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Abstract

We present a simple ordinary differential equation (ODE) model of the adaptive
response to an osmotic shock in the yeast Saccharomyces cerevisiae. The model
consists of two main components. First, a biophysical model describing how the
cell volume and the turgor pressure are affected by varying extra-cellular osmolar-
ity. The second component describes how the cell controls the biophysical system
in order to keep turgor pressure, or equivalently volume, constant. This is done
by adjusting the glycerol production and the glycerol outflow from the cell. The
complete model consists of 4 ODEs, 3 algebraic equations and 10 parameters. The
parameters are constrained from various literature sources and estimated from new
and previously published absolute time series data on intra-cellular and total glyc-
erol. The qualitative behaviour of the model has been successfully tested on data
from other genetically modified strains as well as data for different input signals.
Compared to a previous detailed model of osmoregulation, the main strength of our
model is its lower complexity, contributing to a better understanding of osmoregu-
lation by focusing on relationships which are obscured in the more detailed model.
Besides, the low complexity makes it possible to obtain more reliable parameter
estimates.

Keywords: Saccharomyces cerevisiae, osmotic shock, HOG pathway, Fps1, ODEs,
model complexity
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1 Introduction

Osmoregulation involves the adaptation of a cell to varying osmotic pressure in
order to maintain size and cellular activities [Hohmann, 2002]. The chemical po-
tential of water is central in osmoregulation, and it can be seen as a measure of
the effective water concentration in a given area. The water potential is influenced
by two factors [Levin et al., 1979]: (1) the osmotic potential and (2) the pressure
potential. The first is approximately proportional to the concentration of dissolved
molecules of solutes. As the concentration of solute molecules increases, the wa-
ter potential decreases. The latter takes into account the hydrostatic pressure. If
a solution is put under pressure, the water potential increases. For two regions of
water with different potentials and separated from each other by a semi-permeable
membrane, there will be a water flow to the region of lower potential by osmosis.

Typically, a cell has a higher intra-cellular osmotic pressure (Πi) than extra-cellular
osmotic pressure (Πe). The main reason for this difference is that highly charged
macromolecules and metabolites attract many small inorganic ions to the cell in-
terior (the Donnan effect, see e.g. Alberts et al., 1994). Due to this difference
water will flow into the cell. In isolation, this would cause the cell to swell and
potentially lead to cell rupture.

The yeast Saccharomyces cerevisiae prevents the fundamental problem of water
inflow and cell swelling by its cell wall, which is less elastic than the plasma mem-
brane. The cell wall resists the expansion of the cell, and creates an inward pressure
on the cell contents [Gervais and Beney, 2001]. This pressure is called the turgor
pressure (Πt), defined as the difference in the hydrostatic pressure between the in-
side and the outside of the cell. At equilibrium (equil.), the water potential is equal
inside and outside of the cell and the turgor pressure balances the difference in
osmotic pressures as [Smith et al., 2000]

Πi = Πe + Πt (equil.) (1)

A hyper-osmotic shock is a sudden increase in the extra-cellular osmotic pressure,
for instance due to the addition of salt to the cell medium. The immediate effect
on yeast to an osmotic shock involves water outflow and decreasing volume. The
rate of water flow is proportional to the difference between (Πe + Πt) and Πi. In
this way, a new equilibrium is reached, in which the higher extra-cellular osmotic
pressure is balanced by an increased intra-cellular osmotic pressure (due to the
reduced volume), and reduction of turgor pressure (due to reduced size of the cell
wall). For a sufficiently large osmotic stress, the turgor pressure is abolished and
the volume is significantly reduced at the new equilibrium [Gervais and Beney,
2001; Hohmann, 2002]. We will refer to these processes as the the biophysical
system of the cell, see Fig. 1 for an overview.
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Figure 1: Overview of osmoregulation in yeast. The biophysical system is illus-
trated to the right and the control system to the left in the figure. An input stress
causes the external osmotic pressure to increase and water to flow out of the cell.
In turn, this rapidly leads to turgor pressure and volume decrease. The control sys-
tem aims at accumulating glycerol in order to regain volume and turgor pressure.
The HOG signalling pathway initiates a transcriptional response of several genes
involved in glycerol production and the outflow of glycerol is adjusted by Fps1.
Arrows indicate dependencies considered in the model.

Generally, the cell strives to keep volume and turgor pressure constant and inde-
pendent of environmental changes. It therefore has a control system responding to
these changes by accumulating glycerol and thereby increasing the intra-cellular
osmotic pressure in order to regain volume and turgor pressure [Gervais and Beney
2001; Hohmann, 2002; de Nadal et al., 2002]. This control system consists of two
main components as illustrated in Fig. 1. First, the transmembrane glycerol trans-
porter Fps1 closes which promotes the accumulation of glycerol. Second, the High
Osmolarity Glycerol (HOG) pathway is activated, which in turn leads to transcrip-
tion of several genes, among them GPD1 and GPP2, whose proteins are involved
in glycerol production. The HOG pathway belongs to the class of Mitogen Acti-
vated Protein Kinase (MAPK) pathways that are found in all eukaryotic organisms
and are important for transmitting and processing signals from the cell membrane
into the cell. Typically, a MAPK pathway consists of a sensing system, a cascade
of protein kinases and output systems such as transcriptional regulators. Upon
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activation, the last kinase in the pathway, Hog1, enters the nucleus and induces
transcription.

By combining experimental techniques with mathematical modelling Klipp et al.,
2005, proposed a mathematical model of the osmoregulation system. The model
includes the HOG pathway, carbohydrate metabolism and glycerol production as
well as a biophysical model. In total, the model consists of 35 ordinary differen-
tial equations (ODEs) as well as 70 parameters, and it is currently the most de-
tailed mathematical description of the adaptation to high osmolarity in yeast. Such
detailed models are important in order to completely understand a particular phe-
nomenon and to ultimately obtain a close match between model and experiment.
To a large extent the reaction mechanisms are modelled and, hence, the use of
black-box relationships between variables that may have no physical connection
is minimised. Besides, building a descriptive model with a high level of detail is
important for communicating the system and it also allows a large scope of exper-
iments, such as different gene deletions, to be simulated.

In this article, we present a model that most economically captures the essential
physics and biology of osmoregulation. It contains variables for volume, turgor
pressure, osmotic pressure and glycerol (and some intermediate variables), and
is described by 4 ODEs, 3 algebraic equations and 10 parameters. This model
complements the more detailed model of Klipp et al., 2005, and we will refer to
the model described here as the simple model and to the model from Klipp et al.
as the detailed model.

