
Format used to specify the benchmark problems

Peter Gennemark and Dag Wedelin

March 19, 2009

This document details the format used to specify the benchmarks problems for
identification of ordinary differential equations given at
http://www.odeidentification.org.

We will first describe some general characteristics of the format, and then walk
through the details of the identification file format, using the problem metabol2 as
an example.

1 General structure of the format

With the exception of the begin..end construction at the beginning and the end of
the file, the format consists of statements organized in paragraphs. A paragraph
can consist of one or several statements. A typical paragraph has some similarity
to a record or class in a programming language:

person_7
has name = mary
has telephoneNumber = 1234567
has child_ = person_5 person_14
is female

which can be understood as the single statements

name of person_7 = mary
telephoneNumber of person_7 = 1234567
child of person_7 = person_5 person_14
person_7 is female

In principle, every single statement is independent of every other statement, so the
meaning of the statements is independent of their order. The indices used are all
arbitrary and may be permuted. When a list is assigned (such as for child in the
example above), it is assumed to end at the end of the line.

1



The particular format for identification problems follows this general structure, but
has its own kinds of paragraphs, specialized to the purpose of this application.
A simple reader for identification problems will then only be able to read these
particular paragraphs for this application.

The format has been designed to be easy to parse in the following way. The syn-
tax of a single paragraph is keyword based, in that you read the first identifier of
the paragraph (before the ’ ’, which is ”person” in the example above), and then
you know how to straightforwardly parse the entire paragraph. This can then be
repeated over and over again until the end of the file.

All objects are referred to with a role and an index, eg. ”variable 4”. The indices
are for each category consecutive beginning with 1. This means that you can easily
read the file and directly place in suitable program data structures without the use of
any hash tables. Dynamic arrays can however be useful, unless the file is read twice
to check required array sizes. Not having such redundant size information in the file
makes it easy to manually edit and modify the file without causing inconsistencies.

A simple example parser for identification problems is available on the web site.
It is written in C and should be possible to compile and run on any computer with
a C compiler. As it stands, it parses the identification problem file and prints it
again. It can therefore be used directly as a simple verifier in that if the input and
the output are identical, the file can be considered to be correct. When used in
another program, the print statements can be replaced with code that loads the data
into appropriate data structures.

2 Details about the format

We will now look at problem metabol2 in more detail. Our ambition is to make
this documentation self-contained, but it can be useful to look at the full problem
specification to get an impression of how all parts are combined. Finally, a general
remark: ’//’ indicates that the rest of a line is a comment.

2.1 Header

format version = 1.0

begin problem metabol2

type = reactionKinetics
date = 5-Aug-08 09:27:04
url = http://www.cs.chalmers.se/˜dag/identification/

The current and first format version is called 1.0. The problem is encapsulated by

2



’begin’ and ’end’. ’problem’ is a keyword followed by the name of the problem,
which typically but not necessarily is the same as the name of the file.

There are two available types of problems: reactionKinetics and SSystem. Date
and url specify when the problem was formulated and the address to the on-line
information, respectively.

2.2 Reaction types

The reaction types specify the building blocks of the model space for a certain
problem. Note that the model space is specified subsequently.

reaction_1
has name = uniMolecularMassAction
has localVariableName_1 = X1
has localParameterName_1 = k1
has equation = k1*X1

reaction_2
has name = biMolecularMassAction
has localVariableName_1 = X1
has localVariableName_2 = X2
has localParameterName_1 = k1
has equation = k1*X1*X2

reaction_3
has name = michaelisMenten
has localVariableName_1 = X1
has localParameterName_1 = k1
has localParameterName_2 = k2
has equation = k1*X1/(k2+X1)

reaction_4
has name = michaelisMentenNonCompInhib
has localVariableName_1 = X1
has localVariableName_2 = X2
has localParameterName_1 = k1
has localParameterName_2 = k2
has localParameterName_3 = k3
has equation = k1*X1/(k2 +X1)/(1+X2/k3)

A new reaction type begins with the keyword ’reaction ’ followed by an integer.
Each type has a unique name (used as reference in subsequent sections), a list of
local variable names, a list of local parameter names and a rate equation. In the
first example above, the rate equation is

k1X1

where k1 is a local parameter and X1 is a local variable. In the second reaction

3



type, ’biMolecularMassAction’, the rate equations is

k1X1X2

where k1 is a local parameters and X1 and X2 are local variables. In the third
reaction type, ’michaelisMenten’, the rate equations is

k1X1

k2 + X1

where k1 and k2 are local parameters and X1 is a local variable. In the fourth
reaction type, ’michaelisMentenNonCompInh’, the rate equations is

k1X1

(k2 + X1)
(

1 + X2
k3

)

where k1, k2 and k3 are local parameters and X1 and X2 are local variables.

