
Formalising Bitonic Sort in Type Theory

Ana Bove and Thierry Coquand

Department of Computer Science and Engineering,
Chalmers University of Technology,

412 96 Göteborg, Sweden
{bove, coquand}@cs.chalmers.se

Abstract. We discuss two complete formalisations of bitonic sort in
constructive type theory. Bitonic sort is one of the fastest sorting al-
gorithms where the sequence of comparisons is not data-dependent. In
addition, it is a general recursive algorithm. In the formalisation we face
two main problems: only structural recursion is allowed in type theory,
and a formal proof of the correctness of the algorithm needs to consider
quite a number of cases. In our first formalisation we define bitonic sort
over dependently-typed binary trees with information in the leaves and
we make use of the 0-1-principle to prove that the algorithm sorts inputs
of arbitrary types. In our second formalisation we use notions from lin-
ear orders, lattice theory and monoids. The correctness proof is directly
performed for any ordered set and not only for Boolean values.

1 Introduction

Bitonic sort [3] is one of the fastest sorting networks [3, 13]. A sorting network is a
sorting algorithm performing only comparison-and-swap operations on its data.
As a consequence, the sequence of comparisons in a sorting network is not data-
dependent. This makes sorting networks, and hence bitonic sort, very suitable
for implementation in hardware or in parallel processor arrays. The algorithm
consists of O(m ∗ log(m)2) comparisons in O(log(m)2) stages and it works on
sequences of length 2n (hence the m above should be a power of 2).

Bitonic sort is a general recursive algorithm, that is, the recursive calls are
performed on arguments that not necessarily are structurally smaller than the
input. Although the algorithm is short and computationally simple, it is not
intuitive to understand why the algorithm works. Furthermore, formally proving
its correctness is not an easy task. The only machine-checked formal proof of
bitonic sort we are aware of was performed in PVS by Couturier [7]. In his proof,
Couturier needed to consider a maximum of 54 cases. In addition, the type of
some of the properties in [7] are rather complex, making the whole formal proof
difficult to follow.

In this work, we discuss two implementations of bitonic sort in constructive
type theory (see for example [14, 6]), and we describe a formal correctness proof
for each of the two implementations, namely, that the result of applying bitonic
sort to a sequence of elements of the correct length is a sorted permutation of

J.-C. Filliâtre et al. (Eds.): TYPES 2004, LNCS 3839, pp. 82–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Formalising Bitonic Sort in Type Theory 83

the original one. The two formalisations we present here were performed using
the proof assistant Agda [1]. In addition, in our first implementation and in its
correctness proof (Section 4) we also use Agda’s graphical interface Alfa [2].

When formalising the algorithm and its correctness proof we face two main
problems. First, only structural recursion is allowed in type theory, that is, re-
cursive definitions in which each recursive call is performed on arguments struc-
turally smaller than the input. In this way, the termination of a recursive defin-
ition can be ensured by its syntax. As a consequence, bitonic sort as commonly
expressed cannot be directly translated into type theory. Second, a formal proof
of the correctness of the algorithm might need to consider quite a number of dif-
ferent cases (see [7]). The challenge here is to find a suitable way of formalising
the notion of bitonic sequence such that the properties associated with it can be
easily proved and understood, without requiring too many cases.

In our first implementation we define the bitonic sort algorithm over depen-
dently typed binary trees, that is, binary trees indexed by their height, with in-
formation in the leaves. In this way, a dependent binary tree of height n contains
exactly 2n elements. In addition, the algorithm becomes structurally recursive
on the height of the tree and it can be straightforwardly defined in the theory.

To prove that the algorithm sorts its input we use the 0-1-principle [13].
It states that if a sorting algorithm sorts sequences of 0’s and 1’s using only
comparison-and-swap operations on its data, it will also sort sequences of arbi-
trary types. The proof of the sorting property that we present here considers
a maximum of 24 cases grouped in six main cases plus 23 cases leading to a
contradiction (empty cases). Each case is easy to prove and understand.

In our second implementation we use notions from linear orders, lattice theory
and monoids, and we directly proved the correctness theorem for any ordered
set. Here, we consider a maximum of three cases plus five empty cases.

