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Abstract

Body composition and body mass are pivotal clinical endpoints in studies of welfare diseases. We present
a combined effort of established and new mathematical models based on rigorous monitoring of energy
intake and body mass in mice. Specifically, we parameterize a mechanistic turnover model based on the
law of energy conservation coupled to a drug mechanism model. Key model variables are fat-free mass
(FFM) and fat mass (FM), governed by energy intake and energy expenditure. An empirical Forbes curve
relating FFM to FM was derived experimentally for female C57BL/6 mice. The Forbes curve differs
from a previously reported curve for male C57BL/6 mice, and we thoroughly analyse how the choice of
Forbes curve impacts model predictions. The drug mechanism function acts on energy intake or energy
expenditure, or both. Drug mechanism parameters (two to three parameters) and system parameters (up
to six free parameters) could be estimated with good precision (coefficients of variation typically < 20 %
and not greater than 40 % in our analyses). Model simulations were done to predict the energy expenditure
and fat mass change at different drug provocations in mice. In addition, we simulated body mass and fat
mass changes at different drug provocations using a similar model for man. Surprisingly, model simulations
indicate that an increase in energy expenditure (e.g. 10 %) was more efficient than an equal lowering of
energy intake. Also, the relative change in body mass and fat mass is greater in man than in mouse at
the same relative change in either energy intake or energy expenditure. We acknowledge that this assumes
the same drug mechanism impact across the two species. A set of recommendations regarding the Forbes
curve, vehicle control groups, dual action on energy intake and loss, and translational aspects are discussed.
This quantitative approach significantly improves data interpretation, disease system understanding, safety
assessment and translation across species.

Keywords: model based drug discovery, obesity, mathematical modeling, body composition, turnover
model, Forbes relationship

Introduction

Body composition and body mass are pivotal clinical endpoints in studies of many welfare diseases, such
as obesity and diabetes [1, 2]. These biomarkers can also function as safety variables, for instance, in
oncology. Besides, body mass is observed in almost all toxicology studies. Understanding the body
composition system requires rigorous monitoring of as many of the following variables as possible: energy
intake, body mass, fat mass, energy expenditure, and hormonal regulation. Such studies are generally
laborious to monitor and costly to run.

However, mechanism-based pharmacodynamic models of energy balances and body composition can sig-
nificantly improve quantitative data interpretation and disease system understanding. These also lead to
increased precision and confidence in quantitative translation across species. In addition, a model-based
approach may reduce study cost by influencing experimental design.
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Figure 1: The upper row depicts the general classification of biomarkers [3, 4]. The lower row illustrates key
components of the pharmacodynamics model for compounds affecting body composition and/or mass. Dotted
lines indicate the relationship between generic biomarkers and model components of the pharmacodynamic
model. Particularly, we note that compounds may affect both energy intake and energy expenditure

The aim of this paper is to present pharmacokinetic (PK) and pharmacodynamic (PD) modeling approaches
for compounds affecting body composition and body mass. We are currently applying the presented models
in drug discovery practice and all approaches are supported by experimental data. The methodologies are
generic and not restricted to a specific animal model, even though this particular collection of data is
obtained from in vivo mouse models.

To exploit a modeling approach, it is useful to consider biomarkers [3, 4] in relation to components of the
pharmacodynamics model (Fig. 1). Such a mechanistic overview facilitates communication and reasoning
about drug exposure, target binding, and the physiological or disease system on a conceptual level. It is
also useful for identification of potential gaps in the data, and division of modeling efforts into subtasks.

This paper is divided into three parts, each describing a fundamental modeling task along the causal
pathway that drives body composition changes (Fig. 1). Throughout this analysis, each modeling step is
thoroughly described and supported by experimental data.

In Part I, we consider the case where data are sampled for plasma drug exposure and energy intake,
and potentially also for target occupancy (type 2) and target activation (type 3) biomarkers (Fig. 1).
We simultaneously model vehicle and treatment groups using a relatively simple empirical model with
cumulative energy intake as the response variable. The derived models can then be used to generate
quantitative predictions of energy intake for various dose or concentration regimens and for prediction of
the steady-state concentration–response relationship.

In Part II, we explore models of body composition rather than of specific drug mechanisms. Fundamental to
the understanding of body composition is to separately consider energy intake (EI) and energy expenditure
(EE). Part II focuses on the common case where temporal data are available for energy intake and body
mass, but not for energy expenditure (Fig. 1). Specifically, we take advantage of the semi-mechanistic body
composition model proposed by Guo and Hall [5, 6]. Body mass and fat mass are indirectly affected by
drugs acting on either energy intake or energy expenditure. We describe how the model is parameterized
for our specific diet-induced obesity (DIO) mouse model [7]. The model can then be used to generate
quantitative predictions of body composition for various temporal profiles of energy intake and energy
expenditure.

We note that Part I and Part II combine drug exposure (Type 1), receptor occupancy (Type 2), and
downstream biomarkers (Type 3–4) to relevant endpoints such as body mass (Type 5–6). The main
advantages of a complete model include simulation of various dosing schedules, predictions of arbitrary
biomarkers along the causal path, and improved understanding of the mechanism of action (e.g. compounds
targeting energy intake or energy expenditure, or both).

In Part III, we describe the situation in which data are available for compound exposure and body mass
but not for energy intake or energy expenditure (although intermediate biomarkers Type 2 and 3 may
be present, as in Part I). In this case we must select a reasonable model for energy intake, which in its
simplest form can be a constant intake rate over time. The energy intake model is then coupled to the
body composition model of Part II. Part III models can be used to generate quantitative predictions of
body composition for various dose or concentration regimens and for prediction of steady-state levels.

The paper ends with a discussion giving concrete advice on experimental design (including a discussion of
control groups, number of dose groups, and choice of observation variables), extrapolation over time, and
proper choice of modeling approach in different situations.
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Table 1: Symbols and abbreviations; first general and then specific for Part I–III of the paper

Name Unit Explanation

EI kcal × day−1 Energy intake
EIveh kcal × day−1 Energy intake of vehicle group
EIdrug kcal × day−1 Energy intake of treated group
EIcum kcal Cumulative energy intake
EE kcal × day−1 Energy expenditure rate
C µM Compound concentration
FM g Fat mass
FFM g Fat-free (lean) mass
ka h−1 Absorption rate
Cl L×h−1

×kg−1 Clearance
V L×kg−1 Volume of distribution
I(C) Compound inhibitory function
S(C) Compound stimulatory function
Imax Maximum inhibition potential
IC50 µM Concentration at 50% inhibition
n Hill exponent/sigmoidicity factor
λ kcal×g−1 Physical activity

Part I specific
τ h Infusion duration
p1 kcal×h−1 Initial EIveh in Part I
p2 h−1 Decline of EIveh in Part I