2.3 Variables

Each variable has a name and is either an inputVariable or a dependent variable.

variable_1 has name = x1 is inputVariable
variable_2 has name = x2 is inputVariable
variable_3 has name = x3 is dependent
variable_4 has name = x4 is dependent
variable_5 has name = x5 is dependent
variable_6 has name = x6 is dependent
variable_7 has name = x7 is dependent

For each dependent variable there is a corresponding ODE. Hence, in the above
example the system of ODEs to consider is:

x′

3(t) = f3(x1, x2, x3, x4, x5, x6, x7, p, t)

x′

4(t) = f4(x1, x2, x3, x4, x5, x6, x7, p, t)

x5(t) = f5(x1, x2, x3, x4, x5, x6, x7, p, t)

x′

6(t) = f6(x1, x2, x3, x4, x5, x6, x7, p, t)

x′

7(t) = f7(x1, x2, x3, x4, x5, x6, x7, p, t)

where the f ’s are functions defined by the model space, p is a vector of parameters
and t is time.

4



2.4 Ranges

A range is specified by a lower and an upper bound on the real line. Ranges are
subsequently referred to when defining parameter bounds.

To specify a range we begin with the keyword ’range ’ followed by an integer.
Each range has a lower and upper bound.

range_1 has lowerBound = 0.000E+00 has upperBound = 0.500E+02
range_2 has lowerBound = -0.500E+02 has upperBound = 0.000E+00
range_3 has lowerBound = 0.100E+00 has upperBound = 0.500E+02

2.5 Variable sets

A variable set contains a set of variables. Variable sets are subsequently referred
to when defining model space. A new variable set begins with the keyword ’mem-
berOfSet ’ followed by an integer, and finally a list of variables.

memberOfSet_1 variable_1 variable_2 variable_3 variable_4 variable_5
variable_6 variable_7

memberOfSet_2 variable_4 variable_5 variable_6 variable_7
memberOfSet_3 variable_3 variable_5 variable_6 variable_7
memberOfSet_4 variable_3 variable_4 variable_6 variable_7
memberOfSet_5 variable_3 variable_4 variable_5 variable_7
memberOfSet_6 variable_3 variable_4 variable_5 variable_6

Note that the line break between ’variable 5’ and ’variable 6’ for ’memberOfSet 1’
above is for display purpose and not part of the correct syntax.

2.6 Model space

The model space is defined separately for each dependent variable (ODE). Note
that the model space may differ between the variables.

For each dependent variable there may be several possible reactions. A new pos-
sible reaction begins with the keyword possibleReaction followed by an integer,
and then followed by ’of’ and the variable to consider. Each possible reaction has
a type (must be one of the pre-specified types above), a space of allowed variables
for each local variable, and ranges for all parameters.

possibleReaction_1 of variable_3
has type = uniMolecularMassAction
has spaceOfVariable X1 = memberOfSet_2
has rangeOfParameter k1 = range_1

possibleReaction_2 of variable_3

5



has type = uniMolecularMassAction
has spaceOfVariable X1 = variable_3
has rangeOfParameter k1 = range_2

possibleReaction_3 of variable_3
has type = biMolecularMassAction
has spaceOfVariable X1 = memberOfSet_2
has spaceOfVariable X2 = memberOfSet_1
has rangeOfParameter k1 = range_1

possibleReaction_4 of variable_3
has type = biMolecularMassAction
has spaceOfVariable X1 = variable_3
has spaceOfVariable X2 = memberOfSet_1
has rangeOfParameter k1 = range_2

possibleReaction_5 of variable_3
has type = michaelisMenten
has spaceOfVariable X1 = memberOfSet_2
has rangeOfParameter k1 = range_1
has rangeOfParameter k2 = range_3

possibleReaction_6 of variable_3
has type = michaelisMenten
has spaceOfVariable X1 = variable_3
has rangeOfParameter k1 = range_2
has rangeOfParameter k2 = range_3

possibleReaction_7 of variable_3
has type = michaelisMentenNonCompInhib
has spaceOfVariable X1 = memberOfSet_2
has spaceOfVariable X2 = memberOfSet_1
has rangeOfParameter k1 = range_1
has rangeOfParameter k2 = range_3
has rangeOfParameter k3 = range_3

possibleReaction_8 of variable_3
has type = michaelisMentenNonCompInhib
has spaceOfVariable X1 = variable_3
has spaceOfVariable X2 = memberOfSet_1
has rangeOfParameter k1 = range_2
has rangeOfParameter k2 = range_3
has rangeOfParameter k3 = range_3

The above text specifies the possible reactions of variable 3. A summary is given
in table 1.

