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Sheaf Models and Constructive Mathematics

This talk

Discussion about algorithms and proofs in algebra

Algebraic closure of a field in constructive mathematics

Effective construction

An instance of the notion of site introduced by Grothendieck

The notions of site and of topos are important for constructive mathematics
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Algebraic closure

F field

Study if an equation system has a solution in F

First try to see if the system has a solution in an algebraic closure of F

This is always possible

Then try to “descend” the solution to F

In general very difficult

E.g. if a solution in a Galois extension is invariant under automorphisms or
group representation where all values of its character function are in F
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Constructive algebra

Algebraic closure in constructive mathematics??

The problem is more basic than use of Zorn’s Lemma

We cannot decide if a given polynomial in F [X] is irreducible or not
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Factorization Problem

Eine Bemerkung über die Unzerlegbarkeit von Polynomial

van der Waerden 1930

Ein Körper K soll explizite-bekannt heißen wenn seine Elemente Symbole aus
einem bekannten abzählbaren Vorrat von unterscheidbaren symbolen sind, deren
Addition, Multiplikation, Subtraktion und Division sich in endlichvielen Schritten
ausführen lassen.

A field is called explicitely known if its elements are symbols from a known
countable set of symbols, over which the arithmetic operations can be carried out
by a finite number of steps
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Factorization Problem

Behauptung. Solange man keine allgemeine Methode hat, jedes Problem von
der Art “Gibt es ein n mit der Eigenschaft E(n)?” zu lösen, solange kann es
auch keine allgemeine Methode der Faktorzerlegung von Polynomen f(x) mit
Keffizienten aus einem explizite-bekannten Körper geben.

If we can solve the irreducibility problem, we can decide a question ∃n E(n)
with E(n) decidable
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Factorization Problem

F = Q(θ1, θ2, . . . )

p1, p2, . . . enumeration of prime numbers

θ2n = pn if n does not satisfy E(n)

θ2n = −1 is n satisfies E(n)

Is X2 + 1 irreducible in F [X]?

diese Eigenschaft E(n) is für jedes n nach der Kronerckerschen Methode
(siehe G. Hermann, a.a.O.) entscheidbar.
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Factorization Problem

Note that this was formulated before the notion of recursive function was
introduced!

Problem of polynomial factorization for coefficients in a computable field

Elements can be represented in a computer and we have algorithms for the
arithmetic operations

Here we represent abstractly the question in intuitionistic logic

Use topos theory to show that a given class of problem does not have an
algorithmic solution!
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Constructive algebra

Algebra developped using intuitionistic logic

(Discrete) field: ∀x (x = 0 ∨ ∃y xy = 1)

Also 1 6= 0 and this implies ∀x (x = 0 ∨ x 6= 0)
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Kripke counter-model

Times t0 and t1

A set is now given by a function X0 → X1

X0 what we know of the set at times t0

X1 what this set becomes at times t1, with some elements identified and new
elements coming in

We may stay at time t0 forever

“Dynamic” structure
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Constructive algebra

Kripke counter-model

At time t0 we take F = Q

At time t1 we take F = Q[i]

This defines a field ∀x (x = 0 ∨ ∃y xy = 1)

We don’t have ∀x (x2 + 1 6= 0) ∨ ∃x (x2 + 1 = 0) at time t0

∃x (x2 + 1 = 0) at time t0: we don’t have any root

∀x (x2 + 1 = 0) at time t0: maybe we go to time t1 and find a root
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Constructive algebra

How to make sense of the (separable) algebraic closure of F?

Solution: the algebraic closure of F may not exist in our “universe” but it
always exists in a topos extension of this universe

Furthermore this topos is effective
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Constructive algebra and topos theory

This was suggested in two short papers of André Joyal

Les théorèmes de Chevalley-Tarski et remarque sur l’algèbre constructive 1975

La Logique des Topos 1982 (with André Boileau)

Hilbert: introduction and elimination of ideal elements

Consistency of the first-order theory ACF of algebraically closed field over F
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Constructive algebra and topos theory

Consider the classifying topos of the theory ACF

This gives a “primitive recursive proof of consistency of the theory” (1982)

Why? Sketch of an elegant algebraic formulation of quantifier elimination
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Constructive algebra and topos theory

Tarski and Chevalley Theorem (projection of constructible sets)

See Mohamed Barakat 2019

An algorithmic approach to Chevalley’s Theorem on images of rational
morphisms between affine varieties

Another way to prove the consistency is to establish a cut-elimination result
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Forcing

We consider the forcing relation R  ψ

R is a (f.p.) F -algebra and ψ a first-order formula with parameters in R

R  ψ → ϕ if for all f : R→ S we have S  ψf implies S  ϕf

R  ∀xψ if for all f : R→ S and a in S we have S  ψf(a/x)

R  ψ ∧ ϕ if R  ψ and R  ϕ

Beth (1956) and Kripke (1964) semantics
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Forcing

For ψ of the form a = b or ∃xψ1 or ψ0 ∨ ψ1

R  ψ if R/(a)  ψ and R[1/a]  ψ

R  ψ if R[X]/(P )  ψ with P monic (separable)

and we also have

R  ∃xψ if we have a in R such that R  ψ(a/x).

