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Modeling and identi�ation of biologial systems with emphasis onosmoregulation in yeastPeter GennemarkDepartment of Computer Siene and EngineeringChalmers University of Tehnology and G�oteborg University
AbstratThis thesis deals with two topis in the area of systems biology. The �rsttopi, model identi�ation, onerns the problem of automatially identify-ing a mathematial model of a biohemial system from experimental data.We present algorithms for parameter estimation and model seletion thatidentify both the struture and the parameters of a di�erential equationmodel from experimental data. The system is designed to handle problemsof realisti size, where reations an be non-linear in the parameters andwhere data an be sparse and noisy. To ahieve omputational eÆieny,parameters are estimated for one equation at a time, giving a fast and a-urate parameter estimation algorithm ompared to other algorithms in theliterature. The model seletion is done with an eÆient heuristi searh al-gorithm, where the struture is built inrementally. The main strengths ofour algorithms are that a omplete model, and not only a struture, is iden-ti�ed, and that they are onsiderably faster ompared to other identi�ationalgorithms.The seond topi onerns mathematial modeling of osmoregulation in Sa-haromyes erevisiae, budding yeast. This system involves the biophysialand biohemial responses of a ell when it is exposed to an osmoti shok.We present two di�erent di�erential equation models based on experimentaldata of this system. The �rst model is a detailed model taking into aountan extensive amount of moleular detail, while the seond is a simple modelwith less detail. We demonstrate that both models agree well with experi-mental data on wild-type ells. Moreover, the models predit the behaviorof other genetially modi�ed strains and input signals.Keywords: model identi�ation, model seletion, parameter estimation, or-dinary di�erential equations, Saharomyes erevisiae, osmoti stress, HOGsignaling pathway. iii
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1 IntrodutionThe adaptive responses of a living ell to internal and external signals areontrolled by omplex networks of proteins a�eting for example transrip-tional responses and metaboli proesses. On a basi level, the strutureof suh a network an be desribed by a graph, see e.g. Figure 1. Thisgives a useful overview of the network, but it is not a omplete desription,sine onentrations and the dynami behavior in time and spae are notdesribed. Despite this fat, this is the level of detail at whih biologiststraditionally model biohemial systems. In part this is due to lak of quan-titative experimental data and the diÆulty in manually inferring the modelfrom suh data.
Sho1

?

Ptc1−3

Ptp2−3

Ssk22Ssk2

Sln1

Ydp1

Ssk1

Hog1

Pbs2

Rck2

Ste11

Ste20 Ste50

?

Cdc42

Cdc24

Cell wall

NucleusFigure 1: Traditional pathway model of the main omponents in the HighOsmolarity Glyerol (HOG) signaling pathway in S. erevisiae (Hohmann2002). The proteins (verties) are onneted by interations (edges). Be-ause of impreise meaning of the interations and lak of dynami informa-tion, models like these only give a shemati overview of the system. Detailsof the HOG pathway are presented in Setion 6.To reate more powerful desriptions, dynami mathematial models basedon biohemial rate equations an be onsidered. One of several basi mo-tivations for reating a more omplete model is to simulate the system.For a suÆiently exat model it then beomes possible to predit the be-havior of the real system as well as modi�ed systems. In ell biology, atypial experiment involves variation of one or several input variables, suh1



as temperature, osmolarity and drug onentration. Besides, the ell an begenetially modi�ed, e.g. by deletion or over-expression of a ertain gene.The use of systemati experimental tehnologies in order to develop andanalyze mathematial models of omplex biologial systems onstitutes thebase of systems biology, a researh �eld that has rapidly evolved in reentyears (Kitano 2002a, 2002b). This involves a shift from studying spei�ellular omponents like a single gene or a single protein to emphasizingsystems level studies of ellular proesses. The development of systems biol-ogy has been driven by the advanement of experimental methods. Severalmajor breakthroughs like the genome sequening and the development ofhigh-throughput and large-sale tehniques, suh as miro-arrays, o�er agreat potential for obtaining a suÆient volume of data (Zhu et al. 2002).At the same time, methods for obtaining high-quality data, suh as quanti-tative mass spetrometry, have beome more eÆient (Aebersold et al. 2003,Mkenzie et al. 2003). Another key omponent in systems biology is thedevelopment of systems approahes for modeling (Westerho� et al. 2004),like Metaboli Control Analysis (Heinrih et al. 1977, Kaser et al. 1973)and Biohemial Systems Theory (Savageau 1976). In ombination with therapid inrease of omputational power, suh approahes o�er a frameworkfor detailed mathematial modeling of omplete systems. Reently, severalnew omputational approahes, like the systems biology mark-up languageSBML (Huka et al. 2003) and the software environment for whole-ell sim-ulation, E-ell (Tomita et al. 1999, Takahashi et al. 2003), have also beendeveloped in this area.This thesis deals with two separate but related topis within systems biology:Automati model identi�ation. This topi onerns the problem ofautomatially identifying a mathematial model from data. Identi�ationomplements data simulation as illustrated in Figure 2, and loses a loop be-tween model and data. We present eÆient model identi�ation algorithms,that reonstrut an ordinary di�erential equation (ODE) model from timeseries measurement of individual ompounds (Paper 1). The performane ofthe algorithms has been evaluated on three previously published biologialmodels. We show that our approah is more aurate and onsiderably fasterompared to existing methods. Model identi�ation involves both estimat-ing the parameters of a model and seleting the model struture. In thisintrodution we onsider these two issues in Setions 4 and 5, respetively.Modeling osmoregulation in yeast. We present work on modeling ofosmoregulation in the yeast Saharomyes erevisiae. This work has beendone in ollaboration with experimentalists at G�oteborg University. Os-moregulation involves the biophysial and biohemial responses of a ellwhen it is exposed to an osmoti shok, see Figure 3 for an overview. Wepresent two di�erent ODE models based on experimental data of this sys-2
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Figure 2: The desired relationship between a model and data involves twomain funtionalities: data simulation and model identi�ation.tem. The �rst model (Paper 2) is a detailed model taking into aount anextensive amount of moleular detail, while the seond (Paper 3) is a sim-ple model with less detail. We demonstrate that both models agree wellwith experimental data on wild-type ells. Moreover, the models preditthe behavior of other genetially modi�ed strains. In this introdution, wedesribe osmoregulation in Setion 6.
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mati means for estimating the parameters. Hene, parameter estimation isa reurrent theme in this thesis. Furthermore, regardless of approah usedfor model onstrution, the problem of hoosing a proper level of detail,i.e. to avoid over- and under�tting when deiding on the model, is of greatimportane and this is also an issue in ommon.This extended introdution is intended to give a bakground to the papersand also to provide further perspetives that are not present in the papersthemselves.The rest of the introdution is strutured as follows. The next setion isdevoted to a brief introdution to mathematial modeling of biologial sys-tems and in Setion 3 we fous on ODE models for biohemial systems. Inthe following two setions we onsider parameter estimation and model se-letion, respetively. In Setion 6 we desribe our modeling e�orts on yeastosmoregulation. Finally, in Setion 7 the main ontributions of this thesisare summarized.
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2 Modeling biologial systemsThis setion introdues basi onepts and approahes for the modeling ofbiologial systems. In the ontext of this thesis we restrit ourselves tobiologial systems in ell biology, although most of the ontent also appliesto other biologial modeling areas, suh as population dynamis. In thefollowing setions we will also refer to biohemial systems, whih an beonsidered a sublass of biologial systems. In a biohemial system weonly deal with moleules suh as proteins and metabolites. In Paper 1 weonsider biohemial systems, while the models of Paper 2 and 3 an beviewed as biologial models sine biohemial and biophysial modeling areombined.An essential issue in all modeling is to de�ne the sope of the model. Thisinvolves speifying whih subsystems and whih variables that should on-stitute the model. A natural goal is to �nd a system that is reasonablywell isolated under the onsidered experimental onditions. Obviously thisis a very diÆult task, sine all proesses in the ell are more or less depen-dent on eah other. As an example, the level of a partiular enzyme anbe assumed onstant for a short time interval. However, for an experimentstarting with some environmental stimulus, the stress may trigger hangesin gene expression that alter the ativity of the enzyme. This is espeiallyimportant for experimental senarios ranging in the order of hours. It istherefore natural to try to identify all variables that are adjusting to theexperimental perturbation, for instane by large-sale experiments.Another important issue in modeling is to onsider what amount and qualityof experimental data is available. This inuenes the hoie of modelingapproah as well as the level of detail of the model. A variety of modelingapproahes with di�erent preision are used for modeling and analysis ofbiologial systems. In general, a more preise approah requires more preiseand extensive data to be identi�ed. Naturally, a more preise approah alsoo�ers more realisti and useful preditions. To give an overview, it is usefulto distinguish three basi modeling approahes:Boolean networks. This is the most oarse approah in whih eah vari-able is either 'on' or 'o�'. For instane, when modeling a geneti networka gene is either fully expressed or not expressed at all. Using boolean fun-tions one de�nes how the system deterministially goes from one state tothe other. As an example, gene A is 'on' in the next state given that gene Band gene C are 'on' in the urrent state. In this formalism omputation isobviously rapid - the updates of all variables our synhronously and onlyboolean funtions are evaluated. From any initial state, a boolean networkreahes either a steady state or a state yle in �nite time.5



Typially, boolean networks have been applied to geneti networks wherethe number of variables is large and where data is sparsely sampled andnoisy (Huang 1999). There are several methods available for identi�ationof boolean networks from experimental data (Liang et al. 1998, de Jong2002). In order to derease the omplexity of identi�ation one an setan upper bound on the number of inputs to eah funtion. The biologialinterpretation of this is that eah gene an only be inuened by a subset ofother genes.Obviously, boolean network models are inaurate sine variables are dis-rete and there is no preise notion of time. Therefore, this approah ismainly appliable to systems were a steady state is reahed.Ordinary di�erential equations (ODEs). ODEs deal with ontinuousvariables that typially assume real-valued onentrations. In general, asystem is desribed asX 0i(t) = fi(X; I); i = 1:::n (1)whereX = [X1 : : : Xn℄ is the state vetor of onentrations and I = [I1 : : : Im℄is a vetor of input variables, and fi are typially non-linear funtions. Thesefuntions usually inlude several parameters (rate onstants) that an eitherbe experimentally determined or estimated from various data. We generallynote that it is diÆult to measure kineti rate onstants experimentallyand that parameter estimation is a omplex optimization problem for ODEmodels of realisti size.The main feature of a system of ODEs is that it an be simulated in orderto obtain deterministi time series for the variables. Standard numerialmethods exist for this purpose. The input to suh a simulation is the ODEs,values for the parameters and initial values for all variables.ODEs have been widely used to model biologial systems. For instane,the metabolism and the ell yle regulation have been extensively modeledusing ODEs (Chen et al. 2004, Rizzi et al. 1997). We note, however, thatthere are few identi�ation methods available for ODE models. In Setion3 we give a more omprehensive introdution to ODEs.Stohasti models. This is a very detailed modeling approah, in whiheah variable represents the number of moleules. The state hanges dis-retely, but how and when is determined stohastially. There are standardmethods to perform stohasti simulation, although they are typially veryomputer intensive (Gillespie 1976, Gibson et al. 2000, Meng et al. 2004).One suh simulation gives one potential behavior of the system. By repeat-ing the simulation many times, we obtain an approximation to the probabil-ity distribution of the system over time. Hene, we an tell the probabilityof having exatly ni moleules of variable Xi at time t.6