Part II specific
ρFFM kcal×g−1 Energy density of fat free mass
ρFM kcal×g−1 Energy density of fat mass
γFFM kcal×g−1

×d−1 Metabolic rate of fat free mass
γFM kcal×g−1

×d−1 Metabolic rate of fat mass
ηFFM kcal×g−1 Synthesis of fat free mass
ηFM kcal×g−1 Synthesis of fat mass
ki, s1 − s3 Parameters in FFM(FM) (Eq. 13)
q1 − q3 Parameters in α (Eq. 14)
K kcal×g−1 Thermogenesis rate
β Diet-induced thermogenesis factor
EIstand kcal×d−1 Energy intake for standard diet compared to high-fat diet

Part III specific
Vmax µM×h−1 Maximum elimination rate
KM µM Michaelis-Menten constant
r1 − r6 Parameters in EIveh (Eq. 19)

Materials and methods

In order to improve readability, function arguments are not explicitly written out (for example A(t, p)
is referred to as A) in cases where the risk of misinterpretation is considered negligible. A list of the
main symbols and abbreviations is given in Table 1. All calculations were performed in Matlab (R20112a,
The MathWorks, Inc., Natick, Massachusetts, US). The Matlab function ode15s was used for numerical
integration, and lsqnonlin was used for non-linear least squares. Appropriate error models were evaluated
by visual inspection of residual plots and by comparing parameter precision. In reported fits, a proportional
error model was used for PK modeling, and an additive error model was used for PD modeling. Non-linear
mixed effects (NLME) models have not been considered in this paper. It is straightforward to extend the
models we present to NLME models should one want to perform such analyses.

Models of Part I to Part III are available in a Supplement.
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Figure 2: Conceptual models considered in the paper. Part I Modeling energy intake. Input data consist of
plasma/tissue concentration (and/or target occupancy and/or target activation biomarkers) and cumulative
energy intake (dashed line and solid line for control and treated animals, respectively). I(C) (inhibitory
action) to the compound mechanisms, inhibiting energy intake. Part II Modeling body composition. Input
data consist of energy intake, body mass and an empirical relationship between fat free mass and fat mass.
Part III Modeling body mass when energy intake is not measured. Input data consist of plasma/tissue
concentration (and/or target occupancy and/or target activation biomarkers), body mass, and an empirical
relationship between fat free mass and fat mass as in Part II. I(C) is defined as for Part I, and S(C)
(stimulatory action) refers to the compound mechanism activating energy expenditure
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Part I. Modeling energy intake

To model energy intake as a function of exposure and potential downstream biomarkers, we present the
basic model in Fig. 2 (Part I). Key assumptions of this approach are that the compound inhibits energy
intake rate, and that energy intake rate is limited by that of the vehicle group. The latter assumption is
reasonable as long as exposure and target occupancy are sufficiently high to prohibit compensatory feeding
at minimum exposure and target occupancy. Sampling of energy intake data is often dense, as in Fig. 3b,
where observations are reported hourly. Energy intake is monitored using a food chamber connected to
a scale. Occasionally, animals take excess amounts of food which they ingest over several hours. As a
consequence, the individual variation in energy intake rate per hour is high. It is therefore recommended
to model the cumulative energy intake rather than the energy intake rate.
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Figure 3: Modeling energy intake (Part I). a Exposure data (second treatment day; doses were given twice
daily at 0 h and at 7 h) and 1-compartment model fit. b Cumulative energy intake data (standard error of
the means are indicated by error bars) and model fit using the model in Eq. 1-3. c Effect versus steady-state
concentration calculated from the inferred model

The model is implemented as follows. The time course of plasma exposure to the compound is modeled
by standard techniques, as described elsewhere [8]. If target occupancy or target activation biomarkers are
available, it is normal to incorporate them in the pharmacodynamic model as an intermediate step (Fig.
2 (Part I)).

Let us then assume that only exposure data are available and that exposure has been modeled as a variable
C. The energy intake rate EIveh of the vehicle group is commonly high during the active period of the day
(lights off) and low during the resting period (lights on). As a simple example, we can use an exponential
decay, defined as

EIveh = p1 × e−p2×t, (1)

with the parameter p1 representing the initial level and the parameter p2 representing the monoexponential
decline in energy intake. The drug mechanism function I(C) is assumed to inhibit energy intake as
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Table 2: Plausible choices of vehicle and compound inhibitory functions that can be combined arbitrarily
(there are 32 = 9 possible combinations in the table). The table is not intended to give a complete model
space for arbitrary conditions

Energy intake models Drug mechanism functions

p1 × e−p2×t 1− Imax ×
C

C+IC50
Simple inhibitory function

p1 × t× e−p2×t 1− Imax ×
Cn

Cn+ICn

50

Sigmoid inhibitory function

p1 ×

(

e−p2×t
− e−p3×t

)

1−m× log (C + a) Log linear inhibitory function

I(C) = 1− Imax ×
Cn

Cn + ICn
50

, (2)

where Imax represents the maximum inhibition potential, IC50 corresponds to the concentration at 50 %
inhibition, and n is the Hill exponent. The cumulative energy intake rate then becomes

dEIcum
dt

= EIveh × I(C), (3)

with initial condition

EIcum(0) = 0. (4)

In this case we assume a direct effect of C on energy intake (i.e. no time delay). This conceptual model can
be implemented in different ways by selecting combinations of energy intake functions and drug mechanism
functions. The model structure is influenced by the amount and quality of data. A selection of energy
intake models and drug mechanism functions is shown in Table 2.

Part II. Modeling body composition

Based on energy intake and body mass data, we will predict body composition and energy expenditure.
This part takes advantage of recently developed body composition models that are based on the law of
energy conservation and explicitly connected to physiological variables[5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20]. The latter ensures that biophysical constraints (such as conservation of energy) are satisfied and
facilitates potential extension of the scope of the models. Input to the model is energy intake and output
is energy expenditure. Key model predictions include time series of fat mass, lean mass, body mass, and,
in some cases, extra-cellular fluid mass or other variables that are explicitly modeled. Individual models
within this class of models mainly differ in the level of resolution at which the system is modeled. Here,
we focus on the Guo and Hall semi-mechanistic model for the mouse [5, 6], which is the model species in
our in vivo studies.

The Guo and Hall model divides body mass into two compartments; a fat compartment with mass denoted
FM and a fat-free or lean compartment with mass denoted FFM . The conceptual model is depicted in
Fig. 2 (Part II).