The rest of the paper is organised as follows. Section 2 contains a brief de-
scription of the Agda notation for those not familiar with this proof assistant.
In Section 3 we introduce bitonic sort and we explain how it works. In Section
4 we present our dependently-typed version of the algorithm and we describe
its correctness proof. Section 5 uses notions from linear orders, lattice theory
and monoids to formalise the algorithm and to prove its correctness. Finally, in
Section 6 we discuss some conclusions and related work.

2 Brief Description of the Agda Notation

If A is a type and B is a family of types over A, we write (x::A) -> B(x) for
the type of functions from A to B. If B does not depend on A, we might simply
write A -> B for the function type. If f is a functions from A to B, we write f ::
(x::A) -> B(x). Function types have abstractions as canonical elements which
we write \(x::A) -> e(x), for e an element of the right type. Alternatively, f
can be defined as f (x::A) :: B(x). In this case, the variable x is known in
the body of the function without the need of introducing it with an abstraction
in the body of f.

84 A. Bove and T. Coquand

In what follows, False represents the empty set (absurdity), True is the set
containing only the element tt, and T and F are functions lifting boolean val-
ues into sets such that T false = False, T true = True and F b = T(not b)
(where not is the boolean negation). In addition, && and || represent logical
conjunction and disjoint on sets, respectively, and (x) and (+) represent con-
junction of sets and disjoint union of the sets, respectively. Canonical elements
in the set A x B have the form <a,b> for a::A and b::B.

In Section 5 we make use of Agda’s implicit arguments and signature types.
To indicate that x is an implicit argument in a function type we indistinctly
write (x::A) |-> B or f (|x::A) :: B(x). The corresponding notation for
abstractions is \(x::A) |-> e(x). Signatures define unordered labelled depen-
dent products. If S is an element in a signature type containing a label x, S.x
selects the x field from S. The operator (.) is called projection.

To make the reading of the Agda code that we present here a bit easier, we
might not transcribe it with its exact syntax but with a simplified version of it.

3 Functional Bitonic Sort

The bitonic sort algorithm that we take as our starting point is the Haskell [12]
algorithm presented in Figure 1. Notice that the recursive calls in the function
merge are performed on non-structurally smaller arguments.

This algorithm works on complete binary trees with information on the leaves
and where both left and right subtrees have the same height. Since the Tree
structure do not guaranty these conditions, the algorithm in Figure 1 is unde-
fined on trees that do not satisfy them. It is possible to construct Haskell trees
satisfying the above conditions with the following nested recursive data type:
data Tr a = Lf a | Bin (Tr (a,a)). However, it is not easy to work with
such structure. As we will see on the following two sections, dependent types
provides the means to organise the data exactly as we need it for this example.

Before explaining how the algorithm works, we introduce the notion of bitonic
sequence. Essentially a bitonic sequence is the juxtaposition of two monotonic
sequences, one ascending and the other one descending, or it is a sequence such
that a cyclic shift of its elements would put them in such a form.

Definition 1. A sequence a1, a2, . . . , am is bitonic if there is a k, 1 � k � m,
such that a1 � a2 � · · · � ak � · · · � am, or if there is a cyclic shift of the
sequence such that this is true.

The main property when proving that the algorithm sorts its input is that, given
a bitonic sequence of length 2n, the result of comparing and swapping its two
halves gives us two bitonic sequences of length 2n−1 such that all the elements
in the first sequence are smaller than or equal to each of the elements in the
second one.

So, if bitonicSortT sorts its input up, then the first call to the function
merge is made on a bitonic sequence. This is simple because the left subtree is
sorted up and the right subtree is sorted down. Now, merge calls the function

Formalising Bitonic Sort in Type Theory 85

data Tree a = Lf a | Bin (Tree a) (Tree a)

bitonic_sortT :: Tree Int -> Tree Int
bitonic_sortT = bitonicSortT cmpS

where cmpS x y = if x <= y then (x,y) else (y,x)

bitonicSortT:: (a -> a -> (a,a)) -> Tree a -> Tree a
bitonicSortT cmp (Lf x) = Lf x
bitonicSortT cmp (Bin l r) = merge (Bin (bitonicSortT cmp l)