Stohasti modeling is typially applied when the number of moleules islow and the assumption of ontinuously varying onentrations beomes tooinexat. In signaling pathways, for example, stohasti utuations may belarge enough to a�et the system. To measure the average value of severalells leads to a more deterministi shape of the experimental time series, buta systemati error may be present. This is espeially true, if there are non-linear reations in the system. As an example, the distribution of individualells with di�erent swimming behaviors ould be predited by introduingstohastiity into a model of signaling proteins in E. oli (Morton-Firth etal. 1998, Levin et al. 1998, Abouhamad et al. 1998). Naturally, anotherway of dealing with the problem of inhomogeneous ell populations is toonsider single-ell experiments (Peng et al. 2004).Compared to ODE models, stohasti models are better approximations ofthe biohemial reality, but also require onsiderably more omputational ef-fort to be simulated. Furthermore, ODE models give a deterministi answerthat may involve a systemati error, while stohasti models give a proba-bilisti answer. The hoie between ODEs and the stohasti approah istherefore partly a trade-o� between omputational eÆieny and aurayin the simulations. We note, however, that for many systems the aurayobtained by ODEs is a good approximation, sine the e�ets of stohastiitydo not inuene the behavior of the system at the observed level of detail.In addition, it is often the ase that the stohastiity itself is not essentialto the biologial funtionality of the system.We �nally note that there are also several intermediate approahes betweenthe basi ones presented above (de Jong 2002, Bower et al. 2001).
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3 ODE models of biohemial systemsThe most widespread formalism to model dynamial systems in siene andengineering is ODEs and in this thesis we only onsider this approah.Therefore, we will introdue the use of ODEs in biohemial modeling inmore detail.Consider the following biohemial reation for the transition of ompoundS to P with rate onstant kS k�! PThe rate of the reation is obtained by the mass ation law as k[S℄, where[S℄ denotes the onentration of S. For simpliity, we will from now on skipthe brakets for denoting onentration. The ODEs for the variables anthen be obtained asP 0(t) = �S0(t) = kS(t): (2)Similarly, if the reation is assumed atalysed by enzyme E, the bilinearreation mehanism is the simplest possibleP 0(t) = �S0(t) = kS(t)E(t): (3)However, a more detailed analysis is often required in order to model anenzymati reation. In partiular, Mihaelis-Menten aounts for the kinetiproperties of many enzymes (Stryer 1995). In this approah, a substrate S isturned into a produt P by an enzyme E aording to the following reationE + S k1�! �k�1 ES k2�! E + Pwhere ES is a transition state omplex, k1 and k�1 are the forward andbakward reation onstants of the �rst step, respetively, and k2 is thereation onstant of the seond step of the reation. By assuming thatS � E, whih is usually valid for metaboli systems, and by assumingatalyti steady state, that is ES0(t) = 0, we obtain (Stryer 1995)P 0(t) = �S0(t) = VmaxS(t)S(t) +KM (4)8



where Vmax and KM are onstants. We note that a linear approximation ofthe same form as (3) is obtained if S � KM .To add one more level of omplexity, we introdue the mehanism of non-ompetitive inhibition, whih will be used as an example in Setions 4 and5. This is also an enzymati reation, but here the enzyme has two bindingsites: one ative site for the substrate and one regulatory site for the non-ompetitive inhibitor (Stryer 1995), see Figure 4. The enzyme an bindsubstrate at the ative site and atalyze the prodution of produt as long asthe non-ompetitive inhibitor is not bound to the regulatory site. However,one the non-ompetitive inhibitor binds at the regulatory site, the shapeof the ative site hanges so that it an no longer atalyze the reation.The enzyme will remain inhibited until the non-ompetitive inhibitor leavesthe regulatory site. Using similar assumptions as for the Mihaelis-Mentenreation, the following ODE an be derivedP 0(t) = �S0(t) = VmaxS(t)(S(t) +KD)�1 + I(t)KI � (5)where I is the inhibitor onentration and Vmax, KD and KI are onstants.
E ES

EI ESI

E  +  P

+I +I

+S

+SFigure 4: Reation mehanism for an enzymati reation with non-ompetitive inhibition (Stryer 1995). S denotes the substrate, P denotesthe produt, E denotes the enzyme and I denotes the inhibitor.Finally, we want to point out that there are several other biohemial rea-tions that an be modeled in a similar way as desribed here. One exampleis reations having several substrates and/or produts.3.1 Model examplesBy ombining a set of ompounds with reations (like the reations presentedin the previous setion), an ODE model of a biohemial system an beonstruted in the form of (1).We exemplify by two test models, whih will also be used to illustrate ertainonepts in Setions 4 and 5. The �rst model ontains one ompound that9



exists in two states, A1 and A2, and where the transition from A1 to A2 isatalysed by the input signal I, while the reverse transition ours sponta-neously, see the left part of Figure 5. Assuming simple linear kinetis, thesystem of ODEs is obtained asA02(t) = �A01(t) = k1A1(t)I(t) � k2A2(t) (6)where eah term on the right hand side orresponds to one reation. Fromnow on we will denote the form of the ODEs as the struture of the model.The model struture in ombination with values for the parameters, k1 andk2 in this ase, de�ne the omplete model.
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Figure 5: Left: Simple model of two variables and one input variable. k1and k2 are rate onstants. Right: The metaboli test system in Paper 1.I1 and I2 are input variables, S3 � S7 are measured variables, X1 �X6 arevariables orresponding to metabolites assumed bu�ered at onstant levelsand reations v1�v6 are atalysed by di�erent enzymes whih also are presentat onstant levels. All reations follow Mihaelis-Menten kinetis and v1, v2and v5 are non-ompetitively inhibited.The seond model that we onsider is the metaboli test system in Paper1, whih is originally taken from Arkin et al. (1995). This system has twoinput variables, I1 and I2, and �ve variables S3�S7. The kineti equationsall follow Mihaelis-Menten kinetis and inhibition is non-ompetitive. Theright part of Figure 5 depits the model.The system of ODEs is given in Paper 1 and here we simply illustrate by10



giving the ODE for variable S4S04(t) = v1 � v3 = S3(t)Vmax1(S3(t) +KD1)�1 + I1(t)KI1 � � S4(t)Vmax3S4(t) +KD3 (7)where Vmax1, KD1, KI1, Vmax3 and KD3 are rate onstants.Given a model, one of the fundamental things to do is to simulate it in orderto study the dynami behavior of the variables.3.2 SimulationSystems of di�erential equations are often diÆult to solve analytially, butan be simulated by numerial methods. The simplest method is Euler'smethod. The formula for this method isX(t+�t) = X(t) + �tX0(t) (8)repeated for the desired number of iterations (time). Here, �t is a onstant,typially muh smaller than the simulation interval, and again, the vetor Xorresponds to the onentration of all ompound states. We note that theformula is asymmetrial sine it advanes the solution through an interval�t, but uses derivative information only at the beginning of that interval.For more aurate integration we an onsider the Runge-Kutta method (seee.g. Press et al. 1993) and for even better auray and eÆieny standardmethods exist (Lambert 1991, Shampine et al. 1997).As an example, we onsider the model given in (6) and set the parametersas k1 = 0:05 and k2 = 0:02. Furthermore, we let the total onentration ofA1 and A2 be 1 and onsider the following input funtionI(t) = ( 1; t � 200:01; otherwise (9)Before simulating, it is often useful to alulate the initial steady states of thevariables by setting all derivatives to zero and solve for the state variables.The steady state values for A1 and A2 are obtained from (6) as 200=205 and5=205, respetively. Then, using a standard integration method (ode15s inMatlab), we obtain simulated time series data as shown in Figure 6.For an example of simulated time series data for the metaboli test systemwe refer to Figure 3 of Paper 1. 11
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Basially, the S-systems formalism is derived from (1) by splitting fi intotwo funtions as (Voit 2000)X 0i(t) = f+i (X; I)� f�i (X; I); i = 1:::n (11)where f+i reets all proesses of prodution of variable i and f�i reets allproesses of degradation of variable i. We note that these funtions typiallyare very ompliated and unknown.The funtions f+i and f�i are assumed di�erentiable and positive-valued andare spei�ed as power-law funtions using non-linear approximations. Thisis ahieved by �rst representing the funtions and variables in logarithmioordinates. Then, the funtions are approximated by Taylor series, whereonly the onstant and linear terms are retained. The linearized funtionsare �nally translated bak into Cartesian oordinates. The result of thisproess is the generi formula as given in (10).Beause of the �rst order Taylor's approximation it is diÆult to judge thevalidity of an S-system model. In priniple, the validity an be improvedby onsidering additional terms in the Taylor's approximation. However,that would inrease the number of parameters and give a less ompat formof the equations, why analysis and identi�ation would beome muh morediÆult (Guebel 2004).
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4 Parameter estimation in ODEsIn this setion we onsider the problem of assigning values to the parametersin a known model struture. For instane, in the model of (6) we want toassign values to k1 and k2.It is tehnially diÆult to measure kineti rate onstants in experiments.The origin of suh existing data is often in vitro1 experiments and it annotbe generally assumed that the orresponding values in vivo2 are the same.Besides, di�erent laboratory onditions makes it diÆult to ompare datafrom the literature. Beause of these diÆulties, only the order of magnitudeof parameters are usually available. We note that it is partiularly diÆultto obtain this kind of data for signaling pathways, mainly beause of thelow number of moleules and the fast kinetis.If the parameters of a model annot be diretly measured or found in theliterature, their values an be indiretly found by �tting the model as well aspossible to existing data, e.g. time series measurements of onentrations.In general, the parameter estimation problem an be formulated as a mini-mization of an error funtion over the parameters. This funtion is typiallya measure of goodness-of-�t to data. In Paper 1, we use the following errorfuntion for a single time series Xj ,12Xi  Xj(ti)� X̂j(ti)�j(ti) !2 (12)where i indexes the measurement points, where Xj denotes values obtainedfrom the model, where X̂j denotes experimental values, and where �j isthe standard deviation modeling the inauray in the experimental values.The total error of the model is alulated by summing the errors for all vari-ables in all experiments. Assuming independent and normally distributedmeasurement errors, (12) orresponds to the negative log likelihood, L, ofobserving the data given the model.The input to a parameter estimation method is typially a set of time seriesdata. We distinguish between omplete data, where data for all variables isavailable, and inomplete data, where data for some variables is missing. InPaper 1, we onsider arti�ial omplete time series data from one or severalexperiments. As an example, one experiment for the metaboli test systemis spei�ed by the input funtions I1 and I2 and inludes time series for1Literally "in glass." Refers to tests or reations taking plae outside a living organism,on a mirosope slide, in a test tube, et.2Literally "in life." Refers to tests or reations taking plae in a living organism.14