Note that is assumed that Xi 6= Xj . For example, the following ’michaelisMenten-
NonCompInhib’ reaction is not part of the above model space

k1X3

(k2 + X3)
(

1 + X3
k3

)

Also note that some combinations of the biMolecularMassAction reaction are equiv-
alent, e.g. k1x5x6 and k1x6x5. Hence, in practice, one of them can be ignored.

6



Rate equation Variable space Parameter range

k1X1 X1 ∈ {x4, x5, x6, x7} k1 ∈ [0.0, 50.0]

k1X1 X1 ∈ {x3} k1 ∈ [−50.0, 0.0]

k1X1X2 X1 ∈ {x4, x5, x6, x7} k1 ∈ [0.0, 50.0]
X2 ∈ {x1, x2, x3, x4, x5, x6, x7}

k1X1X2 X1 ∈ {x3} k1 ∈ [−50.0, 0.0]
X2 ∈ {x1, x2, x3, x4, x5, x6, x7}

k1X1
k2+X1

X1 ∈ {x4, x5, x6, x7} k1 ∈ [0.0, 50.0]

k2 ∈ [0.10, 50.0]

k1X1
k2+X1

X1 ∈ {x3} k1 ∈ [−50.0, 0.0]

k2 ∈ [0.10, 50.0]

k1X1

(k2+X1)

(

1+
X2
k3

) X1 ∈ {x4, x5, x6, x7} k1 ∈ [0.0, 50.0]

X2 ∈ {x1, x2, x3, x4, x5, x6, x7} k2 ∈ [0.10, 50.0]
k3 ∈ [0.10, 50.0]

k1X1

(k2+X1)

(

1+
X2
k3

) X1 ∈ {x3} k1 ∈ [−50.0, 0.0]

X2 ∈ {x1, x2, x3, x4, x5, x6, x7} k2 ∈ [0.10, 50.0]
k3 ∈ [0.10, 50.0]

Table 1: Summary of possible reactions of variable 3 in the problem metabol2

Table 2 gives the list of possible reactions explicitly written out (this time without
ranges for the parameters).

The ODE for variable 3 should be selected from any subset of the above 59 reaction
terms. For the problem we consider as example, metabol2, the true ODE is

x′

3(t) =
k1x3

(k2 + x3)
(

1 + x1
k3

) +
k4x3

(k5 + x3)
(

1 + x2
k6

) +
k7x4

(k8 + x4)
+

k9x5

(k10 + x5)

For S-systems, the model space is simply defined by bounds for the parameters.

alpha has defaultLowerBound = 0.

alpha has defaultUpperBound = 20.

beta has defaultLowerBound = 0.

beta has defaultUpperBound = 20.

7



k1x4 k1x5 k1x6 k1x7 k1x3

k1x4x1 k1x4x2 k1x4x5 k1x4x6 k1x4x7

k1x5x1 k1x5x2 k1x5x6 k1x5x7 k1x6x1

k1x6x2 k1x6x7 k1x7x1 k1x7x2 k1x3x1

k1x3x2 k1x3x4 k1x3x5 k1x3x6

k1x4

k2+x4

k1x5

k2+x5

k1x6

k2+x6

k1x7

k2+x7

k1x3

k2+x3

k1x4

(k2+x4)
(

1+
x1

k3

)

k1x4

(k2+x4)
(

1+
x2

k3

)

k1x4

(k2+x4)
(

1+
x3

k3

)

k1x4

(k2+x4)
(

1+
x5

k3

)

k1x4

(k2+x4)
(

1+
x6

k3

)

k1x4

(k2+x4)
(

1+
x7

k3

)

k1x5

(k2+x5)
(

1+
x1

k3

)

k1x5

(k2+x5)
(

1+
x2

k3

)

k1x5

(k2+x5)
(

1+
x3

k3

)

k1x5

(k2+x5)
(

1+
x4

k3

)