(reverseT (bitonicSortT cmp r)))
where reverseT (Lf x) = Lf x

reverseT (Bin l r) = Bin (reverseT r) (reverseT l)

merge (Lf x) = Lf x
merge (Bin l r) = Bin (merge l1) (merge r1)

where (l1,r1) = min_max_Swap l r

min_max_Swap (Lf x) (Lf y) = (Lf l,Lf r)
where (l,r) = cmp x y

min_max_Swap (Bin l1 r1) (Bin l2 r2) = (Bin a c, Bin b d)
where (a,b) = min_max_Swap l1 l2

(c,d) = min_max_Swap r1 r2

Fig. 1. Haskell version of the bitonic sort on binary trees

min max Swap on its two subtrees, which will pairwise compare and swap the
elements. If the bitonic sequence had length 2n, then min max Swap returns two
bitonic sequences of length 2n−1 such that all the elements in the first sequence
are smaller than or equal to each of the elements in the second one. Next, we
call the function merge recursively on each of these two bitonic sequences, and
we obtain four bitonic sequences of length 2n−2 such that all the elements in the
first sequence are smaller than or equal to each of the elements in the second
sequence, which in turn are smaller than or equal to each of the elements in the
third sequence, which in turn are smaller than or equal to each of the elements in
the fourth sequence. This process is repeated until we have 2n bitonic sequences
of one element each, where the first element is smaller than or equal to the
second one, which in turn is smaller than or equal to the third one, and so on.

4 Dependently-Typed Bitonic Sort

This section describes a formalisation of bitonic sort using dependent types. A
more detailed presentation of such formalisation can be found in [5].

Let us assume we have a set A and an inequality relation on A
((<=) :: A -> A -> Bool). Both A and (<=) will act as global parameters
in Agda. We define the type-theoretic datatype of binary trees indexed by its
height and two functions constructing elements in this type.

86 A. Bove and T. Coquand

DBT (n :: Nat) :: Set = case n of (zero) -> A
(succ n’) -> DBT n’ x DBT n’

DLf (a :: A) :: DBT zero = a

DBin (n :: Nat)(l, r :: DBT n) :: DBT (succ n) = <l,r>

Elements of this datatype are complete binary trees where both subtrees are of
the same height; thus a tree of height n contains exactly 2n elements.

Using this datatype we can straightforwardly translate the Haskell version
of the bitonic sort algorithm from Figure 1 into type theory. We present the
dependently typed bitonic sort in Figure 2. Observe that all the functions in
Figure 2 are structurally recursive on the height of the input tree. For the sake
of simplicity, in what follows, we might omit the height of the tree in calls to
any of these functions.

reverse (n :: Nat) (t :: DBT n) :: DBT n
= case n of (zero) -> t

(succ n’) -> case t of <l,r> -> DBin n’ (reverse n’ r)
(reverse n’ l)

min_max_Swap (cmp::A -> A -> AxA)(n::Nat)(l,r::DBT n) :: DBT n x DBT n
= case n of (zero) -> cmp l r

(succ n’) -> case l of <l1,r1> ->
case r of <l2,r2> ->

let <a,b> = min_max_Swap cmp n’ l1 l2
<c,d> = min_max_Swap cmp n’ r1 r2

in <DBin n’ a c, DBin n’ b d>

merge (cmp::A -> A -> AxA) (n::Nat) (t::DBT n) :: DBT n
= case n of (zero) -> t

(succ n’) -> case t of <l,r> ->
let <a,b> = min_max_Swap cmp n’ l r
in DBin n’ (merge cmp n’ a) (merge cmp n’ b)

bitonicSort (cmp::A -> A -> AxA) (n::Nat) (t::DBT n) :: DBT n
= case n of (zero) -> t

(succ n’) -> case t of <l,r> ->
merge cmp (succ n’) (DBin n’ (bitonicSort cmp n’ l)

(reverse n’ (bitonicSort cmp n’ r)))

cmpS (a, b :: A) :: A x A = if (a <= b) then <a,b> else <b,a>

bitonic_sort (n :: Nat) (t :: DBT n) :: DBT n = bitonicSort cmpS n t

Fig. 2. Dependently-typed Bitonic sort

Formalising Bitonic Sort in Type Theory 87

4.1 The Permutation Property

Proving that the resulting sequence is a permutation of the original one is rather
easy. In our proof, we convert trees into lists (defined as expected in type theory)
and we prove the permutation property on lists rather than on trees. For our
purposes, a permutation on lists is any equivalence relation on lists of the same
length (although this is not a formal part of the definition, it could be easily
derived from it) that is both commutative and a congruence with respect to
concatenation.

