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1 Detailed information about the test systems and experi-
ments

In this section the details of the two test systems and the corresponding experiments
are presented.

1.1 The metabolic test system

The metabolic test system is taken from Arkin et al. [1], and represents a biochem-
ical NAND gate. Mechanisms of this type are common in biochemical systems,
such as glycolysis. The system of Arkin has two input variables I1 and I2 and five
measured variables S3 − S7. It can be described by the following equations:

S′

3(t) = −v1 − v2 + v3 + v4 (1)

S′

4(t) = v1 − v3 (2)

S′

5(t) = v2 − v4 (3)

S′

6(t) = −S′

7(t) = v5 − v6 (4)

The kinetic equations all follow Michaelis-Menten kinetics and inhibition is non-
competitive. They are specified according to

v1 =
S3(t)Vmax1

(S3(t) + KD1)
(

1 + I1(t)
KI1

) (5)

v2 =
S3(t)Vmax2

(S3(t) + KD2)
(

1 + I2(t)
KI2

) (6)

v3 =
S4(t)Vmax3

S4(t) + KD3
(7)

v4 =
S5(t)Vmax4

S5(t) + KD4
(8)

v5 =
S7(t)Vmax5

(S7(t) + KD5)
(

1 + S3(t)
KI3

) (9)
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v6 =
S6(t)Vmax6

S6(t) + KD6
. (10)

The following rate constants, taken from Arkin et al., were used: Vmax1−2 = 5,
Vmax3−4 = Vmax6 = 1, Vmax5 = 10, KD1−6 = 5 and KI1−3 = 1.

To evaluate our algorithms, we used 12 simulated experiments with different com-
binations of manually created input steps for I1 and I2, see Table 1. Each exper-
iment was simulated with high accuracy from t = 0 to t = 150. The standard
numerical integration method dlsode has been used in all implementations (see
http://www.llnl.gov/CASC/odepack).

To create the equivalent of real experimental data, the data of these simulations
were then reduced to 7 uniformly sampled data-points per variable, giving a total
of 84 data-points per variable over 12 experiments. For experiment 1 the time
courses are depicted in Fig. 1.

As a second data-set we included 13 data-points per variable and experiment (11
data-points were uniformly sampled and 2 data-points were collected before the
applied input signals at time zero). In this data set, we also simulated measure-
ment noise by adding Gaussian noise with a 3.5% standard deviation relative to the
particular experimental value.

A third data-set of 25 data-points per variable and experiment (21 uniformly sam-
pled and 4 before time zero) and with added noise with constant 10% was also
created. Similarly, a fourth data-set of 25 data-points with 20% noise was created.

Compared to the data used by Arkin the total number of data-points is similar, al-
though we distribute our data-points over more experiments. Over all experiments,
Arkin uses a total of 360 and 55 data-points per variable in the two different stud-
ies [1, 2], while our test cases include between 84 and 300 data-points per variable.
The use of several experiments allow us to investigate a range of interesting values
of the input functions and at the same time design individual input functions to give
relatively smooth time series for the variables.

1.2 The genetic network test system

The other test system is taken from Kikuchi et al. [3] - a small genetic network
originally considered in Hlavacek et al. [4]. This model is defined as a so called
S-system model. The S-system formalism [5, 6] is based on approximating ki-
netic laws with multivariate power-law functions. A model consists of n non-linear
ODEs and the generic form of equation i reads

X ′

i(t) = αi

n
∏

j=1

X
gij

j (t) − βi

n
∏

j=1

X
hij

j (t) (11)
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where X is a vector (length n) of dependent variables, α and β are vectors (length
n) of non-negative rate constants and g and h are matrices (n×n) of kinetic orders,
that can be negative as well as positive. The parameters of the genetic network are
given in Table 2.

From this model we simulated data for ten experiments with different initial con-
ditions, see Table 3. For each experiment the ODEs were simulated from t = 0 to
t = 0.5.

As a first data-set, eleven data-points were uniformly sampled for each variable
and experiment. This is exactly the same data as used by Kikuchi et al. [3]. See
Fig. 2 for data from experiment 1. As a second data-set we sampled three data-
points non-uniformly (t = 0, 0.025 and 0.50) per variable and experiment. The
non-uniform sampling gives slightly higher precision in the transient part of the
curves and thereby allows us to use fewer data points.

