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Abstract

We present algorithms for parameter estimation and model selection that identify
both the structure and the parameters of an ordinary differential equation model
from experimental data. We mainly focus on the case of unknown structure and
some time course information available for every variable to be analysed, and we
exploit this to make the algorithms as efficient as possible.

The algorithms are designed to handle problems of realistic size, where reactions
can be non-linear in the parameters and where data can be sparse and noisy. To
achieve computational efficiency, parameters are mostly estimated for one equation
at a time, giving a fast and accurate parameter estimation algorithm compared to
other algorithms in the literature. The model selection is done with an efficient
heuristic search algorithm, where the structure is built incrementally.

We use two test systems that previously have been used to evaluate identification
algorithms, a metabolic pathway and a genetic network. We successfully identify
both test systems, using a reasonable amount of simulated data. Besides, mea-
surement noise of realistic levels can be handled. In comparison to other methods
that were used for these test systems, the main strengths of our algorithms are that
a fully specified model, and not only a structure, is identified, and that they are
considerably faster compared to other identification algorithms.

Keywords: model identification, biological modelling, parameter estimation, model
selection, ordinary differential equations, S-system.



1 Introduction

A commonly studied identification problem is that the structure, i.e. the form of
the equations is assumed known, but with unknown parameters. In this paper,
we consider the problem where not only the parameters but also the structure is
unknown. Finding the structure is referred to as model selection, and finding the
parameters as parameter estimation. We have developed algorithms for these
tasks that work together to determine a fully specified ordinary differential equation
(ODE) model, and which have been carefully matched to each other for speed and
accuracy.

The algorithms require that the problem has been modelled and specified mathe-
matically as an optimization problem. We note that when the structure is unknown,
this is not a trivial task. For parameter estimation we need suitable experimental
data, possibly from several experiments including e.g. different input signals and
gene deletions, and an error function. For model selection we additionally require
a discrete model space, in our case a set of possible reactions, and an error function
that takes model complexity into account. The desired solution is a parsimonious
ODE model that has a good fit to the data, according to the error function. Depend-
ing on the circumstances, additional information such as parameter bounds, partly
known or guessed initial structure etc. may be part of the definition of a given
problem. The specification of the model selection problem is further discussed in
Sect. 3.

Another observation is that when the structure is unknown, it is natural to require
that some time course data is available for all variables that we wish to analyse.
Otherwise, since no structural information is available, there would be no source
of information for the variable, and no conclusions could be drawn about it. We
therefore focus on this case in our presentation. In Sect. 5.1 we discuss the mixed
case when the structure is only partially unknown.

Main elements of our algorithmic approach are as follows:

• Given that some time course information is known for all variables to be
analysed, we exploit this to make the algorithms as efficient as possible.
This makes it possible to solve non-trivial problems on a standard computer,
rather than a super-computer, and provides a natural base case for further
development.

• Most of the time, parameters are estimated separately for each equation. In
this way we obtain several parameter estimation problems with low dimen-
sion instead of one problem with high dimension. This decomposition gives
some stability and efficiency benefits by itself, and also enables the model
selection algorithm to rapidly evaluate many different local structures with
local computations only.
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• The model structure is built incrementally with a heuristic search algorithm
where single new reactions are added and sometimes deleted. Parameter
estimation is done simultaneously during the incremental progress of the
structure search.

The problem of system identification with unknown structure is very challenging.
A solution method will therefore also have limitations, and results should be prop-
erly assessed. This is further discussed in Sect. 5. For us, an important goal has
been to see if we in practice can obtain meaningful results with such small amounts
of data that can usually be available from experiments. This has been done by eval-
uating our approach for two test systems that previously have been used to evaluate
such algorithms.

The first test system is a metabolic pathway considered by Arkin et al. [1], see
Fig. 1. Arkin infers the non-trivial structure of this pathway from time series mea-
surements of compound concentrations. The method is based on factor analysis
of the pairwise correlations between the variables, and the result of the analysis is
then interpreted manually to a possible structure. In contrast to Arkin’s method, our
algorithms attempt to find a fully specified dynamic model, i.e. with both structure
and parameters.