In general, when compared to a more complex model, a model may be simpler in
different ways:

1. More limited modelling scope. This means that parts or aspects of the model
may be absent altogether, or replaced by some black-box description which
is not intended to model the internal detail of this function.

2. Simpler functions and equations, such as for example by assuming linear-
ity. In a model of a metabolic pathway, one could for instance replace all
Michaelis-Menten kinetics by bilinear kinetics.

The model we present is simpler with respect to 1 but not 2. This means that
to the extent a variable or function is at all considered in the simple model, the
model is rich enough to describe it with the same numerical accuracy as in the
detailed model. The parameters have been estimated using both new and previously
published experimental data on glycerol, and the resulting model appears to explain
all known experimental data considered in its modelling scope.

We note that both the simple and the detailed model are dynamic models of os-
moregulation, and therefore, simulation of time course experiments can be exe-
cuted. Naturally, static models could also be considered (as an extreme case of
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approach 1), and such models would in this sense be even simpler than our model.
However, the lack of dynamic information would severely restrict their applicabil-
ity.

There are several general reasons to construct a basic dynamic model of the os-
moregulation system:

• A simple model is easier to understand and to handle, since it focuses on the
most important aspects of the system (which may be obscured in a complex
model). For example, comparing Fig. 1 with Figure 1 of Klipp et al., 2005,
should make this point.

• If data is limited in volume and precision, a simple model created from such
data is often more reliable and accurate than a more complex model, even if
the model is simpler in both ways described above. If data is not sufficient
compared to the complexity of the model in terms of the number of param-
eters etc., there may be no way to avoid over-fitting of the complex model,
leading to unreliable conclusions and predictions.
Concerning the structure of the osmoregulation system, we note for example
that the exact sensor mechanisms of the two considered control functions,
Fps1 and the HOG pathway, are unknown. For the HOG pathway, this un-
certainty in combination with the sparse data makes it difficult to unambigu-
ously define a detailed model structure of this pathway.
Concerning parameters, existing data for the osmoregulation system are sparse,
both with respect to the number of compounds that are currently accessi-
ble for measurement and the number of data-points in individual time se-
ries. Typically, one measures the relative amount of dually phosphorylated
Hog1 and the relative amount of mRNA from Hog1-induced genes (such as
STL1 and GPD1), and furthermore, one measures the relative or absolute
(not scaled by an unknown constant) amount of internal and the absolute
amount of total glycerol concentration (internal plus external). It is there-
fore very difficult to uniquely fit the free parameters of the detailed model to
currently available data.

• Even if data is sufficient, simulation is not necessarily more exact in a de-
tailed model compared to a simple model. This is because also a more de-
tailed model may contain parts that are modelled with less detail, and when
simulating interconnected components modelled by a combination of low
and high levels of detail, we cannot expect a more precise result than what is
given by the least described part.
In the detailed model, individual reaction steps are only included for parts
of the osmoregulation system, e.g. metabolism and to a certain extent the
HOG pathway, while other parts, such as transcription, translation and the
biophysical system, are less understood, and consequently, modelled with
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less detail. As a consequence, when studying for example the dependence
of Hog1-induced mRNA on Sln1 (the sensor of the HOG pathway), the high
level of detail of the HOG pathway is unnecessary when connecting the path-
way in series with transcription which is modelled with a low level of detail.
We note, however, that this approach may be necessary in order to obtain a
working model from a given data set.

Although this list points out some important advantages of simple models even if
more complex models are available, we note that different types of models and
models with different complexity do not necessarily contradict each other, and are
useful as complementary views of the same system.

The rest of this paper is structured as follows. In the next section we present our
simple mathematical model of osmoregulation and in section ”Parameter estima-
tion” we describe how the parameters of the model were estimated. Furthermore,
in section ”Simulation results” we compare model simulations with experimental
data. We end the paper by a discussion.
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2 Our model

Our simple model consists of two main components. First, a biophysical model de-
scribing how the cell is affected by varying extra-cellular osmolarity. We present
this model in section ”The biophysical model” and note that the same biophysi-
cal description is used in the detailed model. The second component is a control
model giving a simple description of how the cell controls the biophysical system
in order to keep turgor pressure, or equivalently volume, constant. This is done
by controlling the glycerol production and the glycerol outflow from the cell. This
model is presented in section ”The control model”.

2.1 The biophysical model

We model the biophysical system by considering the dependencies between cell
volume (V ), turgor pressure (Πt), intra-cellular osmotic pressure (Πi) and extra-
cellular osmotic pressure (Πe) by equations derived in thermodynamics. There is
evidence that e.g. cell wall thickness, membrane composition and vacuole volume
also are affected by osmotic stress, see e.g. Hohmann, 2002. However, the impor-
tance of these responses is difficult to judge and these processes are typically non-
trivial to include in a model, mainly due to lack of data. Therefore, we disregard
them in our modelling. For a more elaborate description of the thermodynamic
derivation of the model we refer to Levin et al., 1979.

The flow of water over the cell membrane is proportional to (Πi(t) - Πe(t) - Πt(t)),
where t is time, and assuming that the volume (V ) only changes due to in- and
outflow of water we obtain the following differential equation for V

V ′(t) = kp1 (Πi(t) − Πe(t) − Πt(t)) (2)

where kp1 is a constant for the hydraulic water permeability constant (usually de-
noted Lp) times the cell membrane area which we assume constant. At equilibrium,
i.e. constant volume and no net flow of water over the membrane, we note that (2)
reduces to (1).

We consider glycerol as the sole osmolyte and, hence, ions and other small molecules
that have been reported to change upon osmotic shock, see e.g. Sunder et al., 1996,
are not considered. This simplification is to a certain extent motivated by experi-
mental results from Reed et al., 1987, who found that glycerol counter-balances in
the order of 80% of applied NaCl in S. cerevisiae. For this reason, the intra-cellular
osmotic pressure is calculated by van’t Hoff’s law according to

Πi(t) =
n + Gly(t)

V (t) − Vb
(3)
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where Gly [mol] is the main osmolyte glycerol and n are the moles of of other
osmotically active compounds in the cell (assumed constant) and Vb is the non-
osmotic volume of the cell, corresponding to the sum of the volumes of hydropho-
bic cellular components (such as lipid bilayers) that are osmotically unresponsive.
We see that increased glycerol increases the intra-cellular osmotic pressure. In this
way, glycerol can be used to control the turgor pressure of the cell.