The key equation balances energy intake and expenditure as

ρFM ×
dFM

dt
+ ρFFM ×

dFFM

dt
= EI −EE, (5)

where EI refers to energy intake rate (kcal×day−1), EE refers to energy expenditure rate (kcal×day−1),
and the energy densities for changes in FM and FFM are ρFM and ρFFM . Here, energy density is defined
as amount of energy stored per unit mass (kcal×g−1), and is typically higher for fat mass than for fat-free
mass (see also [21]).

Guo and Hall [6] hypothesized that there is a well-defined, time-invariant function, α, that describes the
relationship between changes of FFM and FM as
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α =
δFFM

δFM
. (6)

This assumption is analogous to the Forbes theory of human body composition change [22, 23]. Originally,
Forbes described an empirical, non-linear relationship between fat-free mass and fat mass, using human
body composition data, and he hypothesized that longitudinal changes of body composition described this
relationship. The functional form of the Forbes curve α is selected based on experimental data from the
specific in-house in vivo animal model used for body composition modeling.

Given α, the basic model in Eq. 5 can be simplified and rearranged into two ordinary differential equations
(ODEs), namely

dFFM

dt
=

α

α× ρFFM + ρFM

(EI − EE) , (7)

and

dFM

dt
=

1

α× ρFFM + ρFM

(EI −EE) , (8)

with initial conditions (FFM(0) and FM(0)) either as free parameters or, as in this paper, estimated from
initial body mass and body-composition data as detailed in the Results section.

In Part II we assume that energy intake, EI , is measured and can be directly input from data. Part III
considers the case where energy intake is not measured. Energy expenditure, EE, is modeled as in Guo
and Hall (2011).

EE = K + β∆EI +

(γFFM + λ)× FFM + (γFM + λ)× FM +

ηFFM
dFFM

dt
+ ηFM

dFM

dt
, (9)

where K is a thermogenesis parameter (assumed constant for a fixed temperature). Diet-induced thermoge-
nesis corresponds to production of heat that occurs after eating due to ingestion, digestion, and absorption
of nutrients as well as transport of blood. It is modeled by the product β∆EI . Here, ∆EI represents the
change of energy intake compared to a standard low-fat diet (EIstand; also called chow in Guo and Hall
(2011)), and is defined as

∆EI = EI −EIstand. (10)

The parameter β = 0.4 scales energy intake change to effect on thermogenesis, and has been empirically
determined in rodents [24]. Furthermore, the metabolic rate varies with FM and FFM . In the model, it
is assumed proportional to FM with constant γFM , and to FFM with constant γFFM . The proportional
constants γFFM and γFM are empirically scaled from human data using the Kleiber 3/4 power law of body
mass [25]. The parameter λ (kcal×g−1) represents physical activity (kcal) per gram body mass. Finally,
to account for biochemical efficiencies associated with fat and protein synthesis, energy expenditure is
assumed proportional to changes in fat mass (proportional constant ηFM ) and fat-free mass (proportional
constant ηFFM ), respectively [24].

The parameters ρFFM , ρFM , γFFM , γFM , ηFFM , ηFM , and β are obtained from the literature. These are
then held as constants in the regression of body mass data. In our work, the ∆EI factor of diet-induced
thermogenesis (a term in the energy expenditure model) was calculated as the difference in observed EI
and prior information on energy intake as 12 kcal×d−1 given a standard (not high-fat) diet. For body mass
changes in the order of a few percent, K correlates strongly with λ, and identifiability becomes an issue.
Therefore, K was assumed fixed at a reasonable value, 2.1 kcal×d−1, taken from Guo and Hall (2011).
Model flexibility is still guaranteed by keeping λ a free parameter to be estimated from experimental data.
An initial estimate of λ equal to 0.13 was used [6].

To implement the model efficiently, it is useful to algebraically manipulate Eq. 9 in order to remove the
derivatives on the right hand side. By inserting Eq. 7 and Eq. 8 into Eq. 9 one obtains a derivative-free
expression for energy expenditure as
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EE = (K + β∆EI +

(γFFM + λ)× FFM + (γFM + λ)× FM +

ηFFM × α× g × EI + ηFM × g × EI)/

(1 + ηFM × g + ηFFM × α× g), (11)

where

g =
1

α× ρFFM + ρFM

. (12)

We generated data to provide the empirical function α (Forbes curve, relating changes in FFM and FM)
for our in-house mouse strain and environment. Briefly, whole body composition (fat and lean mass) was
assessed in eighteen female C57BL/6 mice on a high-fat diet at four time points, when average body masses
in the population were 20 g, 35 g, 40 g, and 45 g.

The functional form of α is assumed to be the same as the one employed in Guo and Hall [5, 6]. Hence,
the following model was used

FFM = ki + s1 × FM + s2 × es3×FM . (13)

The ki parameter is specific to each mouse (for our data set i ∈ [1 . . . 18]), while the parameters s1–s3 are
the same for all mice. In total, there are 21 (18 ki’s, s1–s3) parameters to estimate. The function α was
obtained by taking the derivative of Eq. 13 with respect to FM as

α =
δFFM

δFM
= s1 + s2 × s3 × es3×FM =

= q1 + q2 × eq3×FM , (14)

where the q1, q2, and q3 parameters represent an alternative parameterization (q1 = s1, q2 = s2 × s3, and
q3 = s3) that will occasionally be used for convenience.

We compared our results with similar data from male mice of the same strain [5, 26]. Table 3 gives an
overview of the experimental settings for the two studies.

Part III. Modeling body mass when energy intake is not measured

Observing body mass requires significantly fewer resources than observing energy intake. Therefore, ob-
serving exposure and body mass is more common in studies that take place over days or weeks rather than
hours.

To model body mass as a function of exposure (or receptor occupancy or target activation biomarkers),
we may consider the conceptual model in Fig. 2 (Part III). Key assumptions of this modeling approach
include:

• The compound affects energy intake rate or energy expenditure, or both in the in vivo model.

• An in vivo body composition model (including the empirical Forbes curve) has been identified (see
Part II).

The model is implemented as follows. As in Part I, the pharmacokinetics of the compound is modeled by
standard methods. Since body mass is usually observed on a day-to-day basis, it is standard procedure to
select a single PK measure for each day (e.g. the average, minimum, or maximum steady-state concen-
tration, Css,average, Css,min, or Css,max, respectively). A more detailed modeling approach is required if
the exposure profile fluctuates heavily, if various dosing schedules are applied, or if highly nonlinear PK
prevails.