The second test system that we consider is a genetic network studied by Kikuchi
et al. [2], see Fig. 2. This model is defined in the S-system formalism [4, 5] and it
was almost perfectly identified using a genetic algorithm and super-computing [2].

There are also other methods than Arkin’s method for inferring the structure of a
system without also inferring its dynamic behaviour. The input to such methods is
either steady-state data [6, 7, 8] or time series data [9, 10]. A unified framework
for both steady-state and temporal data is given in [11]. We generally note that the
output from methods that infer the structure only, may be used as initial input to
our algorithm.

Other methods than Kikuchi’s method for identification of fully specified dynamic
biomolecular models have been proposed, mainly in the area of evolutionary com-
putation [12, 13, 14]. The strength of such methods is that any desired objective
function can be chosen and then directly optimised given available data. The draw-
back is the high or possibly extreme requirement for computational power.

The general problem of identifying both structure and parameters of S-systems is
discussed by Voit [5, 15]. For identification of parameters in a known structure, we
refer to [16, 17, 18].

To our knowledge, our approach as outlined by the combination of items above
together with their detailed implementation, is new for this kind of problem. On
a general level, there is some similarity to Wedelin [19], who identifies graphical
models (also known as Bayesian networks). Some details of the algorithms are
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arbitrary or are defined by external subroutines that may be replaced. We there-
fore throughout emphasise the overall approach and computational structure of the
algorithms, rather than specific details.

2 Parameter estimation in a given structure

An important part of identifying a dynamic system is the way in which parameters
are estimated. This is a non-trivial problem in itself [20, 21]. In our approach,
the model selection algorithm requires repeated evaluation of many different ten-
tative structures in which parameters need to be estimated, so the computational
efficiency of the parameter estimation becomes especially crucial. We use a com-
bination of new and standard ideas to get the best performance.

For parameter estimation we need one or several sets of time-series experiments.
Each experiment does not need to be complete but every variable should be mea-
sured in at least one experiment. In every call to the parameter estimation algorithm
the structure is given, and each unknown parameter is free within a lower and an
upper bound. The solution is a parameter vector k that maximises the likelihood
of the observed data X̂ .

In practice, we work with the log-likelihood. By assuming independent and nor-
mally distributed measurement errors and disregarding constant terms we can ex-
press the log-likelihood for one time series as

L(X̂j |k) = −
1

2

∑

i

(

Xj(ti) − X̂j(ti)

σj(ti)

)2

(1)

where i indexes the measurement points, and where Xj , X̂j and σj denotes sim-
ulated data, experimental data and standard deviation for variable j, respectively.
The total log-likelihood L(X̂|k) is defined by summing over all variables and all
experiments.

Our algorithm decomposes the parameter estimation per ODE as indicated in the
following outline. At all times, current parameter values and the most recent sim-
ulation of each variable are maintained.

REPEAT

1. Select input for the other variables, to be used in step 2: experimental
data or simulated data.

2. FOR each equation DO
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(a) Make a rough estimate of the parameters in the equation with the
derivative method [5, 22].

(b) Improve the estimate of the parameters in the equation with lo-
cal simulation based error calculation (using standard parameter
estimation subroutines).

3. Improve the estimate of all parameters with global simulation based
error calculation (using standard parameter estimation subroutines).

UNTIL convergence

The decomposition in step 2 has several advantages. It gives an opportunity to
better exploit the structure of the problem, giving sub-problems with significantly
lower dimensions than the global problem. It also improves stability by creating
a more direct connection between the known time courses and the parameter esti-
mation, forcing the parameter search in the direction of the global optimum. Even
disregarding the possibilities it creates for model selection, decomposition can be
powerful for parameter estimation in isolation.

In order to estimate the parameters in any single equation, we must supply given
time functions for any other variables occurring in the equation. In step 1 above,
this is done in one of two ways. Initially we use the given time series for the
other variables interpolated at any intermediate points needed using cubic smooth-
ing spline interpolation [23] (pppack, see http://www.netlib.org). This gives good
stability, but may give poor accuracy when we have sparsely sampled data-points.

