0.013 0.00932 B1 �! B2 0.02 0.0073 0.020 0.00802 B2 �! B1 0.06 0.018 0.061 0.0222 C1 �! C2 0.02 0.014 0.018 0.0402 C2 �! C1 0.06 0.041 0.054 0.122 D1 �! D2 0.04 0.022 0.025 0.0232 D2 �! D1 0.08 0.043 0.049 0.0442 E2 �! E1 0.06 0.025 0.060 0.0203 B1 �! B2 (A2) 0.10E-3 0.029E-3 0.10E-3 0.036E-34 C1 �! C2 (B2) k=0.06 k=0.036 k=0.065 k=0.19KM=200 KM=120 KM=340 KM=6303 A2 �! A1 (C2) 0.20E-3 0.13E-3 0.14-3 0.11E-33 E1 �! E2 (D2) 0.08E-3 0.039E-3 0.080E-5 0.029E-33 E2 �! E1 (B2) 0.14E-3 0.070E-3 0.14E-3 0.051E-3Table C.2: Results from parameter estimation of Test model II given theorret struture and stohasti data, the number of experimental data pointsper experiment is 25 in all runs. ells = number of ells (simulations) fromwhih the average value is alulated.  = measurement noise onstant (seeequation 4.1).
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