The vehicle energy intake can be assumed constant as a first approximation with time frames in the order
of a few days. For studies over several weeks, increasing energy intake is required to supply the increasing
body mass, and as a standard approach we consider a linear model defined as
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Figure 4: Body composition data for 18 C57Bl/6 female mice (Part II), and comparison to Guo and Hall
(2009) (see Table 3 for a comparison of study setups). a Data and model fit (Eq. 13) using the parameters
s1–s3 and the mean of the 18 ki parameters (solid line; dotted lines indicate 5% and 95% percentiles
(obtained by bootstrapping) of the mean curve). Instead of plotting one curve for each mouse, the mean
curve is plotted, and, for each mouse, data have been shifted by the individually identified parameter ki.
b The Forbes function α, i.e., δFFM/δFM , obtained in this study (dotted lines indicate 5% and 95%
percentiles, respectively) and in Guo and Hall (2009). Curves are plotted for the fat mass range covered
by data in respective study (up to 32 g and 21 g, respectively). c. As an initial condition, fat mass can be
empirically estimated from body mass (when body mass is in the observational range of 18 g to 52 g) by
assuming a linear relationship
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Table 3: Comparison of body composition experiments. In this study, mice had access to two food sources,
chocolate pastry and high-fat diet. In Guo et al. (2009) and Guo and Hall (2009), five groups with different
diets were considered, and all data were simultaneously analysed. All mice were initially fed with standard
diet, and then the following groups (6 mice per group) were considered: (1) standard diet, (2) high fat diet,
(3) first high fat diet then a switch to standard diet, (4) high fat diet+liquid ensure, and (5) first high fat
diet+liquid ensure then a switch to standard diet. Carb. = Carbohydrate

Variable or This study Guo et al. (2009) and Guo and Hall (2009)
parameter

Strain C57BL/6 C57BL/6

Sex Female Male

Temperature 18-22 ◦C 21-22 ◦C

Light-dark cycle 12:12 h 12:12 h

Diets included Chocolate pastry Protein 4.7 kcal% Standard (NIH-07) Protein 24 kcal%
4.8 kcal×g−1 Carb. 40.8 kcal% Carb. 64 kcal%

Fat 54.5 kcal% Fat 12 kcal%

High fat (D12492) Protein 20 kcal% High fat (F3282) Protein 14 kcal%
5.24 kcal×g−1 Carb. 20 kcal% Carb. 27 kcal%

Fat 60 kcal% Fat 59 kcal%

Liquid ensure Protein 14 kcal%
Carb. 64 kcal%
Fat 22 kcal%

k (mean) in Eq. 13 15.6 25.3
s1 in Eq. 13 0.13 0.10
s2 in Eq. 13 0.22 0.00042
s3 in Eq. 13 0.090 0.45

q1 in Eq. 13 0.13 0.10
q2 in Eq. 13 0.020 1.9×10−4

q3 in Eq. 13 0.090 0.45

EIveh = r1 + r2 ×BM (15)

with the two parameters r1 and r2.

However, in practice, the energy intake of the vehicle group exhibits a significant drop modeled by V1

when treatment starts, presumably due to handling stress. We let V1 take the form of an exponentially
decreasing additive effect on EI defined as

V1 =

{

r3 × ttr × e−r4×ttr , if ttr ≥ 0
0, otherwise

(16)

where ttr refers to time after treatment start, and where r3 and r4 are parameters reflecting the magnitude
and first-order decay rate, respectively. In addition, an increased energy intake, modeled by V2, is typically
observed when treatment stops. We assume that V2 is dependent on the body mass decrease during
treatment, defined as

∆BM =
BMtr. start −BMtr. end

BMtr. start
. (17)

We further assume that V2 is temporary and exponentially decaying. We model this empirically by

V2 =

{

r5 ×∆BMr6 × te × e−r4×te , if te ≥ 0
0, otherwise

(18)

where te refers to time after treatment stop, r5 is a magnitude parameter, r6 a scaling parameter, and the
decay rate (r4) is assumed to be the same as in Eq. 16. Taken together, EIveh is modeled as
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EIveh = r1 + r2 ×BM − V1 + V2 (19)

where the first term r1 represents baseline energy intake, the second term r2×BM growth in energy intake
due to growth in size, the third term V1 a temporal decrease in energy intake due to handling stress at
start of treatment, and the final term V2 represents a temporal increase in energy intake due to cessation
of treatment.

The compound may inhibit energy intake by the drug mechanism function I(C) (Eq. 2). The energy intake
rate of the group treated with the test compound is then obtained as

EIdrug = EIveh × I(C) (20)

where EIdrug refers to the energy intake (rate) after drug intervention, which is the input variable to the
body composition model (Fig. 2 (Part III)). Similarly, the compound may affect energy expenditure EE
(Eq. 11), which can be redefined as

EEdrug = EE × S(C), (21)

where S(C) is a stimulatory drug-mechanism function.

Again, the conceptual model can be implemented in a number of ways by selecting combinations of feasible
functions for energy intake and compound inhibitory or stimulatory effect (see Table 2 for a selection of
models).

The basic modeling approach is as follows: First, select a vehicle model (Eq. 19 is one example). Second, fit
the model to vehicle data only. Free parameters are those of the EIveh model (r1 − r6). In the third step,
select the drug mechanism functions I(C) or S(C) that influence energy intake and those that influence
energy expenditure (Fig. 2 (Part III)). Fit the model to treated data only, keeping the vehicle model fixed.
As a potential final step, fit the model to vehicle and test-compound-derived data simultaneously. In
general, model selection must be iteratively revised.

Animals and housing

Ninety-two female and male C57BL/6 mice were used in these studies. On arrival, the mice were housed
in groups of maximum six in Macrolon 2L cages (Scanbur, Karslunde, Denmark) containing aspen wood
chip bedding and an enriched environment with free access to food and water. The animal room had a
regulated temperature (18-22 ◦C), humidity (∼50%), and a 12:12-hour light-dark cycle. The mice were
allowed at least one week of acclimatization before study initiation. To induce obesity, mice were assigned
to a high-caloric diet (chocolate confectionery with 54% kcal as fat: Delicato Bakverk AB, Kungens Kurva,
Stockholm, Sweden; and D12492 diet, 60% kcal as fat: Research Diets, New Jersey, USA) at age of 8–
10 weeks. Chocolate confectionery was excluded for technical reasons in studies where food intake was
measured automatically (Experiments 1, 3, and 4). The local Animal Research Ethics Board Committee
(Göteborg) approved these studies.

Part I. Energy intake (Experiment 1, Fig. 3). Twenty-two lean female mice were given a high-fat diet
(D12492) on the day of arrival. Eight days later, the animals were housed individually for seven days
prior to the start of the experiment for acclimatization purposes. Their food intake was monitored using
an in-house automatic monitoring system (AstraZeneca, R&D, Mölndal, Sweden) allowing continuous
measurement of food intake in undisturbed animals housed in their home cage environment. After two
days of basal food intake registration, the animals (body mass 24.6 ± 0.78 g) were subcutaneously dosed
twice daily (t = 0 h and t = 7 h) for two days during the dark phase. Food intake registration was
performed during the whole period of the experiment. In the morning of the third day, two animals from
each dosing group were terminated and blood collected for plasma substance content analysis (17 hours
after last dose). In parallel, the remaining animals from the dosing groups were then dosed a fifth time
and plasma collected after 0.5, 3, and 6 hours for plasma compound exposure.