1.3 Test case for parameter estimation

A detailed description of the test case from [7] used for our parameter estimation
algorithm is available at http://www.iim.csic.es/∼julio/GR03 statement.txt.

2 Additional comments on the algorithms

2.1 Example of estimation in a single equation with simulation

We decompose the parameter estimation problem to single equations by assum-
ing the time series for the other variables known. For example, considering the
metabolic test system, we obtain one parameter estimation problem for S3 (Eq. 1)
that contains ten parameters, one for S4 (Eq. 2) that contains five parameters etc.
For biomolecular networks that are sparse, which is typically the case, we note that
the number of parameters in each equation is independent of the total number of
variables in the system.

In step 2b of the parameter estimation we use simulation of the single ODE in
order to find the parameters of that ODE that maximise the likelihood function.
For Eq. 2, step 2b works as follows. Values for the parameters Vmax1, KD1, KI1,
Vmax3 and KD3 are proposed by the parameter estimation algorithm and the time
series for I1 and S3 are given, either as interpolated data or as simulated data from
the current best model. We simulate S4 with high accuracy, beginning with an
initial point taken from the data. The result is compared to the given data points
for S4 and the likelihood function is calculated.
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2.2 The model space

The model space of the structure search algorithm is defined by a set of reaction
types. The collection of reaction types given in Table 2 of the main text is large
enough to let us build interesting and non-trivial test models resembling real sys-
tems. For instance, the metabolic test system is composed of two of the reaction
types. Naturally, this test system is more difficult to identify when the model space
includes all four reaction types.

In general, it is not known which reaction types that occur in a system and, con-
sequently, one must carefully specify a plausible collection of reaction types for a
particular area of application. Once implemented, this collection or parts of it can
be reused in future applications. The set of reaction types also determines which
kinds of parameter estimation algorithms are required, e.g. linear or non-linear.

We note that it is natural to have bounds for the parameters and, in reality, rea-
sonable guesses can usually be made from the literature. In particular, given suf-
ficient prior knowledge of the system one may be able to set the lower bounds of
k and Vmax greater than zero and thereby reducing the risk of over-fitting. For the
metabolic test system we used wide bounds as given in Table 2 of the main text.

Most biomolecular ODE models in the literature can be described in terms of reac-
tions taken from a set of reaction types. One exception is the S-system formalism,
where the kinetics are described in the form of Eq. 11. However, for S-systems, a
non-zero element in g or h can be considered as the correspondence to a reaction.
This is easiest understood by comparing the interactions in Figure 2 of the main
text to the non-zero elements of Table 2. Therefore, to identify a S-system, we
need to find the best combination of non-zero kinetic orders, instead of finding the
best combination of reactions from a collection of reaction types as in the more
common case. In practice, all elements in g and h corresponding to a ’reaction’ are
bound in an user-specified interval, e.g. [−3, 3], while all other kinetic orders are
bound to zero. To add a ’reaction’, we simply switch the bounds from zero to the
user-specified interval, and the other way around to remove a ’reaction’.

For the genetic network we considered the same bounds as Kikuchi et al.[3]: ∀i :
αi, βi ∈ [0, 15] and ∀i, j : gij , hij ∈ [−3, 3].

2.3 Model complexity and error function

An important issue in model identification is how to keep complexity low and
avoid over-fitting. In general, a model with a complex structure is more likely to
have high likelihood, because the parameter space is large and the model can be
fine-tuned to fit experimental data.

There are several ways to avoid high complexity [8, 9]. One common way is to
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consider model complexity implicitly in some termination criterion. Another more
elegant way to explicitly punish high complexity is to include a penalty term in
the error function. This term is typically a function of the number of parameters
and the number of data-points. Common variants include AIC [10], BIC [11] and
MDL [12]. Here we wish to point out that any termination criterion in model
identification algorithms either includes method-specific parameters or relies on
the assumptions made for the suggested penalty function. This is an open research
area [13].

Naturally, our first attempt was to use one of the existing methods for penalising
structural complexity. However, all above mentioned methods gave an unaccept-
ably large number of false positive reactions for our test systems. Only when con-
straining the model space (e.g. by assuming mass balance) we obtained reasonably
good output. There are several possible reasons for this effect, one being that we
cannot assume that the term −L is really minimised, because of imperfections in
the parameter estimation algorithm.

