
Chapter 35

Applied Mathematical Problem Solving:
Principles for Designing Small Realistic
Problems

Dag Wedelin and Tom Adawi

Abstract We discuss and propose principles for designing problems that let
engineering students practice applied mathematical problem solving. The main
idea is to simplify real-world problems to make them smaller, while retaining
important characteristics such that the solution to the problem is still of practical
or theoretical interest, and that the problem should invoke non-trivial modelling and
problem solving activities. We formalize our analysis in three dimensions of
learning, which provide a basis for reflection beyond just solving the problem.
We further discuss the benefits of being able to consider a large and highly varied
set of smaller problems for discerning problem solving patterns, and give examples
of such problems. We finally discuss the relationship with other proposed ways of
designing problems.

35.1 Introduction

If we wish to teach students to solve real-world problems, it is reasonable to assume
that real-world problems will serve as good exercise problems. This is, for example,
the starting point in both project-based and problem-based learning (Kolmos
et al. 2009; Mills and Treagust 2003). However, since real-world problems –
especially in engineering – are often large and complex, students may encounter
only a few such problems during their studies, which may provide insufficient
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variation to learn problem solving and to be able to effectively handle unknown
future problems (Bowden and Marton 1997).

In this theoretical chapter, we therefore present, discuss and illustrate a set of
design principles for smaller problems that preserve important characteristics of
real-world problems. We motivate the design principles by drawing on the literature
on problem solving and mathematical modelling, as well as our own previous work
in the area. These principles extend – and in some aspects go against – related
design principles that have been formulated for pure mathematical problem solving
(Schoenfeld 1991; Taflin 2003).

The set of principles that we propose have been successfully implemented in a
course in mathematical modelling and problem solving, developed by the first
author and offered to second-year engineering students at Chalmers University of
Technology (for a description of the course, see Wedelin and Adawi 2014). We
therefore expect that the work described in this chapter is useful to anyone who
wants to include similar problems in their courses, in order to develop their
students’ ability to apply mathematics in practice, and we expect the main princi-
ples to be applicable also in other domains.

35.2 Real-World Problems Have Solutions That Are
of Interest

Why is a real-world problem a real-world problem? One answer is that the problem
exists because someone is interested in its solution (for a similar characterization,
see Jonassen 2011). This can be for different reasons, mainly: (1) The solution is
directly needed in practice. (2) The solution contributes to the understanding of
some topic. In the second case, the problem may be a theoretical problem whose
solution is a useful result or insight within the context in which the problem is
posed, for example for the engineer, applied mathematician or other specialist. Note
that many school problems, designed just to practice the application of some
method, will not fall under either category.

Principle 1 The solution to the problem should be of practical or theoretical
interest.

For problems of this kind, it becomes natural not only to solve the problem itself,
but also to consider the context in which it is posed, and how its solution can be
interpreted and contribute to this context. The problem further acts as a reasonably
truthful representative of what you can expect in practice, helping students to
recognize the character of fruitful investigations, and what they typically lead to.

An obvious way to create a small problem with this property is to begin with a
real-world problem, in either of the two categories above. For the first category, we
may then focus on and simplify a critical aspect of a known applied problem that we
may know about in general terms (such as predicting the weather from past data), a
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problem we may know from own experience, or for example a problem from a
thesis project. The challenge is then to keep the essence of the real-world problem:
the simplified problem should still be a reasonably truthful model of a real problem
that is actually out there, and any solution and its derivation should be similar. This
can be seen as a modelling exercise for the teacher. A meaningful textbook problem
in some applied subject can possibly be used more or less as it is, provided that it is
used in a way that also satisfies the considerations of Sect. 35.3.

For the second category, we may focus on and simplify a critical aspect of a
known historical research task. This can be done by first thinking about a central
concept or result in some area – and then considering a particular realistic situation
where it is natural to use, explore or discover this concept or result. Or we may
consider some highly simplified “model” problem if its solution illustrates some
meaningful phenomenon or effect in the context in which it is posed; such problems
are often used in practice as vehicles for improved understanding. We may situate
the exploration directly in the theoretical context, such as defining a suitable
concept, or performing some derivation or generalization. The result is then of
interest as a part of the theory. Tasks of this kind are important since we want our
students not just to be able to apply given knowledge, but to develop new specific or
general knowledge as needed.

35.3 Real-World Problems Require Exploration

Real-world problems are often ill-defined (Mayer and Wittrock 2006; Jonassen
2011), and difficult to fully understand. They require finding a relevant point of
view, using the context and making relevant assumptions to create a model of the
real problem in terms of a simpler well-defined problem, which is actually solved,
and an interpretation of any solution in the real situation. This is known as
modelling, which can be seen as a key step in applied problem solving.