Part II. Body composition (Experiment 2, Fig. 4). Eighteen female mice were given access to a high-caloric
diet (D12492 diet and chocolate confectionery) when average body weight exceeded 20 g. Whole-body
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composition (fat and lean mass) was assessed in all mice using dual energy X-ray absorptiometry (DEXA)
scan (PIXImus2; Lunar, Madison, WI) at four time points, when average body weights in the population
were 20 g, 35 g, 40 g, and 45 g, respectively. Each mouse was anesthetized for the duration of the procedure
(5 min) by exposure to Isoflurane-oxygen gas via nose cone. Each mouse was placed on the scanner bed in
the prone position, with the limbs and tail stretched away from the body. After the scan was completed
the mouse was removed from the scanner bed and returned to its home cage to recover from anesthesia.

Part II. Energy intake and body mass, first study (Experiment 3, Fig. 5). To induce obesity, five female
mice were placed on a high-fat diet (D12492) for 25 weeks. Thereafter, mice were either administered
compound known to affect appetite (n=3) or a vehicle (n=2) by gastric gavage (5 ml × kg−1) twice
daily during the dark phase for 25 days. Body weight was measured daily. Food intake was recorded
automatically as described above (Experiment 1). In the data set, five energy intake measures (of in total
125 data points) were missing; these were replaced by the mean of the two neighboring points.

Part II. Energy intake and body mass, second study (Experiment 4, Fig. 6). After three months on a high-
fat diet (D12492), 12 male mice were divided into two groups and administered either compound (n=6)
or vehicle (n=6) at the beginning of the dark phase for 10 days. Body weight was measured daily. Food
intake was recorded automatically as described above (Experiment 1). Data for two of the animals (one
from each group) were removed from the study because they were incorrectly administrated for one of the
days. The same study was repeated two weeks later, and pooled data from all animals (compound-treated,
n=5+6=11; vehicle, n=5+6=11) were used in the analysis.

Part III. Body mass (Experiment 5, Fig. 8). Twenty-three female mice were fed a high-caloric diet (D12492
and chocolate confectionery) for 18 weeks to induce obesity. Thereafter, the mice were randomized into
four groups (n=5–6 per group) and administered 1, 10, or 40 µmol × kg−1 of a compound known to affect
appetite or a vehicle by gastric gavage (5 ml × kg−1) twice daily during the dark phase for 21 days. Body
weights were recorded daily during the experiment. After the last treatment day, the groups treated with
1 and 40 µmol × kg−1 of the compound were terminated for subsequent compound related analyses. For
the control group and the group treated with 10 µmol × kg−1 of the compound there was a washout period
of 35 days, during which body weight was measured regularly.

Results

Part I. Modeling energy intake

Monitoring energy intake over one or a few days is a fast, relatively cheap, and often accurate method for
judging the ability of a compound to affect body composition chronically [7].

We exemplify the use of the basic model proposed in Fig. 2 (Part I) using real drug discovery data sampled
for exposure and energy intake in a lead optimization mice screen, with a test compound that targets
a receptor that down-regulates appetite. The compound was subcutaneously administered several days
before sampling, as well as on the sampling day (twice daily at t = 0 h and t = 7 h). The exposure
to test compound was modeled by a one-compartment model with zero-order absorption (duration τ ),
and first-order elimination. Observed and model-predicted data are shown in Fig. 3a. The exposure was
fixed and used to drive the inhibitory drug mechanism function (Eq. 1-3). The proposed PD model was
simultaneously fitted to all time courses for pharmacological response. For cumulative energy intake data,
we note that the choice of error model is complicated due to the summation of daily intake and unknown
statistical dependencies between days. For this data set, we found that an additive error model was most
appropriate. The obtained parameters are given in Table 4. The time courses for observed and predicted
response (cumulative energy intake) are shown in Fig. 3b.

The relatively simple vehicle-group model of energy intake adequately captures major trends in data and
has good parameter precision. Based on the model, the relationship between steady-state concentration
and response can be generated (Fig. 3c). We will return later to predicting the corresponding relationship
between exposure and body mass.
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Figure 5: Modeling body composition (Part II, Example 1). a Energy intake (EI) data for two vehicle
treated mice, and three mice treated with a compound down regulating appetite. b Relative body mass (BM)
data for both groups. c Using energy intake data as input the model was fitted to BM data, individually for
each animal. d Model based predicted energy expenditure of the vehicle and the treated groups, respectively
(means indicated by solid lines and standard error of the means by dotted lines)

Table 4: Parameter estimates and their relative standard deviation (CV%) obtained from fitting Equa-
tions 1-3 to exposure and energy intake data in Part I

Parameter Unit Estimate CV%

τ h 6.00 29.
Cl L×h−1

×kg−1 0.0259 12.
V L×kg−1 0.262 36.
p1 kcal×h−1 0.939 2.6
p2 h−1 0.0555 6.1
Imax 0.520 2.8
IC50 µM 4.42 1.5
n 2.15 4.2
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Table 5: Parameter values of the body composition model (Part II, Example 1). For λ, an individual value
was identified for each mouse

Parameter Unit Description Value CV% Reference

ρFFM kcal×g−1 Energy density 1.8 fixed [6]
ρFM kcal×g−1 Energy density 9.4 fixed [6]
γFFM kcal×g−1

×d−1 Metabolic rate 0.03 fixed [6]
γFM kcal×g−1

×d−1 Metabolic rate 0.15 fixed [6]
ηFFM kcal×g−1 Synthesis 0.23 fixed [6]
ηFM kcal×g−1 Synthesis 0.18 fixed [6]
q1 Parameter in α 0.13 fixed Data in Fig. 4a
q2 Parameter in α 0.020 fixed Data in Fig. 4a
q3 Parameter in α 0.090 fixed Data in Fig. 4a
K kcal×g−1 Thermogenesis rate 2.1 fixed [6]
β parameter in diet-induced thermogenesis 0.4 fixed [6]
EIstand kcal×d−1 Energy intake for standard diet 10 fixed In-house data
λ0 kcal×g−1 Physical activity, veh. animal 1 0.12 2.9 Data in Fig. 5a-b
λ1 kcal×g−1 0.26 20 Data in Fig. 5a-b
λ0 kcal×g−1 Physical activity, veh. animal 2 0.16 0.96 Data in Fig. 5a-b
λ1 kcal×g−1 0.12 21 Data in Fig. 5a-b
λ0 kcal×g−1 Physical activity, tr. animal 3 0.21 1.5 Data in Fig. 5a-b
λ1 kcal×g−1 -0.11 40 Data in Fig. 5a-b
λ0 kcal×g−1 Physical activity, tr. animal 4 0.15 2.2 Data in Fig. 5a-b
λ1 kcal×g−1 0.11 44 Data in Fig. 5a-b
λ0 kcal×g−1 Physical activity, tr. animal 5 0.36 1.2 Data in Fig. 5a-b
λ1 kcal×g−1 -0.70 9.0 Data in Fig. 5a-b