S3 � S7. In Papers 2 and 3, on the other hand, we use real data that isinomplete.A potential problem in parameter estimation is that it may be impossible tounambiguously determine all parameters from the onsidered data set. Onesoure for problem of ambiguity is inomplete data. Using an algorithm foralgebrai observability (Sedoglavi 2002) we an test whether the parame-ters of an ODE model in theory an be identi�ed for di�erent sets of in-and output parameters/variables. For a model that annot be identi�ed,in�nitely many values of the parameters an �t the observed data. Hene,an extended set of input and/or output variables or parameters is requiredto obtain observability. On the other hand, if the observability test suggeststhat the parameters are observable, it is important to note that this holdsfor ideal data, but may not hold for a realisti data set.Another soure for problem of ambiguity is noisy data. For instane, theparameters Vmax and KM in a Mihaelis-Menten reation (4) are diÆultto estimate from a noisy data set in whih the substrate onentration, S,is muh lower than KM . One way to solve this is to inlude additionalexperiments where higher substrate onentrations are onsidered. Thisan be ahieved either by a di�erent input signal or by employing genetimodi�ations.Finally, it is the ase that minimization of (12) is a hard optimization prob-lem for models of realisti size and omplexity, espeially when the ODEsare non-linear in the parameters. In partiular, the error funtion typiallyhas several loal minima. However, the omplexity of the searh an beredued by onsidering parameter bounds and/or onstraint funtions. Forinstane, in Papers 1 and 3 we onstrain the parameters by lower and upperbounds.In the next setion we will disuss di�erent ways of estimating parameters.4.1 The basi methodA general method to minimize (12) is:1. Try a parameter set.2. Evaluate the error funtion.3. Update the parameters aording to some rule and then repeat fromstep 2 until termination aording to some riterion, e.g. that the erroris suÆiently stable. 15



This method follows the standard way of minimizing a funtion, althoughwe note that the derivatives of the funtion with respet to the parametersare also required by some methods. Typially, a loal minimum of the errorfuntion is found, sine the parameters are iteratively modi�ed in smallsteps. Hene, only if the initial parameters an be suÆiently well guessedwe an expet to �nd a global minimum. An example of a loal method isthe steepest desent method.For ODE models the evaluation of the error funtion is usually slow, sine itrequires the entire model to be simulated for eah experiment. Sine this hasto be repeated many times, the overall method is omputationally intensivefor realisti problems. Here we also note that the derivatives of the errorfuntion with respet to the parameters an not be derived analytially.In addition to loal methods, there are global methods, whih are designedto avoid loal minima of the error funtion. We note, however, that no op-timization method an guarantee �nding a global minimum and that globalmethods typially require more omputational time than loal methods.Some examples of global methods are simulated annealing and evolutionaryalgorithms (see also Pint�er (1996) and Press et al. (1993)).Conerning the partiular appliation to biohemial modeling, Moles et al.(2003) evaluate seven di�erent global methods on a biohemial model in-luding 36 parameters and simulated data from that model. The diÆultyof this partiular problem is that the searh spae is large and that theODEs are highly non-linear in the variables as well as in the parameters. Ofthe seven methods used, one was deterministi and the remaining six werestohasti methods. Only two of the methods obtained parameters loseto the true values. Both these methods are based on evolutionary ompu-tation. Basially, in evolutionary omputation, a population of parametervetors (individuals) are maintained. For eah individual the error is al-ulated and a new population of the same size is reated by reombiningthe best individuals of the urrent population. This proedure is then re-peated aording to the basi algorithm. In the study by Moles et al. thebest method, Evolution Strategy using Stohasti Ranking (Runarsson et al.2000), obtained the true parameters within 16% relative error using about39 hours omputational time (Pentium III, 866MHz).In Papers 1-3 we use several di�erent approahes to estimate the parameters.The hoie of method is largely dependent on the omplexity of the modelsand the requirements on omputational eÆieny. We �rst onsider the twoosmoregulation models in Papers 2 and 3:� The simple model in Paper 3 ontains ten parameters. We use variousexperimental data to onstrain the searh spae by lower and upper16



parameter bounds. This gives a parameter estimation problem of rela-tively low omplexity and we an use a global minimization tehnique.Sine we only do this one, the omputational eÆieny of the methodis not a major issue.� The situation is muh worse for the detailed model of Paper 2 beauseof the high dimension (70 parameters) of the searh spae. To partlyoverome this diÆulty we study subparts of the model in isolation.As an example, the steady state harateristis of one sub-model mayindiate what parameter values that result in a realisti signal ampli-�ation. Besides, for many of the parameters plausible values an befound in the literature. The manually seleted parameters are then�ne-tuned with respet to time series experimental data. Spei�ally,the parameters were randomly perturbed using a normal distributionwith mean at the manually seleted values. Several suh perturbedparameter sets were evaluated and the set resulting in lowest errorwas hosen. Due to the omplexity of the model, the standard devi-ation of the perturbations must be seleted relatively small. For thatreason, this method falls in between loal and global optimization. Asin Paper 3, we only estimate the parameters one.In Paper 1 we have a di�erent and more hallenging situation sine the modelstruture is unknown. We then have to estimate the parameters of manydi�erent model strutures to �nd the best one. It is therefore diÆult touse the general parameter estimation method and at the same time obtaina realisti omputational time. To overome this problem, we applied adeomposition approah of onsidering one equation at a time. A methodthat ompletely follows this approah is the so-alled derivative approah.Sine this approah has been an important starting point for our work onPaper 1, we desribe it in detail in the following setion.4.2 The derivative approahUnder ertain onditions one an speed up the parameter estimation dra-matially by onsidering one equation at a time and not performing anysimulations at all. This simpli�ed approah, the derivative approah (seee.g. Englezos et al. (2001) and Voit (2000)), is based on the least-squaresmethod (see e.g. Johnson et al. 1992). The method has one advantage - itsomputational speed, but several disadvantages:� It is only working for omplete data sets, that is, every single variablemust be measured. 17



� The method requires estimates of not only variables but also deriva-tives of the variables at arbitrary time-points. We note that thisproblem an be redued by onsidering di�erent types of data pre-proessing like spline methods (de Boor 1978, Voit et al. 2004).� The funtion it minimizes is usually not the funtion that we wantto minimize, e.g. (12). Instead, the residual of the least-squares isminimized as will be further explained below.To illustrate the derivative approah we onsider the linear model (6) withthe input signal (9). The parameters to estimate are k1 and k2. Given aomplete data set, that is time series data for A1 and A2, we an apply thederivate approah.In priniple, by estimating A02(t) and all onentrations on the right handside from experimental data, (6) gives us a number of linear equations. Eahtime point in the experiment where A2 is measured gives one suh equation.We let Ai(t) denote experimental data of variable Ai at time t. The fullsystem an then be written0BB� A1(t1)I(t1) �A2(t1)... ...A1(tm)I(tm) �A2(tm) 1CCA| {z }M  k1k2 !| {z }k = 0BB� A02(t1)...A02(tm) 1CCA| {z }b (13)
where t1 and tm refer to the �rst and last experimental time point respe-tively. The system of equations is over-determined and an be solved by theleast-squares method, whih minimizes the Eulidean norm between Mkand b, that ismink Xi �A02(ti)� (k1A1(ti)I(ti)� k2A2(ti))�2 (14)If the olumn vetors of M are linearly independent, the solution to theleast-squares problem is obtained from the linear systemMTMk =MTb: (15)For models inluding several ODEs, we repeat the least squares method foreah individual variable in order to estimate all parameters of the model.Figure 7 illustrates how the parameter estimates of (6) are dependent on thenumber of data-points in the time series. We note that although we have18



noise-free data, the least-squares method fails to estimate the parametersorretly when we have few data-points. In this test, the derivatives wereestimated by the entral di�erene asA02(ti) = A2(ti+1)� A2(ti�1)ti+1 � ti�1 : (16)
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Figure 7: Parameters estimated using the derivative approah on the modelof (6) with di�erent amounts of simulated data that is uniformly distributed.The true values are k1 = 0:05 and k2 = 0:02.Although the preision an be inreased by using more aurate interpolationmethods, suh as smoothing spline interpolation (de Boor 1978), the generalbehavior of this plot will remain.Besides the problem of estimating the derivatives, we have the problem thatthe minimization funtion (14) is not the same as our original minimizationfuntion (12). Only for perfet data both (14) and (12) evaluate to zero forthe orret parameters. However, for noisy data the two funtions typiallyevaluate to di�erent values and hene are minimized for di�erent parameters.We �nally note that the derivative approah an be generalized by onsid-ering non-linear least-squares (Marquardt 1963, Press et al. 1993). This isneeded if there are reations that are non-linear in the parameters, like the19