R  ψ ∨ ϕ if we have R  ψ or R  ϕ

R  a = b if a = b in R
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Forcing

Then we have R  ψ implies S  ψf for f : R→ S

Proposition: We have R  ψ if ψ provable in the theory ACF

R  ∃x (x2 + 1 = 0) since R[u]  u2 + 1 = 0 with R[u] = R[X]/(X2 + 1)

R  a = 0 ∨ ∃x (ax = 1) since R/(a)  a = 0 and R[1/a]  ∃x (ax = 1)

A proof of R  ψ for ψ coherent is a finite tree

For getting consistency it is enough to show that we don’t have F  0 = 1
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Forcing

By a direct proof tree induction

R  u = 0 iff u is nilpotent in R

This follows from: if u nilpotent in R[1/a] and R/(a) then u is nilpotent in
R and if u nilpotent in R[X]/(P ) then u nilpotent in R

Corollary: The theory of algebraically closed field over F is consistent

The name “forcing” comes from Cohen (1964) and the notation  from Scott

Scott pointed out the connection with intuitionistic logic
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Consistency

The argument suggested by André Joyal is more complex but it gives more
information

This is an elegant algebraic formulation of quantifier elimination
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Consistency

Associate to each ring R a Boolean algebra B(R)

B(R) is a point-free/algebraic descrition of the spectrum of R with the
constructible topology

D : R→ B(R) universal map such that

D(0) = 0 D(1) = 1 D(ab) = D(a) ∧D(b) D(a+ b) 6 D(a) ∨D(b)
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Consistency

Any map R→ S gives a map B(R)→ B(S)

Theorem: The map B(ι) : B(R)→ B(R[X]) has a left adjoint

Chevalley’s theorem: the projection of a constructible set is constructible

This corresponds to quantifier elimination ∃ : B(R[X])→ B(R)

We have ∃(ψ(X)) 6 ϕ iff ψ(X) 6 B(ι)(ϕ)

The argument is not developped in Joyal’s papers, but there are now notes
from Luis Español González, which describes the argument: e.g. reduces the
general case of the Theorem to the case where R is a field
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Consistency

This illustrates the fact that we can prove consistency without proving
quantifier elimination

This was explicitely noticed by Herbrand’s PhD thesis 1930

Il nous parait probable qu’elle permettrait également d’arriver à la non-
contradiction de la théorie des corps réels et “réellement fermés”; mais les
méthodes du Chapitre suivant nous y conduiraient plus aisément.

It was about the theory of real closed fields (independently of Tarski)
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Forcing

This consistency proof has a very simple structure

But we have more

We build a model of higher-order logic i.e. simple type theory with a type of
propositions, in which we have an algebraic closure

Note that we build a model of simple type theory and not set theory

We need only to consider a special kind of F -algebra: the triangular F -algebras
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Sheaf models

Definition: A F -algebra is triangular if it can be obtained from F by a
sequence of (formal) monic separable extensions

P separable: we have AP +BP ′ = 1 “all roots are simple roots”

Example: Q[x] where x2 = 3 and then Q[x, y] where y3 + xy + 1 = 0

Theorem: If R is triangular then R = R/(a)×R[1/a] for all a in R

Furthermore R/(a) and R[1/a] are products of triangular algebras
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Site

Example: P = X2 − 4X + 3

R = Q[b] where b2 − 4b+ 3 = 0

Inverse of a = b− 4? Compute gcd of X − 4 and X2 − 4X + 3

We have (b− 4)b = −3 so inverse is −b/3 and R[1/a] = R

Inverse of a = b− 3? Compute gcd of X − 3 and X2 − 4X + 3

Discover (X − 3)(X − 1) = X2 − 4X + 3

R = Q[X]/(X − 3)×Q[X]/(X − 1) = R/(a)×R[1/a]

We have R[1/a] = F and R/(a) = F
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Forcing done constructively

Recursive realizability emphasizes the active aspect of constructive
mathematics. However, Kleene’s notion has the weakness that it disreagards
that aspect of constructive mathematics which concern epistemological change.
Precisely that aspect of constructive mathematics which Kleene’s notion neglects
is emphasized by Kripke’s semantics for intuitionistic logic. However, Kripke’s
notion makes it appear that the constructive mathematician is a passive observer
of a structure which gradually reveals itself. What is lacking is the emphasis on
the mathematician as active which Kleene’s notion provides.