The extra-cellular osmotic pressure is only modified by the input signal, for ex-
ample applied salt stress, and therefore independent of changes in other variables,
such as extra-cellular glycerol. This is a reasonable approximation because of two
main reasons: first, the intra-cellular volume is much smaller than the extra-cellular
volume corresponding to a single cell and second, we do not consider import to the
cell (e.g. glucose) and its effects on Πe and it is therefore natural also to leave out
the effects of export.

Because of the nature of the elasticity in the cell wall, the turgor pressure is usually
dependent on the volume. We consider the approximation of letting turgor pressure
be linearly dependent on the volume according to Levin et al., 1979:

Πt(t) = ε

(

V (t)

V (0)
− 1

)

+ Πt(0) (4)

where V (0) and Πt(0) are the initial volume and turgor pressure, respectively, and
ε is the so-called volumetric elastic modulus. Restricting Πt to positive values and
using the notation V Πt=0 for the volume when Πt = 0, we can rewrite (4) as

Πt(t) =

{

Πt(0)
V (t)−V Πt=0

V (0)−V Πt=0 , V (t) > V Πt=0

0, otherwise.
(5)

In the next section we suggest a model for controlling this biophysical model when
exposed to extra-cellular osmotic stress.

2.2 The control model

To build a model of osmoregulation it is crucial to understand what control systems
are available and what type of sensors are employed by these control systems.
We consider two parallel ways of control: first, osmotic shock closes the Fps1
channel and thereby allows the cell to accumulate glycerol, and second, osmotic
shock triggers the HOG signalling pathway which, in turn, leads to HOG-induced
glycerol production after a certain time delay. Concerning Fps1, it is known that the
channel closes upon high osmotic pressure, but the sensing mechanism is unknown.
For the HOG pathway, there are at least two independent sensors and one of them,
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Sln1, has been shown to respond to changes in turgor pressure [Reiser et al., 2003],
although the exact sensing mechanism is unknown. The other sensor of the HOG
pathway (Sho1-branch) is not identified and the mechanism is unknown.

It is believed that it is evolutionary favourable for the cell to strive to keep both tur-
gor pressure and volume reasonably constant. Since it is known that the yeast cell
senses turgor pressure by the Sln1 sensor, we use turgor pressure as the controlling
variable also in our model.

In order to construct a simple model of how the cell controls the biophysical system
(modelled as (2), (3) and (5)), we consider the control problem of keeping the tur-
gor pressure constant at Πt(0) (reference signal), given disturbances in the external
osmotic pressure. In practice, both turgor pressure and volume are controlled since
volume is linearly dependent on turgor pressure in the biophysical model. See Fig.
2 for an overview of the model.

Fps1u

Reference signal

−

Disturbance signal
External osmotic pressure

+

Turgor pressure

controller

controller Biophysical model
Glycerol

adjustment

Initial turgor pressure

HOG pathway

Fps1 channel

Time
delay

channel
Fps1 Glye

HOGu

Diffu

uHOG

Figure 2: Overview of the model where the glycerol level is controlled by two
parallel ways: (1) adjusted glycerol outflow capacity via Fps1 and (2) increased
glycerol production triggered by the HOG pathway.

We define the input signal to the controllers, e, as

e(t) = Πt(0) − Πt(t). (6)

The first control way concerns the adjustment of glycerol inflow/outflow over the
Fps1 channel. The Fps1 control function, uFps1, models the glycerol permeability
over the channel. The function outputs real values in the interval [0,kp2], where 0
corresponds to completely closed and where kp2 is the glycerol permeability coef-
ficient in a completely open Fps1 channel. For simplicity, we consider proportional
control for uFps1 and obtain

uFps1(t) =

{

kp2
Πt(0)−e(t)

Πt(0)
, e(t) > 0

kp2, otherwise.
(7)
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We model the exchange of internal and external glycerol over the Fps1 channel,
uDiff , by Fick’s first law of diffusion as

uDiff (t) = uFps1(t)

(

Gly(t)

V (t) − Vb
−

Glye(t)

Ve

)

(8)

where Ve is the extra-cellular volume. We consider a single cell in our model
and Ve should therefore be interpreted as the fraction of the extra-cellular volume
belonging to each cell.

The second way of control concerns the glycerol production induced by the HOG
pathway. The control function of the HOG pathway, uHOG, is constrained to
positive numbers and assuming proportional control with constant kHOG we obtain

uHOG(t) =

{

kHOG e(t), e(t) > 0
0, otherwise. (9)

We note that we have used very simple proportional controllers, although it is
known that for example MAPK signalling pathways often exhibit a switch-like
behaviour [Huang and Ferrell, 1996; Kholodenko et al., 1997; Ferrell, 1998]. In
principle, we could modify our controllers to some switch-like function, e.g. the
logistic function with two parameters, and thereby increase the goodness-of-fit to
experimental data. This is natural since the parameter space is enlarged. It is, how-
ever, not obvious which switch-like function to select and therefore, in order to
avoid an unnecessarily complex model, we use proportional control.

We would also like to point out that phosphatases targeting Hog1 are not explicitly
included in the control model, although they are generally believed to control the
level of osmotic stress induced phosphorylated Hog1. For instance, there is exper-
imental evidence that phosphatases targeting Hog1 are up-regulated upon osmotic
stress [Jacoby et al., 1997; Wurgler-Murphy et al., 1997]. However, given sen-
sors for turgor pressure this up-regulation is superfluous for successful adaptation.
Instead, the basal level of phosphatases is enough to dephosphorylate the kinases
once the input signal is off [Klipp et al., 2005].

In order to take the time required for transcription and translation into account,
we delay the signal from the HOG pathway to glycerol adjustment by a first-order
delay approximation using the following ODE

ũHOG(t)′ =
1

td
(uHOG(t) − ũHOG(t)) (10)

where ũHOG(t) is the time delayed variable and td is the time delay. Alternatively,
we could have used an explicit delay with similar results. From a practical point
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of view, however, (10) is easier to handle since it can be integrated in any standard
ODE solver.

The two ways of control are combined in the ODE for intra-cellular glycerol, Gly,
as

Gly′(t) = ũHOG(t) − uDiff (t). (11)

Similarly, the ODE for extra-cellular glycerol, Glye, is obtained by taking the dif-
fusion term into account as

Gly′e(t) = uDiff (t). (12)

Finally, we would like to point out that the use of two parallel ways of control
is not unnecessarily complex but rather necessary, in order to adjust the glycerol
concentration to a desired value. This is because the flexibility of the controllers
are constrained: the HOG controller only assumes non-negative values and the
Fps1 controller is dependent on the difference in glycerol concentration over the
cell membrane.
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3 Parameter estimation

In order to estimate the parameters of the model we consider both new and previ-
ously published data. In particular, we use a data set of absolute time series data
for intra-cellular and total glycerol, see Tab. 1. This data set includes seven exper-
iments on wild-type cells with different input signals of NaCl stress. Furthermore,
one experiment considers a constitutively open Fps1 mutant.