If at some stage the model has become correct enough it may therefore happen
that the simulated time series created by the algorithm are more accurate than the
interpolated data. These can then replace the input of interpolated time series to
our single equation parameter estimation problems. As a consequence, the sub-
problems become dependent of each other, and have to be solved repeatedly over
and over again until convergence. One way to decide between interpolated data
or simulated data, is simply to calculate the likelihood for the two alternatives and
apply the method that gives the best result.

The actual estimation is done in steps 2 and 3. In step 2a, a first estimate is done
with the very fast but inaccurate derivative method (dn2gb, see http://www.netlib.org).
This estimate is then used as a starting point for step 2b where standard parameter
estimation by non-linear least squares is employed (dn2gb). The required error
function used by the parameter estimation routines is calculated by simulating the
single ODE to evaluate the error function and residuals. We have used single shoot-
ing [21]. However, multiple shooting [24, 25] can be used as needed. How well
parameters can be estimated in step 2b depends on the accuracy of the known time
series for the variables, but much less so than for the derivative method. In order to
avoid local maxima and thereby improve stability, several random starting points
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can be evaluated in both step 2a and 2b. In later iterations, it makes sense to con-
tinue from the best estimates so far rather than random starting points. We allow
the simultaneous use of several experiments. All experiments are then treated si-
multaneously in 2a, while simulation is repeated for each individual experiment in
2b. For further information of simulation of a single variable, see the Appendix.

In step 3, we perform a global estimation of all parameters in order to fine tune the
parameters to the nearest maximum (dn2gb). The error calculation is here based
on a global simulation. Global estimation is generally significantly slower than the
decomposition approach, but appears to have better convergence properties close
to a maximum, and so reduces the number of iterations needed in the outer loop.
However, it can in principle be skipped if estimation based on global simulation is
not feasible.

The stopping criterion of the outer loop can be set in various ways. In our im-
plementation we have simply used a small constant number of iterations, typically
2.

We finally note that by selecting simulated data in step 1, we actually free our-
selves from the initial assumption that all times series have to be known. On the
other hand, using interpolated data greatly improves the stability of convergence
in the beginning which may explain why we in our experiments have not had any
significant problems with divergence and local maxima.

2.1 Evaluation of the parameter estimation algorithm

The parameter estimation algorithm is a result in its own right, so we evaluate it
separately using a known hard test case involving simulated data from a model
with 36 parameters [21, 26, 27]. In [21], seven different parameter optimisation
methods are evaluated using this test case and only two of them give reasonably
good estimates. The result, see Table 1, indicates that our algorithm is more accu-
rate and faster compared to the methods considered in [21, 26, 27]. We note that
[26] uses the same standard routine for non-linear least squares (dn2gb) as we do,
indicating that the specific features of our approach are significant for the result.

3 Model selection

The problem of model identification can generally be seen as the problem of find-
ing the best model in some model space, according to an error function. Since
we divide the model into structure and parameters, it is natural to consider the fol-
lowing algorithmic approach: On top of the parameter estimation algorithm we
add a model selection algorithm that picks different tentative model structures, and
for each structure that we consider, the parameters are estimated as described in
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Sect. 2, and the error is calculated. Thus, it is not the case that the final structure
is determined first before any parameters are estimated, but the parameter estima-
tion algorithm is used as a subroutine called many times by the model selection
algorithm. We note that an exhaustive search of the model space is not feasible for
problems of realistic size.

Before we look at algorithmic details we will clarify what we need to properly
specify also the model selection problem. In addition to the time course data used
for parameter estimation, we use the following:

• A discrete model space defined by a set of reaction types. The model
space of the structure search algorithm is defined by a collection of reaction
types. See Table 2 for the model space of our first example, and the Appendix
for the second example.

• An error function. The maximum likelihood criterion of Sect. 2 needs to be
extended to consider structural complexity. How to do this is a well inves-
tigated but non-trivial problem, and it is difficult to have a definite opinion
on a best choice. If no problem specific information is available a common
approach is to include a penalty term, typically a function of the number of
parameters and the number of data-points [28, 29, 30]. If prior information is
available, customised error functions could be useful in low-data situations
in the biological domain. For our test systems we have minimised a quite
simple error function of the form

−L + λK (2)

where λ is a constant and K is the number of parameters. See Sect. 4 and
the Appendix for further information.