Mihaelis-Menten kinetis. Non-linear least-squares algorithms require aninitial guess of the parameters and it is therefore ommon to re-start theproedure with di�erent initial guesses.4.3 Our method for parameter estimationThe partiular method we apply for parameter estimation in Paper 1 triesto ombine the omputational eÆieny of the derivative method with thehigh auray of the basi method. Our method is based on two main ideas:� Eah ODE is onsidered separately as in the derivative method. Thisinreases the omputational eÆieny ompared to the basi method.� Simulation is employed as in the basi method. However, we onlysimulate the single variable under onsideration and not the ompletemodel. This inreases auray ompared to the derivative method.When simulating a single ODE, all variables on the right-hand side of theequation exept the one that is simulated must be determined in some way.A natural �rst approah is to employ interpolated data. However, in aniterative searh for the parameters (as the basi method) it an happenthat simulated data from the best model gives a better performane thaninterpolated data. Ideally, we an then estimate the parameters with highauray. This idea is used in Paper 1 and it is the main reason why theparameter estimates are so good given the relatively short omputationaltime.Using our algorithm for the parameter estimation problem of the linearmodel (6) with the input signal (9) onsidered in the previous setion (seeFigure 7) we an obtain the orret parameters with only few (< 10) data-points per time-series. For more advaned examples we refer to Paper 1.For biologial systems, it is ommon that experimental time series data isnot available for all variables in the model, while our approah requiresa omplete data set. Missing data is a fundamental algorithmi diÆultyand we are typially referred to the basi method for parameter estimation.However, using methods oneptually based on the Expetation-Maximiza-tion (EM) algorithm (Dempster et al. 1977), whih is a standard statistialalgorithm for treating inomplete data problems, we are able to estimate theparameters for ertain inomplete data sets and still keeping the strategy ofonsidering one variable at a time. To exemplify this, we onsider the modelpresented in Figure 8 and a data set inluding three time series experimentswith 8 data-points per variable and experiment. By removing all data frome.g. variables B1 and B2 we an still estimate the 16 parameters using ourstrategy. 20
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Figure 8: Model of a signaling network with two input funtions and tenvariables. All reations follow linear (2) or bilinear kinetis (3). The totalnumber of parameters is 16.4.4 Parameter sensitivityTo evaluate the reliability of the parameters obtained by a parameter es-timation method it an be useful to perform a sensitivity analysis. Thesensitivity of the error funtion to a given parameter an be alulated asthe partial derivative of the error funtion with respet to that parameter.A sensitivity analysis an reveal parameters that are undetermined from theonsidered data set. For instane, some parameters in the model of Paper3 ould not be estimated with a high degree of on�dene. In priniple,the sensitivities an also be used in an estimation method in order to moreeÆiently searh the feasible region.However, we would also like to point out that biologial systems tend to berobust with respet to parameter variations (Eldar et al. 2002). Therefore,it an be diÆult to estimate parameters with high auray from onlywild-type experiments. Instead, various system modi�ations, like deletionsin order to break up feedbak loops, an be useful in order to �nd theparameters.
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5 Model seletionModel seletion is the problem of how to selet the struture, i.e. the formof the ODEs. We will assume that we an estimate the parameters in anymodel struture using one of the methods disussed previously. As in pa-rameter estimation, we minimize a funtion, e.g. (12), but we now minimizeit over both the strutures and the parameters. We will refer to the prob-lem of �nding both the struture and the parameters of a model as modelidenti�ation.We would like to point out that it is generally muh more hallenging toidentify the struture of a model than to estimate the parameters in a knownmodel struture. There are several reasons why this is a diÆult problem.One reason is the diÆulty to de�ne the problem in suh a way that a modelwith reasonable omplexity is seleted. We disuss this topi in Setion 5.1.Another reason is the problem of model ambiguity as will be disussed inSetion 5.2. A third reason onerns the problem of performing the seletion,mainly due to the ombinatorial inrease in possible model strutures wheninreasing the number of variables. We disuss manual and automati modelseletion in Setions 5.3 and 5.4, respetively.5.1 Model omplexityThe purpose of a model is usually to explain available data suÆiently well,and to predit the behavior of the real system. When manually building amodel one usually starts from a simple model and then inrementally addsdetails to the model, intuitively mathing the omplexity of the model withits purpose and available data.In general, a too simple model laks validity and fails to apture the trendsin data. We refer to this as under�tting to data. On the other hand, a tooomplex model, e.g. inluding several parameters, tends to have a good �tto data, sine it has many degrees of freedom and an be �tted to noise aswell as to regularities in data. We refer to this as over�tting to data andnote that these models typially give weak preditions.There are di�erent ways of dealing with model omplexity. Cross-validationand bootstrapping are both methods for estimating the error based on re-sampling (Zuhini 2000). In k-fold ross-validation, the data set is dividedinto k subsets of equal size. The model error is then alulated k times, eahtime leaving out one of the subsets in the parameter estimation, but usingonly the omitted subset to alulate the error funtion. In bootstrapping,instead of repeatedly analyzing subsets of the data, we repeatedly analyzesubsamples of the data. Here, eah subsample is a random sample with22



replaement from the omplete data set.A di�erent approah to avoid unneessarily omplex models is to penalizeomplexity in the error funtion. A ommon way is to add a penalty termthat is typially a funtion of the number of parameters and/or the numberof data-points (Zuhini 2000). It is an open researh question how to hoosethis funtion in a best way for a partiular appliation (Crampin et al.2004). Common examples inlude Akaike Information Criteria (AIC, Akaike1973), Minimum Desription Length (MDL, Rissanen 1978) and BayesianInformation Criteria (BIC, Shwarz 1978). In Paper 1, we use the followingerror funtion for a single time series�L+ �K (17)where L is the log likelihood aording to (12), �K is the penalty term in-luding a problem-spei� parameter � and the number of model parametersK. In model seletion, the e�et of this penalty an be observed by assign-ing a very low or high value to �, typially resulting in over- or under�tting,respetively.5.2 Model struture ambiguityIn model seletion it is important to be aware of the problem of ambiguity inthe model struture. We illustrate this point by presenting examples whentwo di�erent biologial models reate the same or similar experimental data.The �rst example onsiders the biohemial models presented in Figure 9.In model I, two ompounds (A2 and B2) both ativate ompound C, whilein model II only B2 ativates C. As indiated in the �gure, the parameter(k) of the atalysed reation from C1 to C2 in model II is the sum of theorresponding parameters (k3 and k4) in model I. All other parameters arethe same in the two models. If we onsider a wild-type experiment, the twomodels will produe exatly the same experimental data for the variables.That is, the data does not unambiguously derive from one model and it isimpossible to distinguish the true model.However, by inluding an additional experiment where either A or B isdeleted, the set of all data will unambiguously derive from either model I ormodel II. This is a powerful experimental tehnique that for instane wasused to reveal the basi struture of the HOG signaling pathway in yeast(Maeda et al. 1995).Another example of models that output similar data for an experiment aremodels that di�er in reation mehanisms. For instane, we reonsider the23
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Figure 9: Experimental data of models I and II are idential. CompoundsA, B and C all exist in two di�erent states and all reations are assumedlinear or bilinear and the reation onstants are indiated as k's.model given in (6) together with a modi�ed version of that model where Iis squared. The modi�ed model readsA02(t) = �A01(t) = k1A1(t)I2(t)� k2A2(t) (18)where k1 = 0:05 and k2 = 0:02 are the same for both models.These two models output very similar data for ertain input signals. Forinstane, the input funtion (9) is depited as Input I in Figure 10. Datais similar but there are atually two kind of di�erenes: the initial steadystates and the form of the rising urves of the two models di�er slightly.However, for moderate levels of measurement noise, it beomes very diÆultto uniquely distinguish them from eah other.On the other hand, by applying a di�erent input signal we an obtain datawith muh better disriminating power. As an example, an input funtionthat steps from 0.01 to 0.2 is illustrated as Input II in Figure 10. In thisase, the separation of the urves is evident, and at the end of the simulationA2 of the original model (6) has more than four times higher onentrationthan A2 of the modi�ed model (18).To onlude, we have shown two examples where models output equal orsimilar data and annot be distinguished from eah other using the givendata. One possible solution is to provide a more extensive data set, forinstane by using a di�erent hoie of input funtion and/or a modi�edsystem. However, we note that it is non-trivial to determine how muh andwhat kind of data is needed to give uniqueness.In the �rst example, the ambiguity ould also be resolved mathematiallyby using an error funtion penalizing model omplexity suh as (17). In the24
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Figure 10: Simulation of variable A2 in the models given in (6) (dashedlines) and (18) (solid lines) using two di�erent input signals: Input I stepsfrom 0.01 to 1 at t = 20 and Input II steps from 0.01 to 0.2 at t = 20.seond example, however, this is hardly suÆient sine both models havethe same omplexity aording to (17).5.3 Manual model seletionA ommon approah in modeling is to manually selet the model strutureand parameter onstraints and then estimating the parameters automati-ally. In priniple, when manually reating an ODE model of a biohemialsystem, one an onsider any form of equations in the model struture.However, usually the modeler tries to employ standard reation types (likethe Mihaelis-Menten kinetis) that an be derived from plausible reationmehanisms of the onsidered interations. We note that S-systems are anexeption to this.It is diÆult to present a general methodology for how to onstrut a modelof a partiular system. Instead, we exemplify by giving a brief desriptionof the methodology used when modeling the osmoregulation system. Invery simple terms, this system involves a signaling pathway working as an25



information arrier in the ell. The sensor of the pathway is ativated byredued turgor pressure and the output of the pathway initiates glyerolprodution that works as a feedbak loop and auses turgor pressure toregain. For an overview of our models we refer to Setion 6 and for a moreelaborate desription we refer to Papers 2 and 3.Initially, our objetive was to model the signaling pathway in isolation. Thebasi struture of this signaling pathway was desribed in the literature.Besides, we found models in the literature of similar systems in evolutionarylosely related speies. Given this information we ould assign plausiblekineti equations to the reations. However, sine the signaling pathwayinterats with other systems it was diÆult to model the pathway in isolationand we therefore had to extend our modeling sope.One point of interation involves an environmental stimulus that serves asinput signals to the signaling pathway. In the beginning of the projet, theexat nature of this environmental stimulus was not known. Among others,Gustin (1998) speulated in turgor pressure and this was later experimen-tally veri�ed by Reiser et al. (2003). From thermodynamis it is known thatturgor pressure is related to osmoti pressure and volume. Hene, in orderto model the input signal in a realisti way, a biophysial model inludingat least these variables should be onsidered.Another point of interation exists between the output of the signaling path-way and metaboli pathways of glyerol prodution. In priniple, it is easyto inlude metaboli pathways in a model, sine a lot of modeling e�ortshave been done in that �eld. A hallenge, however, is to selet a propermodeling sope and level of detail. In Paper 2 we use an existing modelfrom the literature.To onlude, in order to model the signaling pathway it was neessary toextend the modeling sope by inluding two additional modules: one repre-senting the biophysial hanges of the ell and one representing the glyerolprodution. Given the biophysial desription we ould expliitly link gly-erol prodution to the turgor pressure and onsequently to the input signalof the pathway. One this was established we ould simulate various exper-iments in the omputer.Sine we propose two di�erent models of the same system it is interesting toompare these with eah other. The models share the main harateristisand give the same qualitative preditions. Instead, the di�erene lies in thelevel of detail at whih the proesses are modeled. In the simple modelhardly no moleular details are inluded, while the detailed model takesinto aount a onsiderable amount of available strutural information ofthe pathways. We refer to Paper 3 for a disussion of qualitative aspets ofthe models with respet to their di�erent omplexities.26