k1x5

(k2+x5)
(

1+
x6

k3

)

k1x5

(k2+x5)
(

1+
x7

k3

)

k1x6

(k2+x6)
(

1+
x1

k3

)

k1x6

(k2+x6)
(

1+
x2

k3

)

k1x6

(k2+x6)
(

1+
x3

k3

)

k1x6

(k2+x6)
(

1+
x4

k3

)

k1x6

(k2+x6)
(

1+
x5

k3

)

k1x6

(k2+x6)
(

1+
x7

k3

)

k1x7

(k2+x7)
(

1+
x1

k3

)

k1x7

(k2+x7)
(

1+
x2

k3

)

k1x7

(k2+x7)
(

1+
x3

k3

)

k1x7

(k2+x7)
(

1+
x4

k3

)

k1x7

(k2+x7)
(

1+
x5

k3

)

k1x7

(k2+x7)
(

1+
x6

k3

)

k1x3

(k2+x3)
(

1+
x1

k3

)

k1x3

(k2+x3)
(

1+
x2

k3

)

k1x3

(k2+x3)
(

1+
x4

k3

)

k1x3

(k2+x3)
(

1+
x5

k3

)

k1x3

(k2+x3)
(

1+
x6

k3

)

k1x3

(k2+x3)
(

1+
x7

k3

)

Table 2: List of all possible reactions of variable 3 in the problem metabol2

g has defaultLowerBound = -4.
g_1_1 has lowerBound = 0.
g_2_2 has lowerBound = 0.
g_3_3 has lowerBound = 0.

g has defaultUpperBound = 4.
g_1_1 has upperBound = 0.
g_2_2 has upperBound = 0.
g_3_3 has upperBound = 0.

h has defaultLowerBound = -4.
h_1_1 has lowerBound = 1.E-15
h_2_2 has lowerBound = 1.E-15
h_3_3 has lowerBound = 1.E-15

h has defaultUpperBound = 4.

The keywords ’defaultLowerBound’ and ’defaultUpperBound’ can be used to as-
sign one value to all elements in a vector or matrix. Naturally, subsequent assign-
ments of specific elements overwrites the default value.

Besides, one of the benchmark problems include an additional constraint of type
{gi,j ∈ [−3, 3], gi,j 6= 0}. This means that there is an interaction between variable

8



i and j but the direction is unknown. We use the following syntax to constrain the
value to non-zero:

g_2_1 is nonZero
h_5_5 is nonZero

2.7 Error function

The error function is defined by the keyword ’errorFunction’. For identification of
both structure and parameters we have used:

errorFunction
has type = minusLogLikelihoodPlusLambdaK
has equation = -L+lambda*K
has lambda = 1.

Hence, we have chosen to consider the error function

−L(X̂|k) + λK

The first term is the negative log-likelihood of the experimental data, and the sec-
ond term is a term that penalizes structural complexity of the model.

In detail, L is the log-likelihood, X̂ denotes experimental data, k is a vector of
parameters, λ is a constant, and K is the number of parameters. By assuming in-
dependent and normally distributed measurement errors and disregarding constant
terms we can express the log-likelihood for one time series as

L(X̂j |k) = −
1

2

∑

i

(

Xj(ti) − X̂j(ti)

σj(ti)

)2

where i indexes the measurement points, and where Xj , X̂j and σj denotes sim-
ulated data, experimental data and standard deviation for variable j, respectively.
The total log-likelihood L(X̂|k) is defined by summing over all variables and all
experiments.

For models based on chemical rate equations the number of parameters, K, is
simply the total number of parameters on the right-hand side of the ODEs. For
S-systems, it is natural to define K as the total number of non-zero elements in g

and h plus the parameters in α and β.

For identification of parameters (fixed structure) one can use:

errorFunction
has type = minusLogLikelihood
has equation = -L

9



2.8 Experiments

General information about the experiments are given in the following form.

experiment_1 has name = exp1
experiment_2 has name = exp2
experiment_3 has name = exp3
experiment_4 has name = exp4

Each experiment has a number and a name. For perfect data (no noise), ’has per-
fectData’ can be added.

experiment_1 has name = exp1 has perfectData
experiment_2 has name = exp2 has perfectData
experiment_3 has name = exp3 has perfectData
experiment_4 has name = exp4 has perfectData

Then, details about each experiment are given.

sample_1 of experiment_1
has time = 0.0E+00
has variable_ = 0.200E+01 0.300E+02 0.1202588848674883E+01 ...
has sdev of variable_ = 0.0E+00 0.0E+00 0.53781408E-01 ...

sample_2 of experiment_1
has time = 0.75000000E+01
has variable_ = 0.200E+01 0.300E+02 0.9256634735714073E+01 ...
has sdev of variable_ = 0.0E+00 0.0E+00 0.92566347E+00 ...