• Parameter bounds for reaction types. For each reaction type in the model
space, lower and upper bounds are assigned to each parameter. See Table 2
for the bounds of our first example, and the Appendix for the second exam-
ple.

• An initial model. The initial structure consists of all compounds and any
number of reactions of the model corresponding to the established knowl-
edge of the structure of the system. Some parameters may be known or par-
tially known. For our main test problems no reactions have been considered
known.

In practice, the first two items can be expected to require customisation of the
implementation of the algorithm, and the last two and the time course data can
typically be provided in a data file. In this paper, we choose to consider all of this
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as input. We acknowledge that the specification of all these items in a particular
context involves non-trivial applied and theoretical issues. However, we think that
we for our purposes have drawn a sensible line between the task of modelling and
defining problems, and on the other hand the algorithmic task of solving them,
where the latter has been our focus.

The principle of the model selection algorithm is a local search heuristic that re-
constructs the model structure incrementally. A current model is maintained at all
times. New reactions are tested, and if they are found to decrease the error func-
tion they are added to the current model. Reactions may also be removed from the
current model at a later stage if this improves the error function, so the algorithm
is not greedy, although optimality cannot be guaranteed in the general case.

The search for new reactions is decomposed per variable in order to match the
parameter estimation algorithm which works in the same way. We can then quickly
test many different possible equations for a variable, with only local operations on
the model, and without making global simulations.

The structure search algorithm can be outlined as follows:

REPEAT

FOR every variable
1. Based on the current model, the unknown parameters of the ODE

are locally estimated and the error is calculated.
2. Every possible reaction in the model space is temporarily added

to the ODE one by one. For each reaction that is tried, the param-
eters of the resulting ODE are locally estimated and the error is
calculated.

3. If a better model was found in 2, the best reaction is added to the
ODE, and all parameters in the entire model are re-estimated.

4. Weak reactions are removed. All possible sub-models of a partic-
ular ODE are evaluated and if the error decreases by removing any
single reaction this is done. If the current model is modified, all
parameters in the entire model are re-estimated.

UNTIL error function does not improve

The local parameter estimation in steps 1 and 2 above involves only the parameter
estimation steps 2a and 2b for one variable as described in Sect. 2. In steps 3 and
4 above the full parameter estimation algorithm is used.

It is difficult to explicitly give the time complexity of the algorithm, but we note that
thanks to the decomposition our implementation in practice behaves polynomially
with respect to the number of variables and amount of experimental data. Almost
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all computational time is spent in the parameter estimation subroutines. See the
Appendix for further information.

Finally, we note that the structure search algorithm can be optimised in different
ways. For instance, we can monitor variables that have reached a stable structure,
and restrict further search to the more uncertain parts of the structure. From the
user’s perspective, one can significantly reduce the running time by constraining
the model space by prior information.

4 Test results

In this section we present test results for identification of both structure and param-
eters for the metabolic and genetic test systems, respectively. All tests were run on
an ordinary PC (Intel Xeon, 2.8 GHz).

4.1 Identification of the metabolic system

For the metabolic test system we considered the model space and parameter bounds
given in Table 2. We first considered exact data. In this case the results are almost
entirely insensitive to the values of σj and λ in the error function (2). To avoid
division by zero, we artificially set the σj to the arbitrary value 1, and λ was arbi-
trarily set to 1 as well. Given an empty model structure and a data set including 12
experiments and 7 data-points per variable in each experiment (see Appendix), we
identified the correct model structure, and reasonable parameter values in about 60
minutes. The full test details and results are given in Table 3. We note that conser-
vation of mass has not been assumed. If this constraint is included, the model space
becomes smaller and there is a significant decrease in running time. For fewer than
7 data-points per variable and experiment we are not able to correctly identify the
metabolic test system.

Compared to Arkin et al. [1], our data-set is smaller, and has been adapted to be
better suited for parameter estimation. We identify not only the dependencies, but
a fully specified ODE model.