Then, in the modelling as well as in the theoretical analysis, real-world problems
typically give rise to situations where the method of solving the problem – or some
sub-problem – is not known, so investigating and exploring different ways to see
and to solve the problem, becomes an integral part of the process in order to
successfully proceed and not get stuck. This is traditionally known as problem
solving. See, for example, Lesh and Zawojewski (2007), Schoenfeld (1992) and
Jonassen (2011), for different perspectives on modelling and problem solving.

We can contrast these observations with the common practice in both mathe-
matics and engineering classes (especially when mathematics is involved), to solve
well-defined problems with a given method (Jonassen et al. 2006), which gives little
room for exploration. Models are present everywhere in engineering, but are often
perceived as truths, and many students remain unaware of the concept of a model
(Wedelin et al. 2015). Additionally, with more or less given methods, there is little
focus on developing problem solving skills.
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So, we must ensure that the challenge in solving the small problem is similar to
that of the real-world problem, and take care not to simplify too much. The problem
then provides an opportunity to learn to explore, and to develop modelling and
problem solving skills. Since the problem is not easily solved, it becomes natural to
talk to others as a means of moving forward, which is useful in itself and for the
supervision.

Principle 2 The problem should be challenging to understand in order to stimulate
modelling skills and communication.

Principle 3 The problem should be challenging to solve in order to stimulate
problem solving skills and communication.

Of course, the challenge is also a function of the students themselves, and how
much theory the teacher provides in advance. A routine problem can become a
challenging exploration simply by refraining to first introduce any theory for
solving it, creating an opportunity to learn to explore. The scope of the challenge
can also be controlled by formulating the question appropriately, possibly in a
progression where most students will be able to find something, and where the full
solution is within reach at least for some.

We note that a real problem sometimes requires learning and searching for
existing theory, and this can certainly be sensible to practice. However, there is a
risk that students then focus on the highly visible new theory and methods, and less
on the invisible skills, creating an imbalance in the long run. In fact, many students
believe that if they have difficulties in solving a problem they need to learn more
theory, expecting that new given problems will always be solved with new given
methods (Wedelin and Adawi 2014). If the learning objective is to especially
improve students’ own skills we may consider the following recommendation,
although it has little to do with the realism of the problem itself:

Principle 4 The problem should not require extensive new theory to be learned
before the problem is attempted.

35.4 Problems as Cases and Three Dimensions of Learning

A realistic problem designed along the lines we have discussed, can be seen as
offering learning opportunities in three dimensions:

• Familiarity with real-world problems. A realistic problem and its solution
(including any necessary derivation), acts as a representative example and
contributes to a familiarity with real-world problems in the domain of interest.

• Supporting knowledge. The concepts and methods needed to solve the problem,
and how they are used for this purpose (known in advance or created as a part of
the solution process).

420 D. Wedelin and T. Adawi

dag@chalmers.se



• Processes and skills. The particular way in which the solution (and its deriva-
tion) was found, among many different imaginable ways to approach the prob-
lem, and the modelling and problem solving techniques involved.

The first and last dimensions relate directly to the previous discussion, while the
second is the conventional dimension relating to the knowledge required to solve a
problem. We note that there is a rough relationship between these dimensions of
learning and a framework for mathematical modelling competency by Blomhøj and
Jensen (2007), although we are here concerned directly with properties of problems
rather than competencies.

We note that while these dimensions are important aspects of a problem, an
actual problem connects a particular real-world problem from which is has been
created, particular knowledge needed to solve it, and some particular approach for
solving it. It therefore contains more information than what can be seen in each
dimension separately. The problem may also contain other potentially important
aspects that we are unaware of.

So remembering the problem as a casemakes it possible at a later time to discern
relevant aspects of the problem, which may not have been of interest when the
problem was encountered. This can be important for seeing problem solving
patterns across problems, and to constructively relate to old problems when
approaching new ones. The importance of cases is widely supported in the literature
on applied problem solving (Jonassen 2011; Kolodner et al. 1996).

Even though the principles we have already suggested are likely to ensure that a
problem cannot become too small or insignificant, we still – considering the
abundance of very small and repetitive problems especially in mathematics –
suggest the following principle as a safety precaution:

Principle 5 The problem should be easy to remember as a case.

35.5 Extending the Problem Solving Experience:
Perspective and Variation

Given the three dimensions of learning, it makes sense for the students and the
teacher to discuss and reflect on the problems especially from these three points of
view. This includes the specifics of the problem in each dimension, as well as what
the problem as a representative example can convey about each dimension in
general. We may tell a story about the corresponding real-world problem, or
show a large-scale version of a related problem. Some results, observations or
methods can be explained to be generally important. When seeing the solution of
the teacher, and alternative solutions, students can reflect on their own difficulties in
solving the problem, and why they occurred. Overall aspects, such as strategies in
modelling and problem solving, and other considerations, can be discussed based
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on the students’ own attempts to solve the problems. We refer to this entire
reflection as a perspective on the problem.