4.2 The Sorting Property

We start by defining when a tree is sorted. Given the element a :: A and the
trees t1 and t2, we define the relations t1 /<= a and t1 /<=\ t2 by recursion
on t1 and t2, respectively, such that t1 /<= a is satisfied if all the elements
in t1 are smaller than or equal to a, and t1 /<=\ t2 is satisfied if all the ele-
ments in t1 are smaller than or equal to each of the elements in t2. Finally we
define:

Sorted (n :: Nat) (t :: DBT n) :: Set
= case n of (zero) -> True

(succ n’) -> case t of <l,r> ->
Sorted n’ l && Sorted n’ r && l /<=\ r

Proving that the resulting sequence is sorted is not trivial. To start with, we
need to formalise the notion of bitonic sequence in such a way that it allows
proving the necessary properties in a nice way. To this end, we fix the set A
of elements in the tree to the set Bool and we make use of the 0-1 princi-
ple to generalise our result. In what follows we identify 0 with false and 1
with true. The 0-1 principle states that if a sorting algorithm sorts sequences
of 0’s and 1’s performing only comparison-and-swap operations on its data,
then it also sorts sequences of arbitrary types. We use Reynolds parametric-
ity theorem [15] to prove the 0-1 principle, whose proof follows those in [8]
and [10]. The reader is referred to [5] for more details on our proof of this
principle.

Bitonic Sequences and Bitonic Labels. Since we now consider only boolean
sequences, our definition of a bitonic sequence becomes simpler.

Definition 2. A 0-1-sequence a1, . . . , am is called bitonic, if it contains at most
two changes between 0 and 1.

To determine if the sequence in a binary tree is bitonic we assign bitonic labels
to the trees. We introduce one label for each of the six possible bitonic sequence
and one extra label W that will be assigned to trees whose sequences are not
bitonic.

88 A. Bove and T. Coquand

BitLb :: Set = data O | I | OI | IO | OIO | IOI | W

In addition, we define an equivalence relation (==) (l1, l2 :: BitLb) :: Set
on bitonic labels, along with the property notW (l :: BitLb) :: Set of not
being the label W, and a function bin label (ll, lr :: BitLb) :: BitLb that
combines two labels into a new one. The combined label is W in many cases, for
example bin label OI OIO = W.

Since we have seven labels, many binary functions on labels need to consider
up to 49 cases (sometime we do not need to consider all cases, for example, for
any l, bin label W l = W). All the functions we need on labels are quite trivial.

Below we show how to assign labels to binary trees and we define the property
of being a bitonic sequence.

label (n :: Nat) (t :: DBT n) :: BitLb
= case n of (zero) -> case t of (true) -> I

(false) -> O
(succ n’) -> case t of <l,r> ->

bin_label (label n’ l) (label n’ r)

Bitonic (n :: Nat) (t :: DBT n) :: Set = notW (label n t)

We use the information given by the labels to reason about the results of
the operations we perform on a tree. For example, the following lemma gives us
information about the result of the min max Swap operation.

label_O_x2min_max_Swap_label_O_x (cmp:: Bool-> Bool-> Bool x Bool)
(...) (n :: Nat) (l, r :: DBT n) (label l == O)
:: (label (fst (min_max_Swap cmp l r)) == O) &&

(label (snd (min_max_Swap cmp l r)) == label r)

The lemma is proved by induction on the height of the trees. Here, we use
the fact that if the label of l is O, then either l is simply false, or it is a binary
tree whose both subtrees also have label O. In the lemma, we need to assume
that the operation cmp behaves as we want it to with respect to labels. Here we
write (...) for such assumptions. These assumptions are used to prove the
base cases in the lemma.