Relativised realizability in intuitionistic arithmetic at all finite types

N. Goodman, JSL 1978
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Forcing done constructively

In this example

We discover a factorization of P = X2− 4X+ 3 by asking what is the inverse
of a− 3

Interaction between computation and knowledge

27



Sheaf Models and Constructive Mathematics

Dynamical algebra

Only need to compute gcd of polynomials

This is computable, while to decide irreducibility is not possible in general

Introduced by Dominique Duval (1985), following a suggestion of Daniel
Lazard, for computer algebra

cf. Teo Mora’s book

Solving Polynomial Equation Systems: the Kronecker-Duval Philosophy
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Site

We define a site

Objects: triangular F -algebra

Maps: maps of F -algebra

Coverings:

R = R1 × · · · ×Rm

R→ R[X]/(P ) with P separable monic polynomial
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Site

What is a sheaf over this site?

We should have L(R) set for each triangular algebra R

We should have L(R)→ L(S) for R→ S

(1) L(R) = L(R1)× · · · × L(Rm) if R = R1 × · · · ×Rm

(2) if we have u(a) in L(R[a]) and u(a) = u(b) in L(R[a, b]) then we have
u(a) = u for some unique u in L(R)

Here R[a] = R[X]/(P ) and R[a, b] = R[X,Y ]/(P (X), P (Y ))
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Algebraic closure

In the topos model over this site, we can consider the presheaf

L(R) = Hom(F [X], R)

(Note that F [X] is not in the base category, not being triangular.)

Theorem: L is actually a sheaf and is the (separable) algebraic closure of F

L(R) = L(R1)× · · · × L(Rm)
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Algebraic closure

We have the pull-back diagram P (a) = P (b) = 0 and P monic

R

��

// R[b]

��

R[a] // R[a, b]

Note that R[a] is a free R-module of basis 1, a, . . . , an−1

If Q(a) = Q(b) with d(Q) < d(P ) then Q is a constant
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Algebraic closure

The classifying topos of ACF satisfies the axioms

1 6= 0 ∀x x = 0 ∨ ∃y (xy = 1)

∀x1 . . . ∀xn∃x xn + x1x
n−1 + · · ·+ xn = 0

The site we presented defines a topos over which we have L algebraic closure
of F , which also satisfies the geometric (non coherent) axiom

∀x
∨

P P (x) = 0

where the disjunction is over all monic separable polynomials P in F [X]
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Algebraic closure

This model is effective

We can use it to do actual computations (Th. C. and B. Mannaa)
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Algebraic closure

E.g. Abhyankar proof of Newton-Puiseux Theorem

Algebraic Geometry for Scientists and Engineers

course notes taken by Sudhir Ghorpade

For instance, given an equation y4 − 3y2 + xy + x2 = 0 find y as a formal
serie in x (in general x1/n)?

The coefficients of this power serie have to be in an algebraic extension of Q
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Algebraic closure

We first prove that theorem assuming an algebraic closure of Q

We need to consider structures we can build from L, in this examples L((X))

Theorem: ∪nL((X1/n)) is separably closed

Since this interpretation is effective, we find a triangular algebra Q[a, b] with
a2 = 13/36 and b2 = 3
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Algebraic closure

Note that L[[X]] = LN

We get a logical explanation of the following fact

In the Puiseux series expansion of y in terms of x, which might be infinite, we
only need to consider a finite algebraic extension of Q
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Weak existence

We have ∀x:L∃y:L y2 = x in this topos with car(F ) 6= 2

Proposition: There is no function f : L→ L such that f(x)2 = x

Πx:L{y : L | y2 = x} is empty

If u 6= 0 in R and a2 = u = b2 we don’t have a = b in R[a, b]

R

��

// R[b]

��

R[a] // R[a, b]
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Weak existence

Existence means local existence, and it might be that we have witnesses that
are not compatible, so that we cannot “patch” them together
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What is going on?

J.L. Bell, From Absolute to Local Mathematics, 1988

Parallel with physics

Let S be a “space” (can be given by a Grothendieck site)

Canonical map f : S → 1 and f∗ : Sh(1)→ Sh(S)

Sh(1) is the usual frame of sets and f∗ is sheafification operation

The algebraic closure of F may not exist in Sh(1) but may exist in Sh(S)
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What is going on?

Bell: This is like change of reference frames in physics

Example (D. Scott): what is a real number in Sh([0, 1])? It is a continuous
function from [0, 1] to R seen from Sh(1)

In Sh(1) such a real number is “varying”

But it is “constant” in Sh([0, 1])!
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What is going on?