Part II. Modeling body composition

We generated body-fat and body-mass data in order to characterize our specific mouse strain and environ-
ment by the empirical Forbes relationship α, which relates changes in FFM to changes in FM (Fig. 4a).
To this end, Eq. 13 was fitted to the data (Fig. 4a, Table 3). The resulting behavior of α was obtained as
Eq. 14 (Fig. 4b, Table 3). Naturally, the curve depends on strain, environment, food supply, as well on
the selected functional form (Table 3). To illustrate this point, the corresponding fits for data obtained in
C57BL/6 males reported by Guo and Hall (2009) are shown together with data from this study (Fig. 4a–b,
Table 3).

Using the same data set, we established empirical expressions for the initial conditions, such as FM(0)
and FFM(0). Based upon the data in Fig. 4c, and by assuming a linear relationship, the initial condition
for fat mass FM(0) was obtained from initially observed body mass BM(0) as

FM(0) = −12.2 + 0.81×BM(0), (22)

The initial fat-free mass FFM(0) then follows directly from the two-compartment assumption as

FFM(0) = BM(0)− FM(0). (23)

The initial fat-free mass FFM(0) for male mice has a different pattern, as indicated in Fig. 4c. The male
equation for FFM(0) is implicitly defined by the parameters k and s1–s3 (Table 3) in Guo and Hall (2009)
(Fig. 4c).

The body composition model is composed of the two fundamental energy equations Eq. 7 and Eq. 8,
complemented by the energy expenditure model (Eq. 11 and Eq. 12), as well as by the empirical Forbes
curve, which relates changes in fat and fat-free masses (Eq. 14). Initial conditions are obtained from Eq. 22
and Eq. 23.

Example 1

In the next step, we demonstrate how the body composition model can be used in drug discovery. We
consider a 24-day study using five mice that had been on high-fat diet for six months before study start.
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We utilize energy-intake and body-mass data from three mice treated with a compound targeting appetite,
as well as from two control mice (Figures 5a and b). Treatment started on the first day and continued
throughout the study. Clearly, data indicate reduced energy intake as well as body-mass reduction for the
treated animals.

The model was fitted to body-mass data individually for each animal, using energy intake data as input. In
the data-fitting, flexibility of the energy expenditure model was established by a physical activity function
λ with two free parameters. The function was defined as

λ = λ0 + λ1 × t× exp (−t) , (24)

where the parameter λ0 represents a basal level, and the second term represent a transient (stress) response
to dosing with λ1 as a parameter.

Hence, for each animal there are two free parameters; λ0 and λ1. Model fits are depicted in Fig. 5c, and
parameters are detailed in Table 5. We note that the model operates over a relatively large range of initial
masses (Fig. 5c).

The identified models predict energy expenditure of the vehicle and the test compound treated groups,
respectively (Fig. 5d). The physical activity parameter λ is generally higher in the test compound treated
group than in the vehicle group (Table 5). In isolation, this would cause a higher energy expenditure in the
treated group. However, energy expenditure is influenced by additional variables (Eq. 9). In particular,
the vehicle group has a higher energy intake, and consequently higher diet-induced thermogenesis and less
protein and fat degradation, compared to the treated group. In this case, these effects roughly cancel each
other, and data indicate no strong compound effect on energy expenditure.

Example 2

As a second example, we consider a 14-day study using 22 mice that had been on high-fat diet for three
months before study start. We utilize data from 11 mice treated with a compound affecting appetite, as
well as 11 control mice (Figures 6a and b; Table 6). Treatment started on day 3 and ended on day 12.
These data also indicate reduced energy intake and body mass for the treated group.

The mice in this study are males, calling for caution as α and FM(0) used in the first example were
estimated from data gathered from female mice (Eq. 14 and Eq. 22, respectively). There may be large
differences in the relationship between FFM and FM , as clearly indicated in Fig. 4. Therefore, in this
case we used α and FM(0) for male mice derived by Guo and Hall [6]. Notably, the functional form of α
for male mice indicates that fat mass never exceeds a threshold of about 20 g for a realistic range of body
masses.

Again, the model was fitted to body-mass data individually for each animal, using energy intake data as
input. In the data-fitting, flexibility of the energy expenditure model was established by defining one value
for physical activity λ, referred to as λ1, during the acclimatization and washout periods (days 0–2 and 13–
14), and another value for λ, referred to as λ2, during the treatment phase (days 3–12). Two representative
fits, one from the vehicle group and one from the test-compound-treated group, are depicted in Fig. 6c.
Parameters are detailed in Table 6.

In contrast to the first example, the data indicate a compound effect on energy expenditure (Fig. 6d). The
final drop in energy expenditure for the treated group is relatively strong, and calls for follow-up studies.
For two of the treated animals (number 17 and 20), the model is not flexible enough to capture these drastic
changes, which is reflected in high CV’s for λ1. For instance, a longer washout period would reveal whether
treated animals regain appetite, energy expenditure, and body mass, or whether the drop in energy intake
and expenditure indicates that the treated animals are persistently affected by the compound.

Generating rules of thumb

The body composition model parameterized here can be used to reason about energy-intake and body-mass
studies. To facilitate interpretation and stimulate discussions about such studies, we generated a set of
rules of thumb for the diet-induced obesity model discussed in this paper (Fig. 7).
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Figure 6: Modeling body composition (Part II, Example 2) a Energy intake (EI) data for 11 vehicle treated
mice, and 11 mice treated with a compound down regulating appetite. b Relative body mass (BM) data for
both groups. c Using energy intake data as input the model was fitted to BM data, individually for each
animal. Two representative fits, one from each group, are depicted here. d Model based predicted energy
expenditure of the vehicle and the treated groups, respectively (means indicated by solid lines and standard
error of the means by dotted lines)
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Table 6: Parameter values of the body composition model (Part II, Example 2). For each mouse, the
physical activity parameters λ1 and λ2 were identified