For real systems similar to the metabolic test system, measurement errors of in
vitro data are reported in the range 1-7% [31]. We added measurement noise from
a normal distribution with standard deviation 3.5%, 10% and 20% to our artificial
data. To successfully identify the model we used the same 12 experiments as be-
fore, but we increased the number of data-points per experiment and variable. In
the error function the true standard deviations were considered known for all data-
points, and λ was manually set as described in the Appendix. See Table 3 for full
test details and results. We note that the models include a few false positive reac-
tions but these have significantly smaller rate constants, so they could in principle
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be filtered out with a low threshold (see also the Appendix for a discussion on the
error function). The running time was about 100 minutes. Repeating with data
simulated with different random seeds gave similar results.

The test results indicate that the algorithm can handle real biological experiments:
the number of measurement points can be reduced to acceptable levels and the
algorithm can handle data that have measurement noise of realistic levels added to
them. We note that the we use a model space with four reaction types, although
only two types are required for successful identification.

4.2 Identification of the genetic network

For the genetic network we considered the same model space, parameter bounds
and data-set as Kikuchi et al. [2] (see Appendix). These data are exact and consists
of 10 different experiments with 11 uniformly sampled data-points per variable. As
for the metabolic system, the results for exact data are almost entirely insensitive
to the values of σj and λ, and we used the arbitrary values 0.01 and 1, respectively.
The smoothing parameter was set to 0.001.

With these settings we identified the correct model (relative error in the parame-
ters in the order of machine precision) in 6 minutes. Kikuchi et al. [2] obtained
one false positive interaction (h53 = 0.7) and the true parameters within 18% rel-
ative error using 70 hours on a super-computer with a cluster of 1040 processors
(Pentium 3, 933 MHz). This result shows that our approach is more accurate and
significantly faster compared to the genetic algorithm approach by Kikuchi et al.
Moreover, there are only a few method-specific parameters to adjust in our ap-
proach.

In addition, we could decrease the number of data-points per variable and experi-
ment to 3 and still obtain a perfect model (smoothing parameter=0.001, λ was set
to 10 since this improves computational speed, but the final answer is still insen-
sitive to the value of λ). We also ran the genetic network test system with 20%
noise. Using 11 non-uniformly sampled data-points per variable and experiment
(smoothing parameter=0.01, λ = 2), the correct structure and reasonable param-
eter values were identified. The running time was about 6 minutes for both these
tests.

5 Summary and discussion

The presented algorithms reconstruct both the structure and the parameters of two
test systems given simulated data. For the metabolic test system the algorithm iden-
tifies both structure and parameters using a similar amount of data with a higher
level of noise than Arkin et al. For the genetic network test system the algorithms
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reconstruct the system to a higher degree of accuracy using less data than Kikuchi
et al. Furthermore, the computational effort is several orders of magnitude lower.
Worst-case model identification scenarios have been tested, since only an empty
initial structure has been assumed. Moreover, the approach is not dependent on the
specific reaction types used and can be applied also in other areas.

An important reason for the efficiency of both algorithms is the decomposition to
one equation at a time, which makes it makes it easy to stabilise the parameter
estimation with known experimental data and to search many models by local op-
erations. Another reason is the heuristic search. Because of the time complexity
characteristics of the algorithms, we have reason to expect that the approach works
also for larger systems.

From a general perspective, we see our results as a proof of concept that iden-
tification can be done in practice, with realistic input data, and with reasonable
computational effort.

5.1 An extensible approach

To better fit a particular application, the algorithms can be extended in several
straightforward ways. One example is that a number of reaction types can be im-
plemented to be easily available, as well as different common system constraints.
The search strategy can also be extended. For instance, by using beam search (see
e.g. [32]) we can if necessary make a more thorough search and at the same time
avoid a combinatorial explosion. We note that it is possible to adopt any one of our
two algorithms and replace the other with some other algorithm, e.g. with a more
global search.

We consider the present result to be a natural step towards exploring methods with
partially unknown structure and incomplete data sets. We note that there is no
fundamental conflict between using our approach where the structure is unknown,
and using ordinary parameter estimation approaches where the structure is known.
Here note that our fast parameter estimation is only critically needed in the un-
known parts where many possible structures need to be tested, i.e. where a prop-
erly specified identification problem has to include time course data anyway. The
bottom line is that we can expect extensions of our approach to be useful as a basis
for solving also these problems. As a simple example, after some modifications of
our implementations we are able to identify the genetic network test system when
one variable is completely unobserved but the interactions (but not the strengths of
the interactions) of that variable are known. Using the same data set as in [2] the
running time is a couple of minutes.

