Large scale airline optimization

Dag Wedelin Chalmers University of Technology Gothenburg, SWEDEN

Traditional steps in airline scheduling

- 1. timetable is determined
- 2. fleet assignment
- 3. crew pairing
- 4. crew rostering

Usually done by different departments.

Traditional steps in airline scheduling

- 1. timetable is determined
- 2. fleet assignment
- 3. crew pairing
- 4. crew rostering

Usually done by different departments.

Crew pairing example

Leg number	From	То	Departure	Arrival
1	A	В	6.30	13.30
2	В	A	14.30	21.30
3	В	C	10.15	11.45
4	C	В	12.15	13.45
5	В	С	14.15	15.45
6	C	В	16.15	17.45

Rules:

- A pairing must start and end in A or B
- Max 2 day pairings
- Max duration 12 hours/day
- Layover min $1.5 \times dvration$ of first day

The two main steps of optimization

- 1) <u>Model</u> the problem, i.e. define it and formulate it so that a suitable algorithm can accept it.
- 2) <u>Solve</u> the resulting problem.

Both steps can be very challenging for large and complex real world problems. The steps must be carefully interfaced.

What is an optimization problem?

Example: shortest path problem

Minimize

Minimize

the length

the objective function

over

over

all paths from a to b in a graph

the set of feasible solutions

Mathematical optimization

Minimize $x_1 + 3 x_2 + x_3$ subject to $x_1 + x_2 = 1$ $x_1 + 2 x_3 <= 2$ x_1 binary

Good standard software available

Standard optimization models in transportation

Polynomial:

- Assignment, transportation, transshipment.
- Single depot vehicle scheduling (SDVSP, scheduling= tasks fixed in time). (can all be translated into network flow)

More difficult (polynomial or exponential depending on details):

- Multiple depot vehicle scheduling (translates into multicommodity flow).
- Shortest path with time windows and/or resource constraints (use dynamic programming),
- Vehicle routing (VRP), Vehicle routing with time windows (VRPTW), pickup/delivery, ... (try greedy+local search or two step approach),

Very difficult to model the rules mathematically.

Rules are defined in an application specific rule language (RAVE).

Compiles to test functions in C code.

Rules can be changed and tried out by users anytime!

```
RULE max_duty =
    %duty% <= 9:00;
    REMARK "Maximal
    duty";
END</pre>
```

rule max_duty_a =
%fdp_length% <= %max_duty_acclimatized%;
remark "Maximum scheduled FDP acclimatized";
end
%fdp_length% = las_(leg, arrival) - first(leg, departure) + 2:00;
%max_duty_acclimatized% = matrix m_max_duty_acclimatized;
matrix m_max_duty_acclimatized =
%lendings%, %local_checkin% -> %max_duty_acclimatized%;
(0,1), 2, 3, 4, 5, -;
(06:00,07:59); 12:00, 11:45, 11:00, 10:15, 9:00, 0:00;
(08:00,12:59); 12:00, 12:00, 11:30, 10:45, 9:15, 0:00;
(13:00, 7:59); 12:00, 11:15, 10:30, 9:45, 9:10, 0:00;
(18:0^,21:59); 12:00, 11:15, 10:30, 9:45, 9:00, 0:00;
(22:00,05:59); 11:00, 10:15, 9:30, 9:00, 9:00, 0:00;

end

In this code, the rule <code>%max_duty_a%</code> specifies that the expression <code>%fdp_length%</code> n ust be less than the expression <code>%max_duty_acclimatized%</code>. These expressions are then defined, <code>%fdp_length%</code> by accessing come data in the line of work, and <code>%max_duty_acclimatized%</code> by the use of a "matrix", whose (scalar) value is determined by table lookup based on the <code>v_lues</code> of <code>%landings%</code> and <code>%_ccal_checkin%</code>.

Standard methods for solving transport optimization problems

- 1. Time-space networks and network flow, or special cases thereof (assignment, transportation, transshipment)
- 2. Construction heuristics with greedy and local search
- 3. Two-step approach for general task scheduling: generate separate paths first, then optimize how to combine them. Column generation

Attention to small details and special properties of the problem at hand is cruical for best performance.

Crew pairing example

	Leg number	From	То	Departure	Arrival	
	1	A	В	6.30	13.30	
	2	B	A	14.30	21.30	
	3	В	C	10.15	11.45	
	4	C	В	12.15	13.45	
	5	В	С	14.15	15.45	
	6	C	В	16.15	17.45	
Rules:						
• A	pairing must sta	art and e	nd in	A or B		
• Ma	ax 2 day pairing	S				
• Ma	ax duration 12 h	ours/da	y			ſ
• La	yover min 1.5 \times	duration	ı of fi	rst day	PA	ROS
almer s	· · · · · · · · · · · · · · · · · · ·	E.I	P. 20.11	15		4 (27)