In priniple, it would be interesting to perform quantitative omparativeanalyses of di�erent models, using a omplexity measure like AIC, BIC orMDL. Suh a measure would reveal to what prie of inreased omplexityit is reasonable to inrease the goodness-of-�t to data. Unfortunately, thereis no single aepted measure for this kind of problems. Besides, it is verydiÆult to ompare models when di�erent data sets have been employed inthe onstrution of the models. For instane, the detailed model of Paper2 is based on the urrently identi�ed struture of the system, and hene,impliitly uses the data from whih the struture is determined. Suh datais typially not obtained from time-series experiments of protein onentra-tions but rather from protein-protein interation experiments and experi-ments measuring ell growth in various mutant strains. Although this kindof data an be diretly employed in model identi�ation, it may be diÆultand tedious to extrat the data from the literature. We would also like topoint out that the strutural information obtained from these experimentsonly tells whether variables interat, not the mehanism of interation.5.4 Automati model seletionWe will now desribe some general priniples for automati model seletionalgorithms. Typially, the inputs to a model seletion algorithm are:� Time ourse data for the variables. In Paper 1, we onsider the sameinput of data as previously desribed for the parameter estimation.However, we note that di�erent types of data, like steady-state dataor protein interation data, an be employed as well.� An initial struture inluding all variables and potentially known in-terations. As a base ase, the initial struture an be assumed empty,and hene, all interations should be identi�ed. As an example, for themetaboli test system we would have S03 = S04 = S05 = S06 = S07 = 0.To de�ne the model seletion problem we must also speify an error fun-tion, like (17), and a searh domain or model spae, whih de�nes thespae of possible models. The searh domain an be obtained by de�n-ing reation building bloks that may be used in the model. For instane,the metaboli test system in Figure 5 ontains two di�erent types of rea-tions: the Mihaelis-Menten reation (4) and the Mihaelis-Menten reationwith non-ompetitive inhibition (5). Therefore, to identify orretly themetaboli test system the searh domain must at least ontain these tworeation types. In Paper 1, we onsider not only these two types, but also aspontaneous state transition with linear kinetis (2) and an enzymati rea-tion with bilinear kinetis (3). The resulting searh domain is given in Table27



1. We note that the identi�ation problem beomes more diÆult for a largesearh domain. In a real situation, the true reation types are unknown anda plausible guess of the searh domain must be made.Possible reations for S3, S4 and S5S(S3) S(S4) S(S5) B(S3,I1) B(S3,I2) B(S3,S4)B(S3,S5) B(S3,S6) B(S3,S7) B(S4,I1) B(S4,I2) B(S4,S3)B(S4,S5) B(S4,S6) B(S4,S7) B(S5,I1) B(S5,I2) B(S5, S3)B(S5, S4) B(S5, S6) B(S5,S7) M(S3) M(S4) M(S5)I(S3,I1) I(S3,I2) I(S3,S4) I(S3,S5) I(S3,S6) I(S3,S7)I(S4,I1) I(S4,I2) I(S4,S3) I(S4,S5) I(S4,S6) I(S4,I7)I(S5, I1) I(S5,I2) I(S5, S3) I(S5, S4) I(S5, S6) I(S5,S7)Possible reations for S6 and S7S(S6) S(S7) B(S6,I1) B(S6,I2) B(S6,S3) B(S6,S4)B(S6,S5) B(S6,S7) B(S7,I1) B(S7,I2) B(S7,S3) B(S7,S4)B(S7,S5) B(S7,S6) M(S6) M(S7) I(S6,I1) I(S6,I2)I(S6,S3) I(S6,S4) I(S6,S5) I(S6,S7) I(S7,I1) I(S7,I2)I(S7,S3) I(S7,S4) I(S7,S5) I(S7,S6)NotationS(A) Linear transition (2) with substrate AB(A;E) Bilinear reation (3) with substrate A and enzyme EM(A) Mihaelis-Menten reation (4) with substrate AI(A;B) Mihaelis-Menten reation (5) non-ompetitivelyinhibited by B having the substrate ATable 1: The searh domain for the metaboli test system. We assume thatmass onservation onstraints are known, that is the sum of S3, S4 and S5as well as the sum of S6 and S7 are onstant. In this notation, the trueODE of variable 4 is S04(t) = I(S3; I1)�M(S4).For problems of realisti size an exhaustive searh over all possible modelstrutures is not feasible due to the ombinatorial explosion of possible modelstrutures. For instane, given an upper limit of four reations per variable(something that we do not assume in Paper 1) there are about 2:7 � 106possible strutures only for variable S3 in the metaboli test system. For thisreason, it is very diÆult to �nd algorithms that solve the model seletionproblem in realisti time. To make the best of the situation, one typiallyemploys heuristi algorithms that at least are able to propose a model thatis lose to the real system. 28



In order to redue the omplexity of model identi�ation we an onstrainthe problem in di�erent ways. For instane, we an inlude veri�ed inter-ations in the initial struture of the model and we an restrit the searhdomain in di�erent ways. Besides, the searh spae for the parameters an berestrited as disussed in the previous setion. We also note that identi�a-tion beomes easier the more the system has been experimentally disturbedby various input signals and system modi�ations.A general heuristi way of searhing the best model is to divide the searhinto two steps: (1) a struture searh and (2) a parameter estimation methodfor a given struture. In this way, we obtain the following approah:1. Try a struture from the searh domain.2. Estimate the parameters in this struture and evaluate the error fun-tion.3. Update the struture aording to some rule and then repeat from step2 until termination aording to some riterion.The model seletion algorithm that we propose in Paper 1 is based on thisapproah.Finally, we want to remind the importane of distinguishing between whatinformation is possible to extrat from a given data set and how well thealgorithm performs on that data set. In partiular, given suÆient datato unambiguously de�ne the orret model and an ideal identi�ation algo-rithm, one an �nd the orret model. However, for this kind of problems, aheuristi approah may fail sine it does not perform an exhaustive searh.Hene, the heuristi nature of an algorithm may give an attrative ompu-tational time but also limits the performane on data sets that are small butnevertheless unambiguously de�ne the orret model.5.5 Our model seletion algorithmIn Paper 1 we suggest a model seletion algorithm, in whih we employthe general heuristi method presented in 5.4 and onsider one variable ata time, as also done in our parameter estimation algorithm. We build thestruture inrementally and always maintain a urrent model with strutureand parameters. As a base ase, the initial model is trivial with all variablesindependent of eah other. Our model seletion algorithm an be desribedas follows.For eah variable we do the following:29



1. Calulate the error of the initial model.2. For eah possible test reation from the searh domain:(a) Temporarily add the reation to the model.(b) Estimate the parameters.() Calulate the error.3. If a better model was found in step 2, use this model as the new bestmodel.4. Remove reations if this results in a lower error.This proess of onsidering all variables in turn is repeated until no bettermodel is obtained. Hene, for eah iteration over all variables, a reationmay be added to eah equation and any of the existing reations might beremoved. A reation is removed if it improves the �t to data (measuredby the �rst term of (17)) less than it inreases the omplexity of the model(measured by the penalty term of (17)). We note that this heuristi algo-rithm an not guarantee a global minimum of the error funtion, and hene,as in the parameter estimation we may obtain a loal minimum, where thestruture and/or parameters are inorret.In an attempt to illustrate the progress of the model seletion algorithmwe onsider the metaboli test system for the noise-free data set of 12 ex-periments employed in Paper 1. We onsider the searh domain given inTable 1 and we also use the same notation as in that table. The true modelstruture that we searh for isS03(t) =M(S4) +M(S5)� I(S3; I1)� I(S3; I2) (19)S04(t) = �M(S4) + I(S3; I1) (20)S05(t) = �M(S5) + I(S3; I2) (21)S06(t) = �S07(t) = �M(S6) + I(S7; S3) (22)However, this model is from now onsidered unknown to the algorithm, andthe initial struture is empty, that is S03 = S04 = S05 = S06 = S07 = 0. Theonly information we use is the set of time series experiments (data fromsimulation of the true model) with various input funtions I1 and I2.After one iteration over all variables the following model is obtained:S03(t) = �B(S3; S7) (23)30



S04(t) = I(S3; I1) (24)S05(t) = �B(S5; I2) (25)S06(t) = I(S7; S3) (26)S07(t) = �I(S7; S3) (27)We note that the ODE of S3 inludes a bilinear reation that does not belongto the true struture. The same holds for the ODE of S5 where B(S5; I2) isa false positive reation, while true positive reations are added to all otherODEs.We repeat the proedure for all variables and obtain:S03(t) = �B(S3; S7) +B(S4; I1) (28)S04(t) = I(S3; I1)�M(S4) (29)S05(t) = �B(S5; I2) + I(S3; I2) (30)S06(t) = I(S7; S3)�M(S6) (31)S07(t) = �I(S7; S3) +M(S6) (32)Hene, after the seond iteration, the ODE of S3 ontains two false positivereations, the ODE of S5 ontains one false positive and one true positivereation and the struture of the other ODEs are orretly identi�ed.Iteration 3 gives:S03(t) = B(S4; I1)� I(S3; I2) (33)S04(t) = I(S3; I1)�M(S4) (34)S05(t) = I(S3; I2)�M(S5) (35)S06(t) = I(S7; S3)�M(S6) (36)S07(t) = �I(S7; S3) +M(S6) (37)31



Here we make two observations: First, the addition of the true positivereation I(S3; I2) to the ODE of S3 results in a model in whih the previouslyadded reation B(S3; S7) was unneessary and ould be removed. This is dueto the non-greedy strategy of the searh: a reation that has been addedmight fall o� in later stages. Similarly, the addition of the true positivereation M(S5) to the ODE of S5 pushed out the false reation B(S5; I2).Seond, no reations were added to the ODEs of S4, S6 and S7. In otherwords, the ost in inreased omplexity of an additional reation was higherthan the (potential) gain in goodness-of-�t due to more parameters.In the following iterations only the struture of S03 is modi�ed. The truemodel is obtained after a total of 7 iterations.This example illustrates how the heuristi searh inrementally builds upthe true struture of the metaboli test system. We note that the searhroute is not only dependent on the error funtion and parameter estimationroutine but also on the spei� data set employed.5.6 Model identi�ation algorithms in experimental plan-ningIn this setion we onsider the potential use of model identi�ation algo-rithms in experimental planning. Spei�ally, we outline a omputer-basedplanning methodology where a model identi�ation algorithm plays an im-portant role.In the area of moleular biology experimental plans are traditionally mademanually by professionals with great biologial insight and experiene. Ba-sially, the next experiment is determined by the urrent knowledge of thesystem, the urrent hypotheses about the system and the urrently avail-able experimental tehniques. Based on the outome of the experiment, theknowledge of the system as well as the hypotheses are modi�ed and newexperiments are thus iteratively proposed and exeuted. Our omputer-based experimental planning method mimis this iterative exploration of abiologial system.We assume the funtionality illustrated in Figure 2, in whih we an bothsimulate data from a model and identify a model from data. Before wedisuss experimental planning we note that this funtionality also o�ersseveral more elementary operations:� Simulation of one or several models, e.g. for manual evaluation of theirquality.� Evaluation of the error funtion to determine to what extent a newexperiment provides new information.32