In the perspective we include relevant insights, attitudes, beliefs and expecta-
tions. Such aspects are important to convey the views and ways of an experienced
teacher, and are known to be important in problem solving (Schoenfeld 1992).

Principle 6 Provide a perspective on the problem in all three dimensions of
learning.

We think of the perspective as an integral part of the problem, although it is not
presented in the actual problem text, but provided to, and learned by, the students in
other ways.

Finally, smaller problems allow us to combine many different problems to create
variation in all three dimensions of learning, as illustrated in Fig. 35.1. Variation is
essential for being able to discern critical aspects of a problem (Bowden and Marton
1997; Marton and Trigwell 2000). Through the variation, students get a chance to
experience differences and similarities between problems, including higher-order
patterns, and we create a basis for conveying different forms of experience in the
language of an expert. We note especially that modelling and problem solving
strategies are difficult to fully formalize, and have meaning mainly if the students
are able to experience patterns in their work across different problems.

Principle 7 Create a problem set with variation in all three dimensions of learning.

One way to do this is to more or less arbitrarily collect a number of problems,
and then iteratively build a subset of these problems under the constraint that they
should cover a number of aspects that we have defined in each dimension.

Fig. 35.1 Illustration of how several problems and their perspective span the three dimensions of
learning (each triangle represents one problem)
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35.6 Examples of Mathematical Modelling Problems

In order to give an impression of how we implement the principles in practice –
including the idea of variation – we briefly give five examples of mathematical
modelling problems from our course. All of the problems place students in a mode
of exploration, where they have to spend time to understand the problem and
explore alternatives, and where important metacognitive aspects are trained. (For
a detailed analysis of how the students deal with problems of this kind, see Wedelin
et al. 2015.) A more exact problem formulation for these and other problems is
available on the course homepage (Wedelin 2014); these formulations have been
calibrated based on how students typically approach the problems.

Kepler Curve-Fitting Problem We ask the students to suggest a function for fitting
a number of given points (time and distance). No method for curve fitting, or the
least squares method, is given in advance. The table contains planet data, and the
best solution to this problem is Kepler’s third law, making it possible to extend the
perspective to a historical context. The problem requires some informal judgement
about what a “good” solution to this problem is, and invokes real problem solving
where students need to explore different functions, discover the so called modelling
cycle, and so on.

Telephone Network Problem A Swedish mobile phone operator wants to rent
communication lines from the national fixed network operator to connect its base
stations to their central switch. Given the character of these communication lines,
and the prices, how can we decide which lines to rent for a low total cost? The
problem is based on a Master’s thesis, and many complicating details have been
removed. The problem is given as a theoretical modelling exercise, in a progres-
sion, where students are first asked to solve an even simpler version of the problem,
providing some insight into how varying the problem can influence the way you
solve it. The problem can be modelled as a mathematical programming problem,
but can also be solved heuristically with a modified spanning tree algorithm, which
is well suited to the natural dynamicity of the problem.

Bridge Problem A simple road network including two cities, and some assump-
tions about how speed changes with traffic intensity, is given. What is the expected
travel time between the cities, and how it might improve if a bridge is built? The
problem requires additional assumptions about driver behaviour and a precise
formulation of equilibrium conditions. It turns out that the travel time increases
with the new bridge. This is known as Braess’ paradox; it can happen in practice,
and is an instance of a Nash equilibrium (See Wu et at., Chap. 9, Sect. 9.2).

Drug Dosage Problem How can we calculate the time interval and dosage for a
drug? No specific details are given. Many assumptions are required, as well as a
combined qualitative and quantitative understanding of the real-world problem and
different models, and it is important to split the problem solving process in steps.
The problem also shows how you can reach further than what most students expect
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without substantial subject knowledge, by making significant assumptions and
seeing what they lead to, in a kind of thought experiment.

Project Planning Problem How can large projects consisting of many subprojects
be represented mathematically and how can the total project time be estimated? We
further ask how this time can be computed with the help of a shortest path
algorithm. How can the model be extended if we have uncertainty in the estimated
times? The well-known methods CPM (Critical Path Method) and PERT (Project
Evaluation and Review Technique) have been the source of this problem. The
problem includes modelling with graphs, the idea of modelling one problem (the
longest path problem) in terms of another (the shortest path problem), and thinking
about the modelling of uncertainty.