We finally remark on the basic problem that variables that are important in the
real system may be missing in the mathematical problem we analyse. Depending
on the role of such variables, and other factors such as the chosen model space,
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meaningful results may be obtained subject to proper interpretation. For example,
a pathway A-B-C where data for B is missing will typically result in a proposed
reaction between A and C. We have not considered the algorithmic discovery of
hidden variables, whose existence is determined using the model space and the
error function as the only sources of information. This is a difficult problem, the
feasibility of which is highly sensitive to the nature and accuracy of available data.

5.2 Evaluation and use of identification algorithms

Given the diverse nature of different systems and problems, and the many com-
ponents of the proposed algorithms, it is difficult to give general statements about
performance and reliability. Still, to bring some clarity to this, we will outline
the fundamental reasons why an identification algorithm may fail to perform as
expected:

1. The error function, which defines the mathematical objective of the identi-
fication problem, can have a strong influence on the final result. Especially
model complexity makes the choice of error function an intricate issue.

2. Insufficient data. There may be models with the same or lower error than
the correct model. Even a perfect algorithm will then give an incorrect an-
swer. Of course, the data required is a function of the system to be identified
and the chosen model space.

3. Algorithmic difficulties. The algorithm may fail to find the best solution
due to its heuristic nature. Generally, it is not possible to know if the best
solution was found.

It may be difficult to assess if a specific result is unreliable and if so, which of
the reasons above are really the causes of the problem. The situation is further
complicated by the fact that also an incorrect model can have some explanatory
value as well as predictive power.

As a simple example of a case when the algorithm fails we consider the genetic
network test system. In Sect. 4 we reported that 3 (non-uniformly sampled) data-
points per experiment is enough for identification when using all 10 experiments.
Now, reducing the number of experiments to 6 still results in perfect identification,
while 5 experiments results in 1 false positive and 1 false negative interaction.
The error of the proposed model is slightly higher than that of the correct model,
indicating that the failure is due to point 3 above.

A pragmatic approach to algorithm reliability is to explore it on a case by case basis
as we have done in this paper. Even if the real system of interest is unknown, one
can define similar systems, simulate realistic experimental data and test if they can
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be reconstructed. It is also possible to provide additional data such as parameter
sensitivity w.r.t. L, as an aid in interpreting the result. A user can also counter
reliability problems by supplying better input data (experiments, initial model, pa-
rameter bounds), or by reducing the model space. Better data is not just a matter of
volume or noise but also of the right kind of data. For example, one may include
data measured on a disturbed system, where for instance certain genes are deleted
to break up feedback loops or isolate sub-systems. Another possibility is to make
experiments with different input data as in our examples.

We believe that properly used, algorithms for system identification can be a useful
tool in biological research. At the very least the results can be used as hints for
further exploration of the real system of interest. Even without biological data, a
system including simulation and identification should be useful for experimental
planning e.g. to find out what experiments and other knowledge are needed to
identify a system.
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Figure 1: The metabolic test system [1]. I1 and I2 are input variables, S3 −S7 are
measured variables, X1−X6 are variables corresponding to metabolites assumed
buffered at constant levels. The reactions v1−v6 follow Michaelis-Menten kinetics
(non-competitive inhibition) and are catalyzed by different enzymes which also are
present at constant levels. The corresponding ODEs are given in the Appendix.
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Figure 2: The genetic network test system [2, 3]. The dependent variables X1−X5

are measured, while NA (nucleic acid), AA (amino acid) and Substrate are assumed
at constant levels. The corresponding ODEs are given in the Appendix.
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Method Processor Running time (and accuracy, relative
frequency parameter error) using data with

0% noise 3% noise 5% noise

Moles [21] 866MHz 39h (<16%)
Rodriguez-F. [26] 1.8GHz 2-3h (<0.02%) 2-3h 2-3h
Rodriguez-F. [27] 1.8GHz ≈5min (<6x10−3%)
Our method 2.7 GHz 1mina (<4x10−9%) 1.5mina 35minb