Exp. Input Genomic Var. N Rep. Reference
no. signal background
1 0.17M w.t. G 2 3 Reed et al. 1987
2 0.5M w.t. G 2 3 Reed et al. 1987

GT 5 2 Klipp et al. 2005
3 0.86M w.t. G 2 3 Reed et al. 1987
4 1.0M w.t. GT 5 2 Appendix A
5 0.5M t=0 w.t. GT 5 2 Appendix A

0.5M t=30

6 0.5M t=0 w.t. GT 6 2 Appendix A
0.5M t=60

7 0.5M t=0 w.t. GT 7 2 Appendix A
0.5M t=160

8 0.5M Open Fps1 GT 7 2 Klipp et al. 2005

Table 1: Experiments considered in parameter estimation. The added osmolyte is
NaCl in all experiments. Abbreviations: Var. = measured variable, N = number of
data-points in the time series, Rep. = number of replicates, w.t. = wild-type, G =
intra-cellular glycerol concentration and GT = total glycerol concentration. The
osmotic pressure (in Osm) of a certain molar of NaCl is obtained by multiplying by
2 (NaCl dissociates into two ions) and then multiplying by the osmotic coefficient
of NaCl, 0.93 [Robinson and Stokes, 1959].

The data set of Tab. 1 is incomplete in the sense that only the concentration of
glycerol and total glycerol are observed. Besides, data is scarce and monotonic. In
order to obtain reliable parameter estimates from such a data set it is useful to con-
sider a simple model and to constrain the parameters. In section ”Constraining the
model parameters”, we present reasonable lower and upper bounds for all param-
eters. These constraints are obtained not only from the data set of Tab. 1, but also
from various literature sources as well as our own data on cell volume immediately
after osmotic stress (Appendix B).

We aim at estimating the constrained parameters given the time series data pre-
sented in Tab. 1. However, a potential problem in parameter estimation is that all
parameters may not be unambiguously determined from the considered data set.
Therefore, in section ”Observability test”, we use a method for algebraic observ-
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ability to examine whether the parameters of the simple model in theory can be
deduced from the experimental data set considered. It turns out that two of the
parameters are not observable. However, we overcome this problem by additional
reasonable assumptions and, finally, in section ”Parameter estimation” we estimate
the parameters numerically from the time series data of Tab. 1.

Concerning our data set on intra-cellular glycerol we would like to point out that
absolute data from Reed et al., 1987 has been employed, although data with higher
sampling frequency is available in Klipp et al., 2005. However, the latter data is
relative and the fold increase in intra-cellular glycerol is only in the order of ten
for an osmotic shock of 0.5M NaCl. This is not realistic considering that such an
osmotic shock should give in the order of 1M intra-cellular glycerol [Oliveira et
al., 2003; Reed et al., 1987]. Given only a ten-fold increase in intra-cellular glyc-
erol would indicate an initial concentration in the order of 0.1M, which is about
1000 times greater than values in the literature for non-stressed cells. One possible
explanation for these experimental results could be that the cells accidentally have
been pre-stressed and, consequently, started to accumulate glycerol before the true
stress input signal. A more reasonable explanation is, however, that the method
for measuring intra-cellular glycerol is inexact for low concentrations. This is sup-
ported by data from Sunder et al., 1996, who use a similar method for measuring
intra-cellular glycerol. In their study, the initial concentration varied between ’not
detectable’ and 0.05 (relative unit), and the concentration one hour after stress was
in the order of 0.5 (relative unit).

3.1 Constraining the model parameters

The complete model, including the biophysical model and the control model, con-
tains 14 parameters. However, four of these are dependent parameters which we
do not need to constrain. Hence, we seek to calculate or constrain the remain-
ing 10 parameters from experimental data. As in the detailed model, we scale the
initial volume of the cell to 1. This assures that all variables of the model have
values of similar order of magnitude, which facilitates numerical integration. For
an overview of all parameters as well as the constraints, we refer to Tab. 2. In this
table we also describe how the dependent parameters are calculated.

The parameter constraints were obtained as follows:

Gly0. We measured initial total glycerol concentration in wild-type cells to 0.46mM
with standard deviation 0.086mM (8 observations, see Appendix A). We constrain
the corresponding model expression in the interval of three standard deviations
from the measured mean value.

0.20 ∗ 10−3
≤

Gly(0) + Glye(0)

V (0) − Vb + Ve
≤ 0.72 ∗ 10−3 (13)
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Parameter Bounds
Gly(0) Initial Gly [1.1E−4, 5.0E−4]
Πi(0) Initial Πi [0.60, 0.70] Osm−1

Πe(0) Initial Πe [0.24, 0.25] Osm−1

Vb Non-osmotic volume [0.31, 0.46]
Ve External volume [0.5E3, 5.0E3]
kp1 Water perm. coeff. [5.2E−3, 160] Osm−1

kp2 Gly perm. coeff. in Fps1 (0,∞)
V Πt=0 V when Πt = 0 [0.5, 0.99]
kHOG HOG pathway control const. (0,∞) Osm−1

td Time delay [5, 30] min

Dependent parameter Value obtained as
V (0) Initial V (relative value) 1
Glye(0) Initial Glye Ve Gly0/(V 0 − Vb)
Πt(0) Initial Πt Πi(0) − Πe(0)
n No. of osmotically active Π0

i (V 0 − Vb) − Gly0

moles other than Gly

Table 2: Model parameters and parameter bounds corresponding to lower and
upper bounds. All volumes are scaled such that the initial volume of the cell is 1.
Both Gly and Glye represent number of molecules (mol scaled by V (0)).

We note that this holds for wild-type cells. Assuming that glycerol concentration
outside and inside the cell initially are equal, bounds for Gly(0) can be calculated
from (13) given bounds for Vb and Ve. The obtained bounds are reasonable com-
pared to other values given in the literature for different yeast strains under certain
conditions, e.g. 3mM [Oliveira et al., 2003], 4.2mM [Hynne et al., 2001] and ¡ 10
mM [Reed et al., 1987].