Invariant physical law

Classical logic may not hold in Sh(X) even if it holds in Sh(1)

E.g. t1 → t0

If p does not hold at t0 but becomes known at t1 we don’t have p ∨ ¬p at t0
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What is going on?

In Sh(1) we have the field F

It may not be algebraically closed

In Sh(S) the field F becomes (separably) algebraically closed!

F becomes F ∗ = L where L(R) = R⊗F F = R
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What is going on?

If A is a central simple algebra on F

A may not be trivial, e.g. quaternion algebra over Q

But A becomes trivial in Sh(S)

This does not “descend”
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What is going on?

A proof of Skolem-Noether Theorem by descent

Let u be an automorphism of A. We can transfer u to Sh(S).

This is an automorphism of A∗, and A∗ is a matrix algebra

It is an inner automaorphism, assuming the result known for matrix algebra

This means that the linear system xu(e1) = e1x, . . . , xu(em) = emx has a
non zero solution in F ∗

Since it has a non zero solution in F ∗ it has one non zero solution in F

Hence u can be represented by an inner automorphism in A as well

45



Sheaf Models and Constructive Mathematics

Explaining the sheaf condition

If a linear system in F has a non zero solution in Sh(S) then it has a non
zero solution in F

Example of descent

Gm(R) = (A⊗F R)×

T (R) set of a in Gm(R) such that u = Int(a)

T is an example of Gm-torsor

Any Gm-torsor is trivial
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Explaining the sheaf condition

Any triangular algebra is regular ∀x∃!y (x2y = x ∧ y2x = y)

In R[a, b] we can find idempotent e with (1− e) = (a− b)

P1(a,X) = P (X)−P (a)
X−a

P separable

R[a, b]/(e) can be described as P (a) = 0 and P1(a, b) = 0

We have R[a, b] = R×R[a, b]/(e)

M(R[a, b]) = M(R)×M(R[a, b]/(e))
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Explaining the sheaf condition

The sheaf condition can hence be reformulated as follows

(1) M(R) = M(R1)× . . .M(Rm) if R = R1 × · · · ×Rm

(2) If u(a) = u(b) in M(R[a, b]/(e)) we have u(a) = u for some uniquely
determined u in M(R)

Connection with Galois descent
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Explaining the sheaf condition

R[x1, . . . , xn] universal decomposition algebra of a monic separable polynomial
over R

P = Xn − a1Xn−1 + · · ·+ (−1)nan

σ1(x1, . . . , xn) = a1 . . . σn(x1, . . . , xn) = an

The sheaf condition can be reformulated as: if u(x1) in F (R[x1]) is such that
u(x1) = · · · = u(xn) in F (R[x1, . . . , xn]) then u(x1) in F (R)

For Galois u(x1) = u(x1)+···+u(xn)
n

It implies that if v(x1, . . . , xn) is invariant by permutation then it is in F (R)

49



Sheaf Models and Constructive Mathematics

Topos as generalised set theory

C. McLarty The Uses and Abuses of the History of Topos Theory, 1990

The notion of topos was introduced by Grothendieck

Lawvere-Tierney: notion of elementary topos 1970

Cartesian Closed Category with a subobject classifier

Model of higher order logic and not set theory

Dana Scott A Proof of the Independence of the Continuum Hypothesis, 1967
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Topos as generalised set theory

His confidence in the project was strengthened by Dana Scott’s work on
Boolean valued models, which he heard about at a meeting that same spring at
Oberwolfach. Even here it was not the set theoretic aspect of the work that
caught Lawvere’s attention but the logical aspect. He has said the independence
proofs in ZF were less important to him than a paper in which Scott proved
the continuum hypothesis independent of a kind of third order theory of the real
numbers, because, Scott says: ’once one accepts the idea of Boolean values there
is really no need to make the effort of constructing a model for full transfinite set
theory’ (Scott [1967], p. 109).

To Lawvere this seemed not only simpler than the version for ZF but more to
the point.
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Topos as generalised set theory

How to generalize the interpretation

Type theory/set theory

Gödel/Tarski formulation of simple type theory: only types 0, 1, 2, . . . , with
n+ 1 type of subsets of type n and 0 type of individuals

Set theory: start with 0 empty set and iterate power set transfinitely

Most technical difficulties of forcing are connected to this transfinite iteration
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Topos as generalised set theory

This is one direction how to extend this model to more than simple type
theory

But there is another direction

It is to add a universe, as in dependent type theory

The collection of sheaves is not a sheaf it is a stack

This is another direction: ∞-topos theory
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Constructive algebra

Poincaré 1901

Sur les propriétés arithmétiques des courbes algébriques

François Châtelet Géométrie Galoisienne 1946

Algebraic versus Arithmetical
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