Chalmers

E.P. 20.115

Enumeration of all legal pairings

P1	1-lo-2 (2)	P7	5-6 (1)	P13	3-10-4-5-6 (2)
P2	1-10-3-4-2 (2)	P8	3-4-5-6 (1)	P1 4	3-4-5-10-4 (2)
Р3	1-5-10-4-2 (2)	P9	2-10-1 (2)	P15	3-4-5-10-4-5-6
Ρ4	1-5-6-10-2 (2)	P10	2-10-1-5-6 (2)	P16	5-10-4 (2)
P5	3-4 (1)	P11	3-10-4 (2)	P17	5-lo-4-5-6 (2)
P6	3-6 (1)	P12	3-10-6 (2)		

lo: layover

	PJ	AROS
C'almers	E.P. 20.115	5 (27)

The resulting optimization problem

minimize	$2x_1 + 2x_2 + 2x_3 + 2x_4 + x_5 + x_6 + x_7 + x_8 + 2x_9 + 2x_{10}$)
	$+2x_{11} + 2x_{12} + 2x_{13} + 2x_{14} + 2x_{15} + 2x_{16} + 2x_{17}$	
subject to		
	$x_1 + x_2 + x_3 + x_4 + x_9 + x_{10}$	=1
	$x_1 + x_2 + x_3 + x_4 + x_9 + x_{10}$	=1
	$x_2 + x_5 + x_6 + x_8 + x_{11} + x_{12} + x_{13} + x_{14} + x_{15}$	=1
Х ($x_2 + x_3 + x_5 + x_8 + x_{11} + x_{13} + 2x_{14} + 2x_{15} + x_{16} + x_{17}$	$r^{2} = 1^{2}$
	$x_3 + x_4 + x_7 + x_8 + x_{10} + x_{13} + x_{14} + 2x_{15} + x_{16} + 2x_{17}$	r = 1
	$x_4 + x_6 + x_7 + x_8 + x_{10} + x_{12} + x_{13} + x_{15} + x_{17}$	=1
$x_1, x_2, x_3,$	$x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17} \in \{$	$\{0,1\}$
	PAR	DS
Chalmers	E.P. 20.115 6	(27)

Crew scheduling

Main design conflict: *rule modelling* versus *optimization*

Try to separate them!

Combinatorial explosion in both steps !

Algorithm design techniques

solution

How solve the large problems?

- Selection of daily subproblems.
- Generator search heuristics. E.g. generate pairings that follow the aircraft.
- Special purpose algorithm for the large optimization problems (10⁶ variables, 10⁴ constraints).
- Heuristic solution to deadheading

More recent developments

Send feedback from optimizer to generator.

The idea is to get new pairings that may improve current solution (solve constrained shortest path problem in generator).

Nice mathematical theory but tricky in practice.

A challenge to integrate with the separate rule system.

covering optimizer

dueloped at Chalmers!

· probl or page for large problems

The simple assignment problem

tasks

persons

5	6	2	9
4	6	7	(
1	5	3	6
9	2	5	5

min ZZ Cij Xij subject to $\sum_{j} x_{ij} = 1$ $\sum_{i} x_{ij} = 1$ $x_{ij} \in \{0, 1\}$

Observation 1: some instances are easy to solve just by inspecting the cost malrix

Some observations

4	-3	11	2
5	2	-8	7
-6	9	2	4
3	3	4	-1

Observation 2: the problem is invariant with respect to additions or subtractions of any constant to a row or column

Simple idea: use the invariants to make the problem easy !

Operational description

ex assignment problem

oldč		V	ee	νĉ	;
5297		5	2	9	7
61118		6	1	1	8
1953		1	9	5	3
4506	\Rightarrow	2	3	-2	4
rt r-					

Look at each constraint separately and choose

$$y_i = -\frac{r^t + r^-}{2}$$

strate!

What happens when we run this simple algorithm?

For si-ple assignment it works fine !

But for less trivial problems we get lots of zeros in \overline{c} :

0
0
0 0
000
0
0
° 0

eg. 8-queens with disper (coustains

No unique solution => useless ! What shall we do?

Coordinate search in dual space

Now it suddenly works!	1 5 4 7 2 3	3331650	787924	575485	8 5 8 1 4 4	3 1 2 4 4 5 6	2 1 3 6 4 4	9 9 8 2 1 5
(weighted 8-queens problem)	13	22	32	42	52	6 2	6	8
	0 0 1 0 0 0 0	0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0	1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0	0 0 0 0 1 0 0 0	0 1 0 0 0 0 0 0

Sweep mechanism

K>0 gives fast convergence and usually a high quality integer solution !

Interpolation between different algorithmic design principles!

No expanential blowup => very large problems oh !

"Carmen is one of the best investments we have ever made"

British Airways

© 2003 Dag Wedelin

Optimization trends

10 years ago - an overnight run, today - within seconds.

Combined effect of faster algorithms and faster computers.

This makes it possible to:

improve modelling detail (gives larger problems)

integrate planning steps (gives larger problems)

approach day-of-operation planning (requires faster optimizers)