Πi(0), Πe(0) and Vb. The initial values of Πi and Πe (denoted Πi(0) and
Πe(0)) as well as the value of Vb can be obtained from the literature as Πi(0) = 0.6
Osm in non-growing cells (even higher in growing cells), Πe(0) = 0.25 Osm in
standard medium and Vb about 0.4 [Gervais and Beney, 2001] or in the range 0.31-
0.46 [Reed et al. 1987]. Besides, the dependent parameter Πt(0) can be obtained
from the literature as Πt(0) ≥ 0.35 Osm [Gustin 1998]. We can also calculate
these biophysical parameters for our particular experimental set-up in the follow-
ing way: The pressure of fresh medium, Πe(0), can be approximated to 0.24 Osm
by summing the individual contributions from all species, see Appendix C. Fur-
thermore, by considering (1) and (3) at the new equilibrium after the immediate

15



biophysical to an osmotic shock (see, e.g., Gervais and Beney, 2001)

Πi =
n + Gly(0)

V − Vb
= Πt + Πe (equil.) (14)

and setting Πe = Πe(0)+Πstress we can estimate the expression (n+Gly(0)) and
the parameter Vb from our data on yeast volume immediately after osmotic shock
(Appendix B). Here we assume that all osmotic shocks are large enough to give
Πt = 0. This is a reasonable assumption since the smallest shock in the data set is
0.93 Osm, which is about three times greater than the typical value of Πt(0). Using
non-linear regression on the cell volume data, we obtained (n + Gly(0)) = 0.41
and Vb = 0.40. From these estimates we can calculate Πi(0) = 0.68 Osm and
Πt(0) = 0.44 Osm from (3). We conclude that our values compare well to the
values mentioned in the literature. Based on these observations, we use relatively
conservative bounds for the parameters Πi(0), Πe(0) and Vb.

Ve. The external volume per cell, Ve, was estimated by assuming 5 ∗ 106 cells/ml
(2 ∗ 10−13 m3/cell) and an average cell volume of 1 ∗ 10−16 m3. Hence, the value
of Ve is in the order of 1000 times greater than the volume of the cell.

kp1. The water permeability constant is actually a product of two constants, the
membrane hydraulic permeability (Lp) and a geometric scale-factor relating cell
area to volume, (4π)1/3(3V (0))2/3. Experimental estimates of Lp range from
6E−11 ms−1Pa−1 to 2E−15 ms−1Pa−1 for different experimental set-ups [Beney
et al., 2001; Gelinas et al., 1991]. Considering our scaled volume we obtain kp1 ∈

[5.2E-3,160] Osm−1 (set (4π)1/3(3V (0))2/3Lp = kp1, transfer the unit ms−1Pa−1

to ms−1 Osm−1 by multiplying Lp by 1000 RT = 1000 * 8.31 Jmol−1K−1 * 300K
and scale by assuming V (0) = 1E-16 m3).

kp2. The glycerol permeability constant was constrained to positive real numbers.

VΠt=0. The parameter indicating the volume when turgor pressure becomes zero,
should be close to V (0) [Martinez de Maranon et al., 1996; Gervais and Beney,
2001]. Based on this information, we let the lower bound equal 0.5V (0) and in
order to avoid division by zero in (5) we set the upper bound slightly smaller than
V (0).

kHOG. The HOG pathway control parameter is a purely phenomenological rate
constant, and consequently, it could only be constrained to positive real values.

td. The time delay of Hog1-induced glycerol production, td, was constrained to
realistic values considering time series data of Hog1-induced mRNA and glycerol
activation given in Klipp et al., 2005.
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3.2 Observability test

Using a method for algebraic observability [Sedoglavic, 2002] we examined whether
the parameters of the simple model in theory can be deduced from experiments
where Πe is input signal and where the concentration of intra-cellular glycerol and
total glycerol are output signals. The output signal for glycerol concentration is
calculated as

[Gly(t)] =
Gly(t)

V (t) − Vb
(15)

and the corresponding expression for total glycerol is obtained as

[Glytot(t)] =
Gly(t) + Glye

V (t) − Vb + Ve
. (16)

Using these settings, we found that nine of the parameters (all but td) of the model
are not observable for these particular in- and outputs. Hence, infinitely many
parameter value combinations can fit the observed data. However, by assuming
two of the non-identifiable parameters known, we obtain algebraic observability.

For this reason we selected two parameters, Πe(0) and kp1, to be fixed. Concern-
ing Πe(0), we see from Tab. 2 that it to a large extent can be assumed known
from its tight bounds. For simplicity, we assign Πe(0) the value calculated from
the medium considered in Appendix C. In contrast, for kp1 we cannot rely on tight
bounds. However, preliminary simulations of the model with allowed parameter
values suggest that the observed data is insensitive to variations in kp1. There-
fore, we cannot expect an exact estimate of this parameter to be deduced from our
data set. We note that this parameter is also difficult to estimate experimentally, as
indicated by the difference of five orders of magnitude in the estimates from the lit-
erature. The main reason for this uncertainty is the difficulty of observing the rapid
passive response experimentally. Therefore, we assigned kp1 = 1, corresponding to
the average value of the lower and upper bounds in logarithmic space. We would
like to point out that fixing Πe(0) and kp1 do not significantly affect the estimated
values of the other parameters.

It is important to note that a positive algebraic observability test only guarantees
that the parameters can be observed when using ideal data. For a realistic data
set, which is usually sparse and noisy, additional information might be required
for reliable parameter estimates. Concerning our data set for the simple model,
we include additional information in form of the parameter bounds as well as the
experiment on a modified system (a constitutively open Fps1 mutant).
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3.3 Parameter estimation

We estimated the remaining eight parameters by minimising the sum of the squares
of the difference between simulated and experimental data given by Tab. 1. For
one time series experiment the error is calculated as

error =
∑

i

(

X(ti) − X̂(ti)
)2

(17)

where i indexes the measurement points and where X and Y denote simulated and
experimental values, respectively. The total error is obtained by summing over all
measured values in all experiments. This error function does not weight the data-
points but it is sufficient for our purposes since we only measure glycerol and all
data-points have the same order of magnitude. We note, however, that other error
functions can be considered. All simulations were run in Matlab (MathWorks Inc.)
using the function ode15s for numerical integration.

We searched for a possible global minimum point of the error function by evalu-
ating several randomly chosen starting points in the feasible region. For practical
reasons, the upper bounds of infinity were replaced by reasonably large numbers.
For parameter sets with sufficiently low error (approximately 0.5% of the trials),
the search was continued with the Matlab (MathWorks Inc.) minimisation rou-
tine fmincon. The best parameters found are given in Tab. 3. These parameters
are obtained also when repeating the parameter estimation, why we are relatively
confident that a global minimum of the error function is obtained.