� Using the identi�ation method we an ask what type of experimentsand what amount and auray of data are needed in order to identifya ertain model.Our experimental planning method more or less inludes these elementaryoperations and we will now desribe the method in more detail.We exemplify the method on an arti�ial ell signaling pathway presentedin Figure 11. This model orresponds to the true system that we aim at�nding.
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Figure 11: Model of a signaling pathway used to illustrate the experimentalplanning method. The model inludes ten proteins, eah of them existing intwo di�erent states (inative and ative), and several interations inludingpositive and negative feedbak loops.We onsider the following senario:� We have a minimal base model, M0, ontaining all ompounds ofinterest onneted by previously veri�ed interations. This model or-responds to our urrent knowledge of the system. In our example, M0does not ontain any reations at all, see the left part of Figure 12.� We have performed a set of experiments, E0. Typially, an experimentis a ertain genomi bakground in ombination with a ertain inputfuntion. For instane, we have performed one experiment on a wild-type ell using a step input signal.� We have the potential of exeuting several experiments, denoted E,see Table 2. 33



� We have a hypothetial model, M , that di�ers from M0. In our ex-ample, the hypothetial model is given in the right part of Figure 12.We want to test this hypothesis experimentally.
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2. Temporarily merge simulated data from 1 with the real data set E0.3. Run the model identi�ation algorithm with the initial model and theextended data set.4. Evaluate how lose the output model from step 3 is to M . A verysimple measure of similarity is the number of similar interations minusthe number of non-similar interations.The experiment from E orresponding to the best result in step 4 is thesuggested experiment to perform. Ideally, this experiment is exeuted inthe laboratory and we an either rejet M or we have uniquely identi�edM . We note that any simulated experiment in step 1 obviously implies M ,but that only some experiments may uniquely identify M .The proedure above an be generalized in the following ways:� It annot generally be assumed that one single experiment from E isenough to uniquely identify M . Therefore, the test set E an be ex-tended by inluding not only single experiments but also ombinationsof for example two experiments from E. One test ase ould then in-lude both experiment 1 and experiment 2 from Table 2. However, ifall possible ombinations are to be tested, this also implies an expo-nential inrease in the number of test ases and thereby omputationaltime.� The proedure an be repeated for a number of hypothetial models.In this ase, the experiments suggested is the union of the experimentssuggested for eah hypothetial model.� We an assign osts to the experiments (e.g. orresponding to time orlabor) and also inlude that in the evaluation funtion of step 4.To onlude, we suggest a way of generating more eÆient experimentalplans by inluding a model identi�ation algorithm in an automati dei-sion proess. In priniple, suh a planning method would take advantageof the integrated data simulation and model identi�ation funtionality pre-sented in Figure 2. We also note that other funtionality, suh as testingfor algebrai observability, would be a valuable omplement to simulationand identi�ation. The planning method would probably prove helpful notonly in researh, but also as a pedagogial tool in eduation for biologists, aswell as for mathematiians and omputer sientists. Besides, it ould helppeople from these disiplines to learn more about the other subjets andalso failitate ommuniation between these groups when exhanging ideas.35



6 Modeling osmoregulation in yeastIn this setion we present our modeling work on osmoregulation in the yeastSaharomyes erevisiae, whih is one of the most well-studied eukaryotiorganisms (Sherman 2002).To understand osmoregulation it is useful to onsider a simpli�ed ell, on-taining a water solution of large moleules (e.g. proteins and sugars) andsmall inorgani ions. We further assume that the ell membrane is semi-permeable, suh that the large moleules are unable to pass the membrane,while water and the small ions an freely pass. In priniple, the ions wouldthen have equal onentration inside and outside the ell at equilibrium.However, the large moleules in the ell are often highly harged and attratmany small inorgani ions. Therefore, the onentration of ions is greater in-side than outside the ell at equilibrium (the Donnan e�et, see e.g. Albertset al. 1994).Based on this simple ell model we an give a oneptual explanation oftwo fundamental variables in osmoregulation: osmoti pressure and turgorpressure. On a basi level, osmoti pressure is proportional to the onen-tration of moleules other than water in a solution. Hene, a large proteinontributes as muh as a small ion to the osmoti pressure. Sine the on-entration of ions is greater inside than outside the ell at equilibrium, theell has a higher intra-ellular than extra-ellular osmoti pressure. Thisauses an outward pressure on the plasma membrane. Due to this di�erenewater will ow into the ell. In isolation, this would ause the ell to swelland potentially lead to ell rupture. This is a fundamental problem that anyell must master. Basi solutions are to atively pump out ions, to ativelyextrude water or to prevent the ell to swell by a ell wall.The yeast ell uses the latter solution and has a ell wall with less elastiitythan the plasma membrane. Basially, the ell wall resists the expansion ofthe ell, and reates an inward pressure on the ell ontents. This pressureis alled the turgor pressure, de�ned as the di�erene in the hydrostatipressure between the inside and the outside of the ell. At equilibrium, theosmoti pressure di�erene is balaned by the turgor pressure and the ellvolume is onstant with no net ow of water.An osmoti shok is a sudden inrease in the extra-ellular osmoti pressure,for instane due to the addition of salt to the ell medium. The immediatee�et on yeast to an osmoti shok involves water outow and dereasingvolume. In this way, a new equilibrium is reahed, in whih the higher extra-ellular osmoti pressure is balaned by an inreased intra-ellular osmotipressure (due to the redued volume), and redution of turgor pressure (dueto redued size of the ell wall). We will refer to these proesses as the36



biophysial system of the ell.Generally, the ell strives to keep volume, turgor pressure and relative waterontent onstant and independent of environmental hanges. It therefore hasa ontrol system responding to these hanges by aumulating glyerol andthereby inreasing the intra-ellular osmoti pressure in order to regain itsprevious size (Gervais et al. 2001, Hohmann 2002, de Nadal et al. 2002).This proess is alled osmoregulation.The ontrol system onsists of two main omponents, as illustrated in Fig-ure 13. First, the aquaglyeroporin Fps1 loses upon hyper-osmoti shokpreventing the outow of glyerol (Tamas et al. 1999, Tamas et al. 2000).Seond, the glyerol prodution is inreased in the following way: The os-moti shok ativates the High Osmolarity Glyerol (HOG) pathway, seeFigure 1. This pathway belongs to the lass of Mitogen Ativated ProteinKinase (MAPK) pathways that are found in all eukaryoti organisms and areimportant for transmitting and proessing signals from the ell membraneinto the ell. Typially, a MAPK pathway onsists of a sensing system, aasade of three tiers of protein kinases and output systems suh as tran-sriptional regulators. Upon ativation the MAPK, i.e. the last kinase in thepathway, enters the nuleus and indues transription. For the HOG path-way, there are at least two independent sensors and one of them, Sln1, hasbeen shown to respond to hanges in turgor pressure (Reiser et al. 2003).The other sensor of the HOG pathway, the so-alled Sho1-branh, is notidenti�ed. Ative Hog1 aumulates in the nuleus where it interats withtransription fators and atively partiipates in transriptional ativationof target genes. One e�et of HOG pathway ativity is a metaboli shifttowards prodution of glyerol to balane osmoti hanges.To analyze the di�erent aspets of osmoregulation, genetis and moleularbiology are used in numerous ways. Cells are exposed to high osmolaritymedium and the response to the hyper-osmoti stress is analyzed. The phos-phorylation (ativation) state of Hog1 is measured to eluidate the kinetisand the duration of the response. mRNA expression patterns of a few genesdependent on ativated Hog1 (suh as GPD1 and STL1 ) are also studied.In order to understand the physiologial response to the stress, intra-ellularand total amount of glyerol are measured.The osmoregulation system in yeast is an interesting target for mathematialmodeling for several reasons:� The system is relatively well-haraterized. Several key omponentsare identi�ed, e.g. in the HOG signaling pathway, although we notethat other parts are desribed in less detail, e.g. the transriptionalresponse. 37
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6.1 Physis behind osmoregulationIn order to desribe the biophysial system mathematially we need properde�nitions of the di�erent pressures involved. Therefore, this setion intro-dues the physis behind osmoregulation in a formal way and thus serves asa bakground to Papers 2 and 3.The hemial potential of water an be seen as a measure of the e�etivewater onentration in a given area. The value of the water potential isinuened by two fators: (1) the osmoti potential and (2) the pressurepotential. The �rst is a�eted by the onentration of dissolved moleulesof solutes. As the onentration of solute moleules inreases, the waterpotential dereases. The latter takes into aount the hydrostati pressure.If a solution is put under pressure, the water potential inreases.Formally, the hemial potential of a ompound desribes how the Gibbsenergy3 hanges in a system when the ompound is added to it (Atkins1994). The hemial potential for water an be derived as (Levin 1979)�w = ��w(T ) + vw p+RT ln aw (38)where ��w(T ) is the hemial potential of pure water at temperature T, vwis the apparent molar volume of water [dm3 mol�1℄, p is the hydrostatipressure [Pa℄, R the universal molar gas onstant [J K�1 mol�1℄, T is thetemperature [K℄, and aw is the water ativity in the solution. The latter isde�ned as (Atkins 1994)aw = pwp�w (39)where p�w is the vapor pressure of pure water and pw is vapor pressure ofwater when it is a omponent of a solution.If two regions of water with di�erent potential are separated from eah otherby a membrane permeable to water but not to the solute (a semi-permeablemembrane), there will be a water ow to the region of lower potential (Atkins1994). This proess is alled osmosis and the water ow, Jw [mol dm�2 s�1℄,is given as (Levin 1979)Jw = Lpv2w ��iw � �ow� (40)3Gibbs energy is de�ned as G = H�TS where H is the enthalpy, S is the entropy andT is temperature (Atkins 1994). 39



where Lp is the hydrauli water permeability oeÆient [dm2 s kg�1℄, �iwand �ow are, respetively, the hemial potentials of water on the inside andoutside of the membrane [kg dm2 s�2 mol�1℄.The osmoti pressure, �, of a solution is the fore per unit of surfae exertedby the ow of water moving by osmosis from a region ontaining distilledwater to a region ontaining the solution, the two regions being separated bya semi-permeable membrane (Ekert et al. 1997). For very dilute solutionsin whih ideal behavior an be assumed, van't Ho� equation relates � fora solute in a solution to solute onentration and water ativity as (Levin1979, Atkins 1994)� = RT � B n = �RTvw ln aw (41)where � is the osmoti oeÆient, B is the onentration of the solute, andn is number of partiles that dissoiated from the solute moleule. Takingmore than one solute into onsideration gives (Ekert et al. 1997)� = RTXj �j Bj nj (42)where j indexes the solutes and �j is the osmoti oeÆient of solute j.By dividing the above equation by RT we obtain the osmoti pressure inthe unit Osm instead of Pa. For example, a solution ontaining 0.1 Mgluose, 0.3 M KCl, and 0.4 M MgCl2 has an approximate osmolarity of0:1 + 0:3 � 2 + 0:4 � 3 = 1:9 Osm assuming osmoti oeÆients of 1.Given the above expressions for hemial potential, ow of water and os-moti pressure, we an derive an expression for the ow of water over a ellmembrane in terms of osmoti pressure and turgor pressure (Levin 1979).First of all, (38), (40) and (41) an be ombined and simpli�ed tovwJw = Lp (�t +�e ��i) (43)where �e and �i are, respetively, the external and internal osmoti pressureand �t is the di�erene in hydrostati pressure over the membrane (pi�pe),also alled turgor pressure.Turgor pressure an be seen as the outward hydrostati pressure exertedagainst the inside surfae of a ell wall as water tries to ow into the ell byosmosis. If the ell membrane is not stabilized by the presene of a ell wall,the ell will expand and eventually burst. For a walled ell (like S. erevisiae)40