Insights and patterns that can be illustrated and discerned from this varied
ensemble of problems include the usefulness of changing the representation, the
importance of a qualitative understanding, how the problem solving can be split in
simpler steps, the exploratory nature of problem solving, creating examples, con-
sidering extreme cases, the power of making assumptions and drawing their logical
consequences to the limit, and so on.

35.7 Discussion of Related Work

Our work was inspired by similar work focusing on rich problems (for an overview,
see Taflin 2003). Drawing, in particular, on work by Schoenfeld (1991), Taflin
(2003) developed a list of design principles for rich problems in mathematics
education. These recommendations for designing good problems are similar to
ours in that the problem solving aspect is emphasized, and in that the problem
should be challenging to solve. However, our recommendation that the solution to
the problem should be of interest is for rich problems restricted to the mathematical
domain. Moreover, our recommendation that the problem should be challenging to
understand is contradicted for rich problems. This is because the notion of rich
problems does not take models and modelling into account. Our problems offer
significant learning opportunities in applied mathematical problem solving, in
addition to purely mathematical problem solving and mathematical content
knowledge.

The kind of problems we propose bear a strong resemblance to a class of
problems known as model-eliciting activities (MEAs), which is increasingly
being used in engineering education (Diefes-Dux et al. 2008; Hamilton
et al. 2008). MEAs are scaled-down, real-world problems that require students to
develop or adapt a mathematical model for a given situation. With roots in
mathematics education research, MEAs were originally developed to serve as
instruments for investigating student and teacher thinking at school level (Lesh
et al. 2000). A difference is that we start by looking at properties of real-world
problems, rather than first considering the kinds of problems that most effectively
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reveal student thinking. Moreover, we emphasize what we have called a perspective
for the problems, and the use of many small and varied problems in order to help
students to discern higher order patterns, such as problem solving strategies. In
other words, we take advantage of the opportunities that come with using many
small problems. On a more general level, MEAs appear to focus on most phases/
roles in a project, whereas our focus is more specifically on the kind of work
undertaken by an applied mathematician involved in the project.

Regarding the notion of authenticity (Vos 2011, 2015), we consider our prob-
lems to be authentic with respect to the real-world problem characteristics that we
intentionally retain, and in some way in how we work with the problems. It is,
however, not our goal to be as authentic as possible – the simplification itself is
clearly for educational purposes, in order to create smaller problems to highlight
important aspects of interest, and to exploit variation. And our point of view is that
of a specialist engaged in a particular role in several different projects, rather than a
person engaging in all aspects of a single project. We note that definitions of
authenticity do not generally consider the difficulty of the problems, since real-
world problems can be both easy and difficult.

35.8 Conclusions

The proposed way of creating smaller problems from real-world problems under-
lines aspects of real-world problems that we consider to be especially important for
developing applied problem solving skills. The smaller problems have the potential
to help students to develop in all of the three dimensions of learning, and they
provide the students with a case library to draw on in future courses and in the
workplace. We have also emphasized the importance of a perspective for the
problems – a reflection on the problems in all three dimensions of learning – as
an important complementary part of the problem. A prepared perspective also
makes it easier for other teachers to fully understand and use the problems.

Importantly, the use of smaller problems enables repeated and continuous
feedback on the entire problem solving process. Moreover, working with a set of
varied problems opens up for reflections on higher order patterns, for example
related to problem solving, and allows the teacher to talk about and convey his or
her general experience in a meaningful way. Due to their limited size the problems
are relatively easy to supervise.

The challenging nature of the problems is, in our experience, very effective for
making students’ own thinking visible, enabling more pointed feedback for devel-
oping complex skills and constructive attitudes. The problems encourage the
students to engage in creative thinking, and convey the message that students are
expected to do more than just applying given or known methods, including devel-
oping new theoretical concepts, models and methods as needed and that they are
able to do so.
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How do students in our course experience this approach to designing and using
problems then? Most students find it extremely motivating, yet quite frustrating. At
the beginning of the course they struggle, in particular, to develop effective
problem solving skills, and they are hampered by unsuitable attitudes and expec-
tations. However, the response of the students has been exceptionally positive, and
after taking the course most students express and demonstrate a fundamental
change in their abilities to “think mathematically”, in their understanding of the
nature of mathematics and its role in their future profession (Wedelin et al. 2015).

Compared to full real-world problems, the small realistic problems we propose
have a bias towards being more condensed and simplified, with potential discover-
ies just around the corner, and with less time-consuming (and possibly boring)
work. However, we have found these smaller problems very useful, and see them as
a stepping-stone towards a full ability to handle real and larger projects. A course
like the one we give therefore acts as an intermediate step between traditional
engineering courses and full-scale projects of the kind our students will meet in
their profession.
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