Table 1: Comparison of running times and accuracies between different methods
solving the parameter estimation test case. In our method, we set the smoothing
parameter to 0.001 in the data interpolation, we used uniformly distributed starting
points in logarithmic space for each variable in step 2a and 2b and we ran the
parameter estimation for 2 iterations. All tests were repeated 5 times with similar
results. For noisy data, we obtained an error smaller or equal to the error using
the true parameters. a) 80 random starting points in step 2a (no random starting
points in step 2b). b) 300 and 3000 random starting points in phase 2a and 2b,
respectively.
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Model space Parameter bounds
Reaction Variables

kY1(t) Y1 ∈ {S3−7} k ∈ [0, 50]

kY1(t)Y2(t) Y1 ∈ {S3−7} k ∈ [0, 50]
Y2 ∈ {I1−2, S3−7}

Y1Vm

Y1+KD
Y1 ∈ {S3−7} Vm ∈ [0, 50]

KD ∈ [0.1, 50]

Y1(t)Vm

Y1(t)+KD

· Y1 ∈ {S3−7} Vm ∈ [0, 50]
1

1+Y2(t)/KI

Y2 ∈ {I1−2, S3−7} KD ∈ [0.1, 50]

KI ∈ [0.1, 50]

Table 2: Model space and parameter bounds considered for the metabolic test
system.
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Reaction Correct Estimated parameters
param. n=7 n=13 n=25 n=25

s=0.01 s=0.01 s=0.01 s=0.1
λ=1 λ=5 λ=5 λ=5
σj=1 σj = noiseX̂j σj = noiseX̂j σj = noiseX̂j

noise=0% noise=3.5% noise=10% noise=20%

S3(t)Vm

S3(t)+KD

· |Vm|=5 5.03 5.0 5.4 5.8
1

1+I1(t)/KI

KD=5 5.00 4.8 4.8 4.5
in S′

3 and S′

4 KI=1 0.993 1.0 0.9 0.9
S3(t)Vm

S3(t)+KD

· |Vm|=5 4.99 5.3 6.3 5.3
1

1+I2(t)/KI

KD=5 5.00 4.9 4.8 4.6
in S′

3 and S′

5 KI=1 1.00 0.9 0.7 0.8
S4Vm

S4+KD
|Vm|=1 1.00 1.0 1.0 1.0

in S′

3 and S′

4 KD=5 5.00 5.0 5.1 4.7
S5Vm

S5+KD
|Vm|=1 1.00 1.0 0.9 0.8

in S′

3 and S′

5 KD=5 5.00 5.0 4.8 4.2
S7(t)Vm

S7(t)+KD

· |Vm|=10 10.0 9.2 10 16
1

1+S3(t)/KI

KD=5 5.00 5.0 5.0 5.1
in S′

6 and S′

7 KI=1 0.995 1.1 0.9 0.6
S6Vm

S6+KD
|Vm|=1 1.00 1.0 1.0 1.0

in S′

6 and S′

7 KD=5 5.00 4.6 5.5 5.5

FALSE POSITIVE REACTIONS:

kS4S6 in S′

6 k=0 -10−6

kS5S6 in S′

6 k=0 -10−6

kS4S1 in S′

6 k=0 10−5

kS2S5 in S′

5 k=0 -10−5 -10−4

kS6 in S′

6 k=0 -10−3 -10−3

kI1S4 in S′

6 k=0 10−4 10−4

kI1S7 in S′

7 k=0 -10−5 -10−4

kS6S7 in S′

3 k=0 10−5

S7(t)Vm

S7(t)+KD

· |Vm|=0 10−4

1
1+S2(t)/KI

KD 28
in S′

5 KI 0.1

Table 3: Models identified from data simulated from the metabolic test system with
noise levels of 0, 3.5, 10 and 20%. n is the number of data-points per variable and
experiment, s is the smoothing parameter, and λ and σj are the constant in Eq. 2.
Since every reaction in the test system belongs to two ODEs, absolute values of Vm

are presented.