at equilibrium (eq), the turgor pressure is balaned by the osmoti pressuredi�erene between the internal and external medium (Smith et al. 2000)�eqt = � (�eqe ��eqi ) : (44)If the onentration of the external medium is inreased, its osmoti pressureinreases, and water ows out of the ell. A new equilibrium is establishedand the ell turgor pressure is redued. At a ertain point the externalonentration will be large enough to abolish the ell turgor pressure (�t =0), and hene (Smith et al. 2000)��t=0e = ��t=0i : (45)If �e is inreased further, the turgor pressure is assumed to remain negligible.In an ideal and dilute system4 the ell will behave as an ideal osmometer andthe van't Ho� relationship holds, so that at onstant temperature (Smith etal. 2000)�i (V � b) = ��t=0i �V �t=0 � Vb� (46)where V is the volume of the ell and Vb is the so-alled intra-ellular non-osmoti volume, whih is the sum of the volumes of hydrophobi ellularomponents (suh as lipid bilayers) that are osmotially unresponsive.To obtain an expliit expression for the transient behavior of turgor pressureunder a varying volume, we assume that hanges in pi are related to thefrational hanges in ell volume (dV=V ) by a volumetri elasti modulus �as (Levin 1979)� = V dpidV : (47)By integrating the above equation and approximating ln(V (t)=V 0) by thelinear expression �V (t)=V 0 � 1�, we obtain (Levin 1979)�t(t) = ��V (t)V 0 � 1�+�0t : (48)4�e < 13 MPa (Martinez de Mara~non 1997).41



6.2 The biophysial modelWe obtained the biophysial model for osmoregulation in Paper 2 and 3 from(42), (43), (46) and (48) in ombination with the following assumptions:� The ell volume only hanges due to in- and outow of water. This is areasonable assumption for the rapid hanges upon osmoti shok anda �rst approximation for longer time intervals. Besides, for simpliity,the ell surfae area is assumed onstant.� Other variables than volume and pressure are assumed onstant. Ex-amples of suh possible variables are ell surfae area, ell wall thik-ness, membrane omposition and vauole volume, whih all are a�etedby osmoti stress, see e.g. Hohmann (2002). However, the importaneof these responses is diÆult to judge and these proesses are typi-ally non-trivial to inlude in a model, mainly due to lak of data.Therefore, we disregard them in our urrent models.� We onsider glyerol as the sole osmolyte and, hene, ions and othersmall moleules that have been reported to hange upon osmoti shok(see e.g. Sunder et al. 1996) are not onsidered. This simpli�ation isto a ertain extent motivated by experimental results from Reed et al.(1987), who found that glyerol ounter-balanes in the order of 80%of applied stress of NaCl in S. erevisiae.In partiular, we multiply (43) by the ell surfae area and obtain a relationfor the ell volume asV 0(t) / �i(t)��e(t)��t(t): (49)The intra-ellular osmoti pressure is alulated from (42) and (46) aordingto �i(t) = n+Gly(t)V (t)� Vb (50)where Gly [mol℄ is the main osmolyte glyerol and n [mol℄ is the number ofother osmotially ative ompounds in the ell.The natural input variable of the osmoregulation system is �e. A typialexperiment involves adding 0.5M NaCl to the medium, thereby inreasing�e by 0.93 Osm (�NaCl = 0:93, nNaCl = 2).42



The turgor pressure is obtained from (48) as�t(t) = ( �0t V (t)�V �t=0V 0�V �t=0 ; V (t) > V �t=00; otherwise : (51)by restriting �t to positive values. Here V �t=0 is a onstant for the volumewhen �t = 0.We �nally note that the order of magnitude of the parameters in the bio-physial model an be found diretly or indiretly in the literature.6.3 A �rst ontrol modelIn order to get an intuitive understanding of the osmoregulation system, wenow desribe a �rst simple model of how the ell ontrols the biophysialsystem when exposed to an osmoti shok. This �rst ontrol model is simplerthan the models presented in Paper 2 and 3.As illustrated in Figure 13, the trans-membrane sensor proteins Sln1 andFps1 are dependent on the biophysial variable �t. In this �rst model weonly onsider Sln1 and its e�et on intra-ellular glyerol prodution. Wenote that aumulation of glyerol works as a feedbak response to osmotishok, sine the biophysial variable �i is dependent on intra-ellular gly-erol, as given by (50). An overview of the model is given in Figure 14.
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Figure 14: A �rst model ontrolling the biophysial model. The glyerollevel is adjusted by a proportional and time-delayed ontroller.To model the turgor sensor Sln1, the HOG pathway, transription and trans-lation in a very simple way, we onsider a single time-delayed ontrol fun-tion orresponding to all these steps. We let the di�erene between �t anda referene level �0t be the input (e) to this ontroller ase(t) = �0t ��t(t): (52)43



We onsider the simplest possible ontroller (u) that adjusts e by a onstantK as u(t) = K e(t): (53)To make the model more realisti, we also inlude a time-delay (td) orre-sponding to the time it takes to initiate glyerol aumulation, e.g. tran-sription and translation of enzymes. The time-delayed ontrol signal (v) isobtained asv(t) = u(t� td) (54)Finally, we let the rate of hange of glyerol, Gly, be dependent on theontrol signal asGly0(t) = v: (55)We use this model to simulate an experiment where the input signal is anosmoti shok of 0.5M NaCl, see Figure 15. We note the input signal ofinreased �e at t = 0, followed by the rapid hanges towards a new equilib-rium in the biophysial variables. First, the imbalane in (49) auses a dropin volume, whih leads to a derease in turgor pressure (51) and an inreasein intra-ellular osmoti pressure (50). Turgor pressure is abolished and thesystem reahes a new equilibrium where �i = �e only a few seonds afterthe applied stress. The ontrol model initiates glyerol prodution imme-diately after the time-delay has expired (10 minutes after the stress in thissimulation), whih in turn results in inreasing intra-ellular osmoti pres-sure. As a onsequene, water ows bak into the ell and both volume andturgor pressure are slowly inreasing to their original values. In partiular,about 33 minutes after stress volume is reovered above V �t=0 and turgorpressure starts to inrease, while the inrease in volume slows down. At thispoint we also see a slight inrease in the rate of glyerol aumulation. Thisis beause glyerol is plotted as onentration and therefore is dependent onvolume.The model presented in Paper 3 involves further re�nements of this �rstontrol model:� Both intra- and extra-ellular glyerol are onsidered in the model.Di�usion of glyerol moleules over the ell membrane is assumed tofollow Fik's law (Gervais et al. 2001). Hene, the glyerol di�usionrate is proportional to the di�erene between intra-ellular and extra-ellular glyerol onentration.44
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Figure 15: Simulated data from the biophysial model in ombination with(55). The input signal is an osmoti shok of 0.5M NaCl and reasonablemodel parameters are taken from Paper 3.� Changes in turgor pressure is independently sensed by Sln1 and Fps1.The seond a�ets the di�usion onstant for glyerol over the ell mem-brane.Using the simplest possible sensor mehanisms (linear dependene on thedi�erene between �t and �0t ) we obtain reasonable time series for bothintra- and extra-ellular glyerol. Hene, the model in Paper 3 aptures thefundamental proesses that are disovered in yeast osmoregulation hitherto.6.4 A more detailed ontrol modelWe ontinue to re�ne the model we have developed in order to approahthe more detailed model onsidered in Paper 2. In partiular, the moleulardetails of the ontrol system are further analyzed, starting with the HOG sig-naling pathway and ontinuing with transription/translation, metabolismand glyerol prodution.The key omponents and interations of the HOG signaling pathway havebeen identi�ed during the last deade, see Figure 1 for an overview. To45



model the HOG pathway we make the following assumptions:� Reations are modeled with linear (2) and bilinear kinetis (3). Wenote that detailed analyses of the mehanisms of isolated signalingreations have been presented (Ferrell et al. 1997), while linear andbilinear kinetis usually have been employed in models of entire sig-naling pathways (Shoeberl et al. 2002, Swameye 2003). The mainreason for this is that data typially is sparse and inomplete.� The Sln1-branh of the pathway in isolation gives a similar response asthe omplete pathway inluding the Sho1-branh (O'Rourke 2004). Wean therefore exlude the Sho1-branh from the model, something thatis very useful sine the sensor protein of that branh is not identi�ed.� The ell ontains two ompartments, the nuleus and the ytosol. Dou-ble phosphorylated Hog1 may enter the nuleus and is onsidered tobe a transription fator in the nuleus ompartment. Furthermore,dephosphorylated Hog1 an leave the nuleus.� The transmembrane protein Sln1 senses turgor pressure by adjustingits rate of auto-phosphorylation asrate of Sln1 auto-phosphorylation / ��t(t)�0t �� (56)where � is a onstant.We note that the auto-phosphorylation of Sln1 is needed to keep theHOG pathway inative under normal onditions and that the exatsensor mehanism of Sln1 is unknown.� All phosphorylated ompounds are dephosphorylated by protein phos-phatases. The rate of dephosphorylation is dependent on Hog1-induedprotein synthesis of phosphatases. This realizes a negative feedbakloop on the ativation of the HOG signaling pathway. However, wenote that there is always a basal level of phosphatases (Ghaemmaghamiet al. 2003).� This has to do with so alled sa�old proteins, whih are able to bindseveral (di�erent) other proteins. They might failitate signal trans-dution by forming multi-moleular omplexes that an be rapidlyativated by an inoming signal. In the HOG pathway, Pbs2 is be-lieved to at as a sa�old protein (Posas et al. 1997). One detailedway of modeling sa�old omplexes is disussed in Levhenko et al.(2000). However, due to lak of data we have not been able to inludethis aspet in our model. 46