Animal λ1 λ2

Estimate CV % Estimate CV %

vehicle 1 0.220 5.5 0.200 3.1
vehicle 2 0.0995 7.6 0.175 2.2
vehicle 3 0.113 9.3 0.105 4.6
vehicle 4 0.108 8.7 0.133 4.2
vehicle 5 0.140 11 0.165 4.4
vehicle 6 0.156 5.4 0.152 2.7
vehicle 7 0.146 9.3 0.202 3.5
vehicle 8 0.145 12.4 0.188 5.0
vehicle 9 0.163 6.3 0.192 2.7
vehicle 10 0.140 14 0.158 6.6
vehicle 11 0.128 16 0.263 3.5

treated 12 0.0644 20 0.126 5.7
treated 13 0.0857 8.6 0.185 2.3
treated 14 0.0595 48 0.0967 16
treated 15 0.0385 36 0.133 6.3
treated 16 0.0491 13 0.134 3.0
treated 17 0.0141 >100 0.101 17
treated 18 0.0808 19 0.128 6.5
treated 19 0.220 10 0.240 5.1
treated 20 0.00258 >100 0.132 16
treated 21 0.0572 28 0.161 5.5
treated 22 0.0241 50 0.143 4.9
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Figure 7: Rules-of-thumb for body mass changes. Body mass change given no effect on energy expenditure
(a), and assuming 10% treatment effect on energy expenditure (b). Fat mass change given no effect on
energy expenditure (c), and assuming 10% treatment effect on energy expenditure (d)
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Part III. Modeling body mass when energy intake is not measured

Modeling body mass when energy intake is not measured is difficult when data or prior information, or
both, are limited. In such cases, standard turnover models could be used.

Here, we utilize experimental data from a study with several dose groups and with an extensive washout
period (Fig. 8a). Three dose groups were treated with an appetite-regulating compound, and one additional
group served as a control. Each group consisted of 5–6 animals. Treatment started on day 0 and ended
on day 20. The animals in two of the groups were monitored up to day 56 (although the compound is
expected to be cleared within one day).

The exposure to test compound was captured by a one-compartment model with linear absorption and
Michaelis–Menten elimination. The absorption rate constant ka was fixed (1 h−1) in the regression. Fig. 8a
shows plasma exposure data sampled on day 22, as well as model predictions. Parameters are detailed in
Table 7.
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Figure 8: Modeling body mass when energy intake is not measured (Part III). a Exposure data and PK
model simulation. b-c Fitting the body composition model to body mass data (free parameters on physical
activity and energy intake). d Vehicle corrected change in fat mass (after three weeks), and energy intake,
versus steady-state concentration calculated from the inferred model for a mouse with an initial weight of
50 g. For comparison, the dotted line represents the fat mass to steady-state concentration relationship that
would have been obtained if the full analysis had been executed with α and FM(0) obtained from male mice

We model EIveh by Eq. 19. The compound is assumed to inhibit energy intake by Eq. 2. The resulting
model is hence obtained as Eq. 20 which in turn is based upon Eq. 16 to Eq. 18. As in Part II, the body
composition model is composed of the two fundamental energy equations (Eq. 7 and Eq. 8), complemented
by the energy expenditure model (Eq. 11 and Eq. 12), as well as the empircial curve relating changes in
fat and fat-free masses (Eq. 14). Initial conditions are obtained from Eq. 22 and Eq. 23. In the present
example, prior information indicates that the effect of the compound on energy expenditure is negligible,
i.e. S(C) = 1 (Eq. 21, Fig. 2). For the inhibitory drug action I(C), the average steady-state concentration,
Css,average, is used.

Body mass data were pooled within each group and all groups were simultaneously fitted. Observed body
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Table 7: Parameter values obtained for Part III, when body mass is modeled in the absence of energy intake
data. param. = parameter

Param. Unit Description Value CV% Reference

PK
ka h−1 Absorption rate 1.0 fixed Prior information
V L×h−1

×kg−1 Volume of distribution 10.1 19 Data in Fig. 8a
Vmax µM×h−1 Maximum elimination rate 1.16 35 Data in Fig. 8a
KM µM Michaelis-Menten constant 7.11 33 Data in Fig. 8a

PD
λ kcal×g−1 Physical activity 0.122 37 Data in Fig. 8b–c
r1 kcal×d−1 Param. in EIveh (Eq. 19) 15.0 26 Data in Fig. 8b
r2 Param. in EIveh (Eq. 19) 0 fixed Data in Fig. 8b
r3 kcal×d−1 Param. in EIveh (Eq. 19) 3.18 13 Data in Fig. 8b
r4 d−1 Param. in EIveh (Eq. 19) 0.241 8.3 Data in Fig. 8b
r5 kcal×d−1 Param. in EIveh (Eq. 19) 22.4 14 Data in Fig. 8b
r6 Param. in EIveh (Eq. 19) 0.554 4.0 Data in Fig. 8b
Imax Inhibitory efficacy param. in I(C) (Eq. 2) 1 fixed Data in Fig. 8b–c
IC50 µM Potency param. in I(C) (Eq. 2) 0.334 2.5 Data in Fig. 8b–c
n Sigmoidicity factor in I(C) (Eq. 2) 0.592 4.0 Data in Fig. 8b–c

mass and model predictions are shown in Fig. 8b–c The final parameters are given in Table 7. Given the
model, we can derive the steady-state relationship between key body composition variables, such as fat
mass and energy intake, and test-compound concentration (Fig. 8d). To investigate the sensitivity of the
analysis with respect to prior information on fat-mass changes, we repeated the full analysis with α and
FM(0) obtained from male mice. The data indicate a major shift in the relationship between fat mass
and steady-state concentration (dotted line in Fig. 8d). This stresses the importance of generating data
to quantify the relationship between fat and lean mass for every animal model.

Discussion

Part I. Modeling energy intake

Part I presents an example of the compound directly inhibiting energy intake rate (i.e. minimal or no time
delay between compound exposure and response). If extended time delays are observed, the model can be
extended using receptor binding models or turnover transduction steps.

In most energy intake studies, animals are treated with test compound for a few days. Energy intake
is then continuously monitored over the treatment period to assess potential drug tolerance development
or feedback mechanisms caused by an energy intake deficiency. This allows more representative and
reliable predictions of the steady-state relationship between energy intake and drug concentration. In
general, energy intake can be modeled over the entire drug treatment period by incorporating feedback
mechanisms into the model, although the last day of recording energy intake may be the most representative
for extrapolation, assuming that potential feedback has reached steady state.

In the presented modeling approach we explicitly model energy intake of vehicle animals. Based on
experience, this method gives similar estimates of compound parameters as for vehicle-corrected data.
The advantages of explicitly including the vehicle are more convenient data handling and improved model
interpretation.