Parameter Value
Gly(0) Initial Gly 2.00E−4
Πi(0) Initial Πi 0.636 Osm
Πe(0) Initial Πe 0.240 Osm
Vb Non-osmotic volume 0.368
Ve External volume 4.79E3
kp1 Water perm. coeff. 1.00 Osm−1

kp2 Gly perm. coeff. in Fps1 0.316
V Πt=0 V when Πt = 0 0.990
kHOG HOG pathway control const. 0.416 Osm−1

td Time delay 8.61 min

Table 3: Model parameters. The values of Πe(0) and kp1 were fixed as described
in section ”Observability test” while the remaining 8 parameters were estimated
from time series data. Gly represents number of molecules (mol scaled by V (0)).

The sensitivity of the error function to perturbations in the parameters was inves-
tigated and the result is presented in Tab. 4. The sensitivities indicate reasonable
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ranges for the parameters. For instance, the parameter kHOG is likely to be found
within a factor 0.5 and 2 from its estimated value, because of the steep increase
in error for such perturbations. However, we note that this kind of interpretation
may not hold if the found minimum of the error function is local and the global
minimum is situated in a different region of the parameter space. The sensitivities
confirm that variations in kp1 do not have a strong impact on the error function. Ac-
tually, the error function is hardly affected for any feasible value of kp1. Similarly,
the error function is also insensitive to changes in Vb. However, in this case we
have a relatively good knowledge of the parameter value due to the tight bounds.
We generally note that parameter identification would have been extremely difficult
without the lower and upper bounds. The estimates of the remaining parameters are
better, although the estimated parameter values should be interpreted as plausible
values.

Perturbation
Parameter 0.1 0.5 0.9 0.99 1.01 1.1 2 10
Gly(0) ∞ ∞ 1.01 1.000 1.004 1.01 1.81 ∞

Πi(0) ∞ ∞ ∞ 1.017 1.025 1.52 ∞ ∞

Πe(0) ∞ ∞ ∞ ∞ 1.002 ∞ ∞ ∞

Vb ∞ ∞ 1.00 1.000 1.000 1.00 ∞ ∞

Ve ∞ 37.8 1.46 1.004 1.004 ∞ ∞ ∞

kp1 1.00 1.00 1.00 1.000 1.001 1.00 1.00 1.00
kp2 18.9 3.73 1.12 1.006 1.004 1.08 2.15 6.06
V Πt=0 ∞ ∞ 1.38 1.021 ∞ ∞ ∞ ∞

kHOG 29.2 8.31 1.31 1.007 1.007 1.23 11.5 120
td ∞ ∞ 1.00 1.000 1.001 1.01 1.22 ∞

Table 4: Sensitivity of the error function to variations in the parameters. The
parameters are modified by different perturbations between 0.1 and 10 times the
estimated parameter value. Only one parameter is modified at a time. The values
in the table correspond to the error of the perturbed model divided by the error
of the model with estimated parameters. When a parameter value is outside its
bounds the model error is set to infinity.
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4 Simulation results

In this section we present simulated experimental data using the simple model.
First, in section ”Wild-type strain with NaCl input stress” we compare simulated
data with some of the time series experiments of Tab. 1. Because of the relatively
few available time series, we used all these data for parameter estimation and no
such data remains for model validation. Instead, we validate the model by quali-
tative comparisons with mutant experiments considered in Klipp et al., 2005, and
with mutant experiments with different polyol input signals studied by Karlgren
et al., 2004. These two comparisons are presented in section ”Mutant strains with
NaCl input stress” and section ”Mutant strains with various polyol input stress”,
respectively.

4.1 Wild-type strain with NaCl input stress

Simulated and experimental data for some of the wild-type experiments of Tab. 1
are given in Fig. 3. We note that the model parameters have been estimated using
all experiments, and hence, the goodness-of-fit for an individual experiment is not
optimised.

The upper plot of Fig. 3 depicts experiment 2 of Tab. 1. The input to this ex-
periment is 0.5M NaCl, corresponding to an increase in the extra-cellular osmotic
pressure by 0.93 Osm. Experimentally, glycerol and total glycerol have been mea-
sured and these data are plotted together with simulated data from the model. Sim-
ulated data illustrates how volume and turgor pressure drop immediately upon os-
motic stress and subsequently regain due to glycerol accumulation. Turgor pres-
sure, which is the controlled variable, is not increasing to its original value during
the time span of the experiment. The volume, on the other hand, is almost com-
pletely recovered to its initial value after a couple of minutes. The main reason for
incomplete recovery is that the model parameters are estimated using data, where
the measured glycerol concentration is not sufficient for complete recovery of both
volume and turgor pressure. The reason why volume and not turgor pressure is re-
covered is the estimated value of the parameter V Πt=0, indicating a low elasticity
of the cell wall, and no turgor recovery until volume is almost completely recov-
ered. For a lower value of V Πt=0 (higher elasticity), the turgor pressure would
recover faster while the volume would recover slower.

An interesting aspect is how well the simple model behaves in comparison with
the detailed model. However, a quantitative direct comparison between the two
models is not easily done without additional data. The models have been fitted
with different (only to a limited extent over-lapping) data sets, and it would not be
not fair to judge the quality of one model by predicting the data that is used to fit
the other model. In an attempt to at least illustrate some conceptual differences be-
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tween the models, we have included simulations of intra-cellular and total glycerol
from the detailed model in the upper plot of Fig. 3. Notably, the detailed model
fails to accurately capture the levels of total glycerol. For further discussion of this
we refer to section ”Discussion”.

Experiments 5 and 6 of Tab. 1 are given in the two lower plots of Fig. 3. Here,
two subsequent osmotic shocks of NaCl are applied and simulated data is com-
pared to experimental data of total glycerol. These simulations suggest that the
model is able to control series of osmotic shocks, something that was experimen-
tally demonstrated in Klipp et al., 2005.

4.2 Mutant strains with NaCl input stress

The model includes two parallel ways of control: the glycerol outflow control via
Fps1 and the glycerol production initiated by the HOG signalling pathway. An
interesting aspect studied by Klipp et al., 2005, is how the system and the model
behave with only one way of control.

The importance of the Fps1 control function can be studied by a mutant experi-
ment with constitutively open Fps1, an experiment that is also included in our set
of training experiments. To simulate this experiment, we manually fix uFps1 = kp2

and we also adjust Gly(0) to obtain a realistic initial value of total glycerol. Ex-
perimental data suggests an over-production of glycerol and a prolonged activation
time of the HOG pathway. As illustrated in the upper part of Fig. 4, simulated
data from the simple model is in accordance with these findings. In particular, the
glycerol production is almost doubled compared to the wild-type experiment. The
prolonged activation time of HOG signalling cannot be explicitly observed since
Hog1 is not a variable in the simple model. However, the time span of turgor pres-
sure equal to zero gives an implicit measure of the time span of Hog1 activation.