...

21 of experiment_1
has time = 0.15000000E+03
has variable_ = 0.200E+01 0.300E+02 0.7581719037437853E+01 ...
has sdev of variable_ = 0.0E+00 0.0E+00 0.75817190E+00 ...

The keyword ’sample ’ followed by an integer begins description of one sample.
The rest of the line ’of experiment 1’ states from which experiment the sample is
taken. Each sample has a time-point, a vector of variables, and a vector of standard
deviations. The vectors have the same length as the number of variables.

This compact form is useful when we have fully observed variables. In general,
the sampled variables can be given individually as

sample_1 of experiment_1
has time = 0.0E+00
has variable_1 = 0.200E+01
has variable_2 = 0.300E+02
has variable_3 = 0.1202588848674883E+01
...
has sdev of variable_1 = 0.0E+00
has sdev of variable_2 = 0.0E+00
has sdev of variable_3 = 0.53781408E-01
...

10



2.9 Initial bounds

Initial bounds are given for each dependent variable in each experiments. The key-
words ’variable ’ and ’experiment ’ followed by integers specify which variable
and experiment to consider.

variable_3 of experiment_1
has lowerInitialBound = 0.1091E+01
has upperInitialBound = 0.1314E+01

variable_4 of experiment_1
has lowerInitialBound = 0.4505E+02
has upperInitialBound = 0.5388E+02

variable_5 of experiment_1
has lowerInitialBound = 0.4428E+02
has upperInitialBound = 0.5311E+02

variable_6 of experiment_1
has lowerInitialBound = 0.9109E+02
has upperInitialBound = 0.1087E+03

variable_7 of experiment_1
has lowerInitialBound = 0.1283E+01
has upperInitialBound = 0.1527E+01

variable_3 of experiment_2
has lowerInitialBound = 0.1139E+01
has upperInitialBound = 0.1363E+01

Note that information about initial bounds is unnecessary for perfect data.

2.10 Initial solution

The right-hand sides of all ODEs are by default assigned zero.

The initial solution specify a potential starting model other than zero. The syntax is
similar to the one used to describe the model space. Instead of ’possibleReaction’
we now write ’reaction’, and instead of ’spaceOfVariable’ we now write ’variable’.
Here is an example for the case when the true structure is known for variable 3 of
the problem ’metabol2’.

reaction_1 of variable_3
has type = michaelisMentenNonCompInhib
has variable X1 = variable_3
has variable X2 = variable_2
has rangeOfParameter k1 = range_2
has rangeOfParameter k2 = range_3
has rangeOfParameter k3 = range_3

reaction_2 of variable_3
has type = michaelisMentenNonCompInhib

11



has variable X1 = variable_3
has variable X2 = variable_1
has rangeOfParameter k1 = range_2
has rangeOfParameter k2 = range_3
has rangeOfParameter k3 = range_3

reaction_3 of variable_3
has type = michaelisMenten
has variable X1 = variable_4
has rangeOfParameter k1 = range_1
has rangeOfParameter k2 = range_3

reaction_4 of variable_3
has type = michaelisMenten
has variable X1 = variable_5
has rangeOfParameter k1 = range_1
has rangeOfParameter k2 = range_3

For S-systems, an initial solution is easily defined with similar syntax as used to
define the model space. The keyword ’initialValue’ is used to assign a specific el-
ement. The keyword ’defaultInitialValue’ is used to assign all elements in a vector
or matrix.

alpha has defaultInitialValue = 1

beta has defaultInitialValue = 1
beta_2 has initialValue = 0.

g has defaultInitialValue = 0
g_2_3 has initialValue = 2.

h has defaultInitialValue = 0
h_1_1 has initialValue = 1.
h_2_2 has initialValue = 1.
h_3_3 has initialValue = 1.

For a problem with 3 dependent variables this gives:

α =
[

1 1 1
]

β =
[

1 0 1
]

g =







0 0 0
0 0 2
0 0 0







h =







1 0 0
0 1 0
0 0 1






.

12



2.11 End of problem

The problem ends in the following way:

end problem metabol2

13