In case energy intake rate is not limited by the energy intake rate of the vehicle group, it is reasonable to
extend the basic model by feedback on energy intake. The extension reflects an increased appetite in order
to maintain homeostasis, and ensures that energy intake can temporarily be greater than that of control
animals. Naturally, there are several plausible ways of specifying this feedback. Disease- and target-specific
properties should also be taken into account.
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Part II. Modeling body composition

A mathematical description of the specific in-house in vivo model provides a quantitative framework for
reasoning about energy intake and body composition studies. In our experience, it adds value across drug
discovery projects by improving study design, analysis, and interpretation of such studies. Applications
include prediction of body mass over extended periods (weeks) based on food intake collected during only
brief periods (days), prediction of body composition (allowing reduced sampling), and investigation of how
a compound affects energy intake and energy expenditure.

A fundamental requirement of the body composition model is data for estimating the empirical function
α, which specifies the relationship between changes in fat-free mass and fat mass. Our data indicate that
α differs across animal models.

The body composition model is sufficiently flexible to fit data generated for energy intake and body mass.
Under- or over-fitting of noisy body-mass time profiles and uncertainty in empirically based estimation of
energy expenditure are major challenges when using the model. Choosing free parameters is central for the
application of any of the models in this class. Some general guidance is that the sensitivity of parameters
related to unobserved variables is generally high, and it is advisable to keep the physical activity parameter
λ free when energy expenditure is unobserved. The identification of all energy expenditure parameters
requires extensive data over a large range of perturbations, and a pragmatic approach is to fix some of
the parameters, as we have done for K in the examples. Estimates of energy expenditure are still valid,
but the magnitude of λ should be interpreted with caution as λ may compensate for an incorrectly chosen
fixed value of K.

Part III. Modeling body mass when energy intake is not measured

Generally, observations or predictions of energy intake and energy expenditure are of major importance in
order to identify a reasonable compound-induced-effect model based on the mechanism of action. Part III
considers the case where no observations of energy intake or energy expenditure are available. To achieve
a feasible modeling problem, we now require a relatively good understanding of energy expenditure in the
animal model and also prior information of how the compound affects energy intake and energy expenditure.
Therefore, we have assumed a body composition model as described in Part II.

If prior information on energy expenditure is detailed, one can also use model identification (deconvolution)
methods to infer trajectories of energy intake (and not only constant energy intake rates). Since models
are represented by ordinary differential equations that are non-linear in their parameters, and since input
data are incomplete, deconvolution methodologies designed for sparsely observed non-linear systems are
required [27].

Using either models from Part I and II together or models of Part III gives a complete integrative PKPD
model from exposure to body mass. Such models enable new ways of analyzing experimental designs in
the obesity field. As an example, a key question is how well a model can predict body mass change after a
certain period of time given data for an initial part of that period, and when certain variables are observed.
Another example is to quantify the gain in parameter precision of having a washout period in body mass
studies over weeks.

Translation

A natural extension to the approaches presented here is to consider model-based translation across different
species [28]. To characterize the translational capabilities of the body composition model, we compare the
steady-state response of the mouse model presented in Part II with that of a human model [20] (Table 8).
Two striking features emerge. First, an increase in energy expenditure (e.g. 10%) is more efficient than
an equal lowering of energy intake. Second, the relative change in both body mass and fat mass is greater
in human at the same relative change in either energy intake or energy expenditure. We acknowledge that
the comparison assumes the same drug mechanism across species and over time. In practice, clinical data
indicate that weight loss typically plateaus after roughly one year, which is much earlier than the model-
predicted time to steady state. There may be several reasons for this plateau, such as functional adaptation
on the level of energy intake or energy expenditure (e.g. altered target expression), compliance to treatment
or exercise recommendations, and altered life situation. Unraveling those factors is challenging, but may
be feasible with proper clinical designs and observations, together with model-based analyses. We see a
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Table 8: Predicted steady-state effects on body mass and fat mass for drug treatments affecting energy
intake and/or energy expenditure across species. Mouse predictions are based on the model presented in
Part II for a female animal with an initial body mass of 50 g. Human predictions are based on the Hall
(2011) model [20], assuming an obese female with a Body Mass Index (BMI) of 35 kg×m−2, and with low
physical activity

Drug mechanism Body mass Fat mass
Energy Energy (% change) (% change)
intake expenditure Mouse Man Mouse Man

-10% - 9 15 15 25
-5% +5% 12 16 19 28
- +10% 15 18 24 31

great opportunity to pursue these tracks in future research.

Identifiability

To avoid problems with parameter identifiability, it is advisable to keep parameters with strong prior in-
formation fixed. For the body composition model in particular, several parameters have a clear biophysical
interpretation (such as ρ and γ), and reasonable values can be derived or estimated. Therefore, in our
work we have kept them fixed, whereas other parameters (such as λ and IC50) were estimated from data.

Recommendations

Based on our analyses in this paper and on experience from other data sets not included here, we give the
recommendations below.

• Establish a Forbes function α experimentally for the relevant in vivo animal model. This is done
once, and is crucial for proper interpretation of body composition predictions. Given α, regular fat
mass observations can be avoided or at least conducted less frequently.

• Always include a vehicle group, consider using several dose groups, and include a washout period
for improved parameter precision (see Fig. 8c for an example). Traditionally, 2–3 dose groups are
used, with 5–10 animals per group. Using a model-based approach, this design can be challenged.
In many cases, more information can be expected from the same number of animals using a design
with more dose groups (>4) and fewer animals per group (3–4). Finally, including a group on a
standard diet may improve system understanding, in particular the energy intake part of the model,
and the parameter EIstand in Eq. 10. It is also of interest in obesity, since a change of diet is often
recommended in addition to drug therapy.

• For compounds affecting both energy intake and energy expenditure, body-mass observations should
be combined with energy-intake or energy-expenditure observations, or both; for compounds affecting
either energy intake or energy expenditure, it suffices to observe body mass if the body composition
model is well determined.

• The models presented in this paper can be used to extrapolate body composition over time, if
prior information of potential functional adaptation is available. For humans, compliance must be
considered as well.

• In drug discovery, energy intake studies covering a few days can be used for initial compound ranking
(Part I model). A longer study (in the order of ten days), with observations of both energy intake
and body weight, can be used to determine drug action mechanisms (Part I and II model). Extended
time frames (several weeks), probably with only body mass observations for cost reasons, are essential
for investigating repeated dosing and functional adaptation.

Conclusions

Body composition depends on energy intake and energy expenditure, and is a key endpoint in many
drug discovery and clinical studies. Three conceptual mathematical models (Parts I–III) can describe
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the relationship between compound exposure, energy balance, and body composition. Key advantages of
a model-based analysis include improved quantitative system understanding, improved ability to predict
beyond the data ranges, and the potential to significantly improve the experimental design. It also gives
the opportunity to partly replace certain analyses by model predictions.
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