� The number of signaling moleules are assumed to be suÆient forallowing deterministi simulation. A reent study suggests that thenumber of signaling moleules ranges from about 300 (Ssk2) to about7000 (Hog1) for the proteins in the HOG pathway (Ghaemmaghamiet al. 2003).The parameters of the HOG signaling pathway were obtained taking intoaount experimental data on the response time of the pathway and theampli�ation of the signal. Here we note that the struture of a signalingMAPK asade allows for signal ampli�ation (Heinrih et al. 2002) as wellas swith-like response of the kinases in the end of the asade (Huang et al.1996, Ferrell 1998). In our model, we also note that the sensor ontributesto the swith-like behavior when � > 1 in (56).The HOG signaling pathway triggers transription and translation of severalgenes as indiated in Figure 13. The biohemial details of this ativationare not understood to the same degree as the HOG signaling pathway, al-though there are ongoing researh in this area (de Nadal et al. 2004). Theseproesses are therefore simpli�ed and we onsider only two types of mRNAspeies and two types of proteins. The �rst type orresponds to metabolienzymes, suh as GLK1, GPD1 and GPD2, and the seond orresponds tophosphatases, suh as PTP2 and PTP3. Transription is assumed linearlydependent on ative Hog1 in the nuleus and translation is assumed linearlydependent on mRNA in the ytoplasm.To model arbohydrate metabolism and glyerol prodution we onsideredpreviously published models (Hynne et al. 2001, Teusink et al. 2000, Rizziet al. 1997) and adjusted the kinetis to allow for stable steady state on-entrations and ows as determined by Rizzi et al. (1997) and Theobaldet al. (1997). The dependene of arbohydrate metabolism and glyerolprodution on the HOG signaling pathway was inluded by letting the ratesof several reations be linearly dependent on the Hog1-indued protein. Be-sides, in order to inlude the dependene of glyerol transport on Fps1, weassume the following sensor mehanismFikean di�usion oeÆient / ��t(t)�0t � (57)where the exponent  is a onstant.Finally, in order to obtain a omplete model we also let the onentrationsof all speies in the ytosol be dependent on the ell volume (whih is adependent variable in the biophysial model). The omplete model as givenin Paper 2 inludes 35 ODEs and 70 parameters.47



6.5 DisussionThe detailed model of Paper 2 and the simpler model of Paper 3 sharesome main harateristis. Both models inlude two parallel ways of ontrolin the ell, sine these seem to be neessary to explain experimental data.The �rst ontrol way is the ability of the ell to inrease the intra-ellularonentration of glyerol, and the seond ontrol way is the ability to ontrolthe glyerol di�usion rate over the membrane. If any of these two ontrolways is absent, the ell fails to ounter-balane an osmoti shok in aneÆient way. A slight di�erene between the models is that the detailedmodel takes Hog1-indued up-regulation of phosphatases into aount andthereby loses a negative feedbak loop on the HOG signaling pathway.However, onsidering realisti indution of the phosphatases, this feedbakplays no important role in pathway down-regulation.To realize the models mathematially it is essential to ombine a biophys-ial desription with a desription of the ellular ontrol mehanisms. Wegenerally note that our mathematial models are important not only for sim-ulations but also for ommuniating the system in a ompat and preiseway.In ombination with new experimental results, our models have improvedthe biologial understanding of osmoregulation in yeast and we exemplifythis in two di�erent ways. The �rst example onerns glyerol aumulationand Fps1. It is generally assumed that stimulated expression of GPD1 andGPP2 and the resulting inreased glyerol prodution apaity aounts forthe inrease in intra-ellular glyerol level upon osmoti shok. However,our results indiate that this e�et is only important for the long-term a-umulation of glyerol. We suggest that a rapid losure of Fps1 leads toan initial glyerol aumulation that, in turn, aounts for HOG pathwaydown-regulation. This also implies that down-regulation of the HOG path-way ours before intra-ellular glyerol peaks and hene before ells havefully adapted to the osmoti stress. Consequently, a strain expressing anFps1 that annot lose should result in a strongly prolonged HOG pathwayativation. This has also been experimentally veri�ed.The seond example onerns feedbak ontrol of the HOG pathway inosmoti adaptation. It has been suggested that enhaned expression ofgenes enoding phosphatases aounts for feedbak ontrol (Hohmann 2002).However, our data suggests that an inrease in the level of phosphatases isnot neessary to down-regulate the pathway. Instead, the input signal to theHOG pathway is dereasing as turgor pressure is reovered. The phospho-rylated kinases of the pathway are then dephosphorylated by phosphatasesat a basal level. This view is supported by experimental results indiatingthat the pathway an be fully reativated by a seond osmoti shok.48



The simple and detailed models of osmoregulation have been onstruted inparallel. Notably, it an be useful to onsider a simple model when develop-ing a more detailed model, sine the main harateristis of the system anmore easily be observed and sine the simple model an be parameterizedwith higher on�dene than the detailed model. For instane, data fromthe simple model has suggested how to adjust the detailed model to giverealisti output on intra-ellular glyerol.In order to further develop our models of osmoregulation several experimentsould be performed. Naturally, quantitative time series data are of partiularinterest. Below we give some examples of potential experiments for futurestudies:� To investigate the roles of the two input branhes of the HOG signalingpathway one an onsider mutants with only one branh ative andan input signal of various salt onentrations. In this way we obtainthe dose-response harateristis for the di�erent branhes. This hasalready been done for one branh, but an be repeated for the other.Also for these experiments it an be useful to follow glyerol in timeseries.� Conerning the mutant with an open Fps1 one ould think of experi-ments with di�erent ombinations of salt and glyerol/sorbitol stress,e.g. 25% salt and 75% glyerol. This kind of experiments an beimportant in order to reveal the exat relationship between the twoontrol funtions.� The osmoti pressures and turgor pressure of the biophysial modelare diÆult to measure experimentally. However, the volume an bemeasured by di�erent tehniques. Ideally, one ould follow one in-dividual ell in time series using state-of-the-art miro-uid systems.This would signi�antly inrease the measurement preision omparedto data on a ell population.A general observation of the experiments that have been performed hith-erto is that the olletion of possible system modi�ations using genetiallymodi�ed strains is very rih and advaned. Suh modi�ations give valuableinsights into the system and an atually be neessary in order to ompletelyunderstand ertain systems, e.g. systems with mixed fast and slow kinetisand systems inluding feedbak loops. However, one should not forget thatvariations of the input signal an be employed in ombination with thesemodi�ations in order to identify the system. The standard step funtion of0.5M NaCl ould be omplemented by other funtions, e.g. a steady inreasein NaCl from 0 to 1M. 49



7 Main ontributionsIn this setion the main ontributions of the three papers are listed. Besides,my ontribution to eah paper is listed.Paper 1EÆient ODE model identi�ation for biologial appliations.Gennemark P. and Wedelin D.A parameter estimation algorithm. An algorithm that estimates theparameters of an ODE model from time series data has been devised. Itonsiders one equation at a time and ombines least-squares estimationwith simulation of a single ODE to obtain both omputational eÆienyand auray. Our results suggest that the method is more aurate andonsiderably faster ompared to other published methods.A model seletion algorithm. An algorithm that identi�es both stru-ture and parameters of an ODE model from time series data has been de-vised. It is designed to handle problems of realisti size, where reations anbe non-linear in the parameters and where data an be sparse and noisy. Themodel seletion is done in an eÆient heuristi way, where the struture isbuilt inrementally. The method is evaluated on two previously publishedmodels using arti�ial data. In omparison to other methods that were usedfor these test systems, the main strength of the algorithm is that a ompletemodel, and not only a struture, is identi�ed, and that it is more aurateand onsiderably faster ompared to other identi�ation algorithms.My ontribution: literature studies and all implementation. Developmentof the basi ideas for both parameter estimation and model seletion inooperation with DW.Paper 2Integrative model of the response of yeast to osmoti shok.Klipp E., Nordlander B., Kr�uger R., Gennemark P. and Hohmann S.A mathematial model of yeast osmoregulation. The ODE modelinludes reeptor stimulation, a MAP kinase asade, ativation of geneexpression and adaptation of ellular metabolism as well as a biophysialdesription of volume regulation and osmoti pressure. Simulations agreewell with experimental results obtained under di�erent stress onditions or50



with ertain mutants. The model is preditive sine it suggests previouslyunreognized features of the system with respet to osmolyte aumulationand feedbak ontrol, whih we on�rm experimentally.Improved understanding of Glyerol aumulation and Fps1. It isgenerally assumed that stimulated expression of GPD1 and GPP2 and theresulting inreased glyerol prodution apaity aounts for the inreasein intra-ellular glyerol level upon osmoti shok. However, our resultsindiate that this e�et is only important for the long-term aumulation ofglyerol. We suggest that a rapid losure of Fps1 leads to an initial glyerolaumulation that, in turn, aounts for HOG pathway down-regulation.This also implies that down-regulation of the HOG pathway ours beforeintra-ellular glyerol peaks and hene before ells have fully adapted to theosmoti stress. Consequently, a strain expressing an Fps1 that an not loseshould result in a strongly prolonged HOG pathway ativation.Improved understanding of feedbak ontrol of the HOG path-way. It has been suggested that enhaned expression of genes enodingphosphatases aounts for feedbak ontrol (Hohmann 2002). However, ourdata suggests that an inrease in the level of phosphatases is not neessaryto down-regulate the pathway. Instead, the input signal to the HOG path-way dereases as turgor pressure is reovered. The phosphorylated kinasesof the pathway are then dephosphorylated by phosphatases at basal level.This view is supported by experimental results indiating that the pathwayan be fully reativated by a seond osmoti shok.My ontribution:1. Original idea and �rst models of ombining a biophysial desriptionwith a ontrol model of osmoregulation. This idea was presented ona talk and poster together with BN at the Funtional Genomis on-ferene in G�oteborg 2001. This biophysial model has been furtherdeveloped in ollaboration with EK.2. Work on the basi model of the HOG signaling pathway (inluding thetwo-ompartment model ytosol/nuleus) together with RK and EK.3. My results from the simple model in Paper 3 have suggested howto adjust the detailed model to give realisti output on intra-ellularglyerol.4. Suggestion of an experiment with di�erent magnitude of osmoti shokin order to study the pathway sensor mehanism.51



Paper 3A simple mathematial model of adaptation to high osmolarity in yeast.Gennemark P. and Nordlander B.A mathematial model of yeast osmoregulation. This model om-plements the detailed model of Paper 2. Compared to the detailed model,the main strength of this model is its lower omplexity, ontributing to abetter understanding of osmoregulation by fousing on relationships whihare obsured in the more detailed model. The ten parameters of this simplemodel were onstrained by data from various literature soures as well asour own data and estimated from absolute time series data on glyerol. Thelow omplexity makes it possible to parameterize the model from absolutedata. The qualitative behavior of the model has been suessfully testedon data from other genetially modi�ed strains as well as data for di�erentinput signals.Improved understanding of osmoregulation. The model strengthenthe hypothesis that at least two ways of ontrol are required in order toeÆiently ounter-balane an osmoti shok in the ell. The �rst ontrolway is the ability of the ell to adjust the intra-ellular onentration ofglyerol, and the seond ontrol way is the ability to ontrol the glyeroldi�usion rate over the membrane.My ontribution: All work, based on experimental data supplied by BN.
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