In our experiments we have kept the spirit of all these variants by using the error
function (2) in the main text, but simply chosen to set λ manually for the problem
at hand. We see this as a practical approach to circumvent the difficulty of deter-
mining it automatically. In practice, one can first try values of λ resulting in an
error function similar to AIC, BIC or MDL.

For exact data any positive value for λ should in theory give the correct result. In
practice, it can be arbitrarily set in a very wide range, but extremely low and high
values should be avoided.

2.4 Computational complexity of the algorithm

In our implementation and for the kind of problems we have been considering,
almost all running time of the model selection algorithm is spent in step 2, which in
turn is dominated by calls to step 2 in the parameter estimation algorithm. Ignoring
the other steps, we can sketch the time complexity, T , as

T = Nloops n Ntr Teval (12)

where Nloops is the maximum number of loops for one variable in the algorithm,
n is the number of variables, Ntr is the number of test reactions and Teval is the
time-complexity of the local parameter estimation and error calculation. We note
that Teval is dependent on the complexity of the model, such as non-linearities and
number of parameters, as well as the number of experimental data-points.

It is difficult to estimate Nloops, since it depends on the iterative behaviour of the
algorithm. In particular, Nloops is affected by the error function. Ideally, Nloops
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equals the maximum number of reactions that are not included in the initial struc-
ture but belong to the correct structure of the variable plus one for the terminating
loop. On the other hand, if all possible reactions are added Nloops = Ntr. In prac-
tice, Nloops tends to be close to its ideal value. Besides, we note that biomolecular
networks are typically sparse and, therefore, the number of correct reactions to add
is bound by some constant.

In practice, it seems that also Ntr and Teval can be kept relatively constant for dif-
ferent problem sizes, implying that the algorithm can be expected to behave poly-
nomially with respect to the number of variables and amount of experimental data.
For very large models it cannot be excluded that the global parameter estimation
of steps 3 and 4 contribute significantly to the running time, potentially by a non-
polynomial time complexity with respect to the number of variables and amount
of experimental data. However, the global parameter estimation can actually be
skipped without losing too much precision as indicated in Sect. 2.

Finally, we note that the algorithm always requires a model with smaller error
than the error of the best model in the previous iteration, and hence, there is no
possibility that the algorithm shows a cyclic behaviour.
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Figure 1: Data for experiment 1 simulated from the metabolic test system. The
markers indicate the data-points sampled.
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Figure 2: Data for experiment 1 simulated from the genetic network test system.
The markers indicate the data-points sampled.
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Exp. I1 I2

1 0.1 → 2 0.1 → 30
2 0.1 → 30 0.1 → 2.5
3 0.1 → 20 0.1 → 30
4 0.1 → 0.1 0.1 → 30
5 30 → 0.1 0.1 → 30
6 4 → 1 3 → 2
7 30 → 1 30 → 1
8 4 → 2 5 → 2
9 30 → 10 30 → 0.5
10 30 → 0.5 30 → 10
11 0.1 → 1.5 0.1 → 30
12 0.1 → 0.5 10 → 2.5

Table 1: Variables I1 and I2 for the different experiments of the metabolic test
system. We use the notation a1 → a2 where a1 is the start value (t ≤ 0) and a2 is
the value at t > 0.
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i αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5

1 5.0 1.0 -1.0 10.0 2.0
2 10.0 2.0 10.0 2.0
3 10.0 -1.0 10.0 -1.0 2.0
4 8.0 2.0 -1.0 10.0 2.0
5 10.0 2.0 10.0 2.0

Table 2: Parameters of the genetic network test system [3]. An empty element
corresponds to 0.0. Each row corresponds to one ODE according to Eq. 11, e.g.
the first row gives X ′

1(t) = 5.0X3(t)/X5(t) − 10.0(X1(t))
2.
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Exp. X1 X2 X3 X4 X5

1 0.70 0.12 0.14 0.16 0.18
2 0.10 0.70 0.14 0.16 0.18
3 0.10 0.12 0.70 0.16 0.18
4 0.10 0.12 0.14 0.70 0.18
5 0.10 0.12 0.14 0.16 0.70
6 0.70 0.70 0.14 0.16 0.70
7 0.10 0.70 0.70 0.16 0.18
8 0.10 0.12 0.70 0.70 0.18
9 0.10 0.12 0.14 0.70 0.70
10 0.70 0.12 0.14 0.16 0.70

Table 3: Initial concentrations of the five variables of the genetic network model in
each of the ten experiments [3].

13