Tree labels can also give information about the order of the trees. Below we
show a couple of lemmas that can be easily proved by induction on m.

label_O2leq (n, m :: Nat) (t1 :: DBT n) (t2 :: DBT m)
(label t1 == O) :: t1 /<=\ t2

leq_label_OI_O (n, m :: Nat) (t1 :: DBT n) (t2 :: DBT m)
(label t1 == OI) (label t2 == O) (t1 /<=\ t2) :: False

We also need lemmas relating the label of the trees to the result of reverse as:

reverse_label_OI2label_IO (n :: Nat) (t :: DBT n)
(label (reverse t) == OI) :: label t == IO

which can be easily proved by induction on the height of the tree.

Formalising Bitonic Sort in Type Theory 89

Finally, we relate labels to the property of being a sorted tree.

sorted2label_O_OI_I (n :: Nat) (t :: DBT n) (Sorted t)
:: (label t == O) || (label t == OI) || (label t == I)

sortedDown2label_O_IO_I (n::Nat) (t::DBT n) (Sorted (reverse t))
:: (label t == O) || (label t == IO) || (label t == I)

Bitonic Properties. We can now prove the two main properties concerning
bitonic sequences. The first property is as follows:

sorted_sortedDown2bitonic (n :: Nat) (t1, t2 :: DBT n)
(Sorted t1) (Sorted (reverse t2)) :: Bitonic (DBin t1 t2)

This proof is straightforward after considering all possible combinations in
the results of sorted2label O OI I and sortedDown2label O IO I.

Next we state the second property.

bitonic2min_max_Swap (cmp :: ...) (...) (l ,r :: DBT n)
(Bitonic (DBin l r))
:: Bitonic (fst (min_max_Swap cmp l r)) &&

Bitonic (snd (min_max_Swap cmp l r)) &&
fst (min_max_Swap cmp l r) /<=\ snd (min_max_Swap cmp l r)

The proof is performed by cases both on label l and on label r. We con-
sider 43 cases, two of them containing three subcases each; hence 47 cases in total.
Only 24 cases were valid ones in the sense that no contradiction could be derived
from the hypotheses and the labels of the trees. An example of an invalid case is
when we have label l == O, label r == IOI and Bitonic (DBin l r). The
24 valid cases can be divided into six groups: either the left or right tree has
label O or label I, or the trees have labels OI and IO, or IO and OI. Each of these
cases are proved by applying previous lemmas.

Sorted Properties. Before proving that our algorithm sorts sequences of
booleans, we prove some auxiliary lemmas.

leq2min_max_Swap_leqL (cmp :: ...) (...) (n,m :: Nat)
(t1,t2 :: DBT n) (t :: DBT m) (t1 /<=\ t) (t2 /<=\ t)

::fst(min_max_Swap t1 t2) /<=\ t && snd(min_max_Swap t1 t2) /<=\ t

leq2merge_leqL (cmp :: ...) (...) (n,m :: Nat) (t1 :: DBT n)
(t2 :: DBT m) (t1 /<=\ t2) :: merge t1 /<=\ t2

We also prove symmetric lemmas leq2min max Swap leqR and leq2merge leqR,
where the operations min max Swap and merge appear to the right of the symbol
/<=\. All these lemmas are proved by induction on the height of the trees.

We can now prove that the result of merging a bitonic tree is sorted.

90 A. Bove and T. Coquand

mergeSorted (cmp :: ...) (...) (n :: Nat) (t :: DBT n) (Bitonic t)
:: Sorted (merge t)

The interesting case is when t has the form <l,r>. Let <a,b> be the result of
min max Swap cmp l r. The result of merge t is DBin (merge a) (merge b).

Using bitonic2min max Swapwe know Bitonic a, Bitonic b and a /<=\ b.
By the inductive hypotheses, we have Sorted (merge a) and Sorted (merge b).

Using the lemmas leq2merge leqL and leq2merge leqR, and the fact that
a /<=\ b, we get merge a /<=\ merge b. This concludes the proof. �

We now prove that our bitonic sort returns a sorted tree.

bitonicSortSorted (cmp :: ...) (...) (n :: Nat) (t :: DBT n)
:: Sorted (bitonicSort t)

Again, the interesting case is when t has the form <l,r>. By the inductive
hypotheses we know Sorted (bitonicSort l) and Sorted (bitonicSort r).
Hence, reverse (