We can also test the importance of the second way of control by considering a
gpd1∆gpd2∆ double mutant unable to produce glycerol. To simulate this exper-
iment, we assign kHOG = 0 and set the initial concentrations of glycerol to zero.
See the middle part of Fig. 4 for simulated time series data for some of the model
variables. Since we have no control of glycerol production, turgor pressure and
volume remain low for the complete simulation. Also this is in accordance with
experimental observations [Klipp et al., 2005].

In the same way, we can test the other mutants considered in Klipp et al., 2005.
For instance, we can simulate an experiment of over-expression of phosphatases
targeting signalling molecules in the HOG pathway in combination with constitu-
tively open Fps1. Experimentally this leads to even slower adaptation than for the
experiment with a constitutively open Fps1 and normal phosphatase activity. This
is also confirmed in our simulations, see the lower part of Fig. 4. Over-expression
of phosphatases was implemented by reducing kHOG by a factor of 2.
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These results of mutant strains with NaCl input stress confirm that two ways of
control exist in the cell: one increases the concentration of glycerol and the other
adjusts the outflow of glycerol. In this way, the simple model strengthen the hy-
pothesis in Klipp et al., 2005, that at least two control functions are necessary to
efficiently counter-balance an osmotic shock in the cell.

4.3 Mutant strains with various polyol input stress

Karlgren et al., 2004 investigate the osmoregulation system in a gpd1∆gpd2∆
double mutant with constitutively open Fps1 and with input stresses of different
polyols, including glycerol. The experimental result with glycerol as input signal
suggests a rapid recovery of turgor pressure and volume after stress. This is due
to diffusion of glycerol over Fps1. In this way intra-cellular osmotic pressure is
immediately balanced and, consequently, the cell does not need to initiate increased
glycerol production. This result is in agreement with our simulation of the same
system, see the upper plot of Figure 5.

Similarly, Karlgren et al., 2004, stress the cell with xylitol or sorbitol that are both
known to diffuse over the cell membrane, but with a slower rate than glycerol.
Experimental data suggests that the level of HOG activation is dependent on the
diffusion rate: for a slowly diffusing osmolyte like sorbitol, the activation is more
pronounced than for xylitol or glycerol. To simulate these experiments we assume
that xylitol and sorbitol can diffuse over the open Fps1 and we decrease kp2 by a
realistic factor according to experimental data on initial uptake rates in Karlgren et
al.. For xylitol we use a factor of 5 for sorbitol a factor of 15. Fig. 5 illustrates
that also these simulations are in agreement with experimental results in Karlgren
et al., 2004. In particular, the increasing phosphorylation of Hog1 (indicated as the
time span of turgor pressure equal to zero) is dependent on the diffusion rate of the
considered osmolyte.
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Figure 3: Simulation of osmotic shock of NaCl in wild-type cells. Upper plot:
0.5M NaCl, middle plot: two osmotic shocks (t = 0 and t = 30) of 0.5M NaCl,
lower plot: two osmotic shocks (t = 0 and t = 60) of 0.5M NaCl Experimental
data for total glycerol is indicated by squares and data for intra-cellular glycerol
is indicated by triangles. In the upper plot, time-series of intra-cellular and total
glycerol from a corresponding simulation of the detailed model are also depicted.
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Figure 4: Simulation of one osmotic shock of 0.5M NaCl in modified systems. Up-
per plot: a mutant with constitutively open Fps1, middle plot: a gpd1∆gpd2∆
mutant, lower plot: a mutant with constitutively open Fps1 and over-expression of
phosphatases. Experimental data for total glycerol is indicated by squares.
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5 Discussion

We have presented a simple ODE model of the adaptation to high osmolarity in S.
cerevisiae. The model includes two parallel ways of cellular control: one way con-
trolling the production of glycerol and the other controlling the outflow of glycerol.
Our simple model is based on the same basic assumptions as the detailed model
[Klipp et al., 2005]. The parameters of the model were obtained by first constrain-
ing the values from various data, and then numerically estimating the parameters
with respect to absolute time series data for wild-type cells as well as for one ge-
netically modified strain. The complete parameter estimation process is described
in detail.

We have validated the model by predicting the behaviour of other genetically mod-
ified strains and input functions. In particular, the simple model qualitatively pre-
dicts the mutant experiments in Klipp et al., 2005, as well the experiments with
different input functions in Karlgren et al., 2004. Therefore, our results indicate
that we have constructed a simple but functional model of osmoregulation in yeast.

5.1 Comparing the two models

We have chosen to model the essential parts of the system. Our general reasons
for this were stated in the introduction and here we discuss these more thoroughly
with respect to our model (see also Brooks and Tobias, 1996).

In the simple model, the two parallel ways of control of the osmoregulation system
can easily be followed (see e.g. Figure 2), while they are much harder to trace in the
detailed model (see e.g. Figure 1 in Klipp et al., 2005). In addition, this simplicity
makes it easier to construct and validate the model. What the simple model is
able to do with respect to its modelling scope, it does with similar precision as the
detailed model.

While the simple model gives a more global view of the system, a consequence
is that mechanisms do not have a direct biological counterpart to the same extent
as in the detailed model. For instance, the HOG controller in the simple model
does not have a direct correspondence in the real biological system. Instead, in
combination with the time delay, the HOG controller corresponds to both the HOG
signalling pathway, transcription/translation and the synthesis of enzymes involved
in glycerol production. Therefore, the HOG control signal can only be qualitatively
compared to experimental data. Notably, by extending the model by variables that
are accessible for measurement, like Hog1 and Hog1-induced mRNA, we could do
these kind of comparisons at the cost of increased model complexity.

The simple model also has a potential for more accurate simulations and predic-
tions, since it is easier to reliably fit the model to currently available data. Roughly
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speaking, we have more data per parameter, which is natural since we have focused
on the most essential parts of the system. The difficulty of the detailed model in
predicting an experiment is illustrated in Figure 3, and confirms the difficulty of
accurately fitting the detailed model with limited data. Since data in systems bi-
ology is often very limited compared to the complexity of the systems, this is a
fundamental issue.

Another general observation is that a simple model is usually a good starting point
when building more complex models. It is then natural to incrementally add details
to the model and simultaneously matching the complexity of the model with both
the purpose of the model and available data. In our case, the simple and the detailed
models have been constructed in parallel. Since the main characteristics of the sys-
tem could more easily be observed in the simple model and since the simple model
could be parameterised with higher confidence than the detailed model, insights
gained from the simple model were useful in constructing the detailed model. For
instance, observations on the simple model suggested how to adjust the detailed
model to give realistic output on intra-cellular glycerol. Therefore, we believe that
the simple model can continue to be a valuable tool for testing new experimental
scenarios as well as to constrain further developments of the detailed model.

An argument in favour of more complex models is that the scope of potential sys-
tem modifications is greater than for simpler models. This is because it is easier to
exactly map a certain biological modification into the equations and/or parameters
of a complex model. For instance, it is relatively evident how to implement over-
expression of phosphatases in the detailed model where phosphatases are explicitly
modelled, while it is not straightforward in the simple model where phosphatases
are only implicitly modelled.

We note that there are explicit measures of model complexity [Myung and Pitt,
2004; Crampin et al., 2004]. In principle, a measure of model complexity could be
used to seek the simplest possible model capturing the trends in data. For instance,
we could ask whether we would obtain a better model by removing the time delay
from the simple model.

5.2 An engineering control model

We will finally discuss how the biophysical model in principle could be controlled
using engineering means. Here we wish to point out that these means are not
available in the cell and that this scenario is purely artificial. In contrast to the
simple model with two parallel ways of control, we now employ a single controller,
but let that controller be flexible, in the sense that the glycerol level can be modified
to any desired value. As for the HOG controller in the simple model, we let the
control signal be time delayed. We employ a PID-controller (Proportional - Integral
- Derivative), which is a standard controller in engineering applications. We refer
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to Fig. 6 (upper) for an overview of the model.

To test the model, we first only consider P-control and manually select a relatively
low control coefficient in order to avoid overshoot and oscillations. This leads to
a slow adaptation, see the upper plot of Fig. 6. We note that this model is simpler
than the simple model, but has less explanatory power since it does not describe
the two parallel ways of control.

In order to obtain faster adaptation we consider PID-control and manually select
control coefficients such that turgor pressure is recovered rapidly with little oscilla-
tion or overshoot, see the lower plot of Fig. 6. This model has a higher complexity
than the P-control model, but does not add any explanatory power to the model,
since one controller is still employed.

Compared to the simple model we reach reference turgor pressure much faster
in the engineering model. The main reason why turgor pressure is only slowly
recovering in the simple (or detailed) model is that glycerol diffuses via Fps1 to the
medium. On the other hand, turgor pressure is increasing from zero level earlier in
the simple model than in the engineering model. One reason for this difference is
that we use a delay approximation in the simple model while the engineering model
is explicitly delayed. The main reason, however, is that the control coefficient of
the simple model (kHOG) is about ten times higher than the proportional control
coefficient of the engineering model. The simple model can afford having a high
control coefficient since the risk of overshoot and oscillations is largely reduced by
the outflow of glycerol via Fps1. In contrast, for the engineering model such a high
control coefficient would lead to an overshoot and subsequent oscillations.

Finally, from this engineering approach we would like to emphasise that control
of the biophysical system can be obtained given an ideal turgor sensor and perfect
but time delayed control of the glycerol level. Although extremely simplified, we
believe that this engineering model can be used as a first test for new scenarios that
one wants to consider experimentally. One example could be experiments with
different osmotic stress input signals.
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Figure 6: Controlling the biophysical model by engineering means. The glycerol
level is controlled by a standard PID-controller. The control signal, u(t) is de-
rived as u(t) = KP e(t) + KI

∫

e(t)dt + KD e′(t) where KP , KI and KD are
parameters and e(t) is defined in (6). For the time delayed glycerol production we
consider Gly′(t) = u(t− td) and for the biophysical model we use (2), (3) and (5).
Parameters are taken from Tab. 3. Upper plot: Simulation of one osmotic shock
with KP = 0.035 and KI = KD = 0. Lower plot: Simulation of one osmotic
shock with Kp = 0.055, KI = 0.0001 and KD = 0.3. For comparison, data for
turgor pressure of the simple model is included in both plots.
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Appendix

A. Experimental data for total glycerol

Total glycerol was measured as described in Klipp et al. (2005).

Experiment Total glycerol (mM)
t = 0min 30 60 90 120 150 t = 180min

1M NaCl 0.43 0.69 1.21 2.35 2.76
0.50 0.63 1.08 1.81 2.60

Double stress 0.46 1.08 1.89 2.39 2.82
30 min. 0.50 1.16 1.86 2.23 2.91

Double stress 0.35 1.11 1.71 2.43 2.95 3.68
60 min. 0.55 1.18 1.77 2.37 2.98 3.29

Double stress 0.38 1.13 1.86 1.92 2.60 3.01 4.52
160 min. 0.41 0.87 1.69 2.19 2.43 2.46 3.21

Total glycerol measured for different input signals. Double stress means addition
of 0.5M NaCl at t=0 and a second stress of 0.5M NaCl at indicated time points.
Each experiment is performed in two repetitions.

B. Relative cell volume immediately after an osmotic shock

To estimate the relative cell volume immediately after an osmotic shock we mea-
sured the cell area in ordinary microscope (Leica FW 4000) images and assumed
spherical cells. We used the same yeast strain and growth conditions as in Klipp et
al. (2005).

Applied NaCl stress Measured Volume
Molar Osm cells Mean St.dev.

- - 384 1.00 0.36
0.5 0.93 420 0.70 0.23
1.0 1.86 365 0.61 0.22
1.5 2.79 178 0.53 0.17

Relative cell volume immediately after an osmotic shock. The relatively large stan-
dard deviations reflect the natural cell size distribution.
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C. Estimation of Πe(0)

20 g/l C6H12O6 → 20/180 M = 0.111 M → [i = no of moieties into which the
solute dissociates=1, Φ = osmotic coeff. = 1.01] → Π = 0.112 Osm.

5 g/l (NH4)2SO4 → 5/132 M = 0.0379 M → [i =3, Φ = 0.767] → Π = 0.087 Osm.

3 g/l KH2PO4 → 3/136 M = 0.0220 M → [i = 2, Φ = 0.901] → Π = 0.040 Osm.

0.5 g/l MgSO4*7H2O → 0.5/246 = 0.00203 M → [i = 2, Φ = 0.606] →Π = 0.0025
Osm.

Amino acids and vitamins are neglected. Values for the osmotic coefficients are
taken from Robinson et al. (1959). The total osmolarity is approximated to 0.24
Osm by summing the individual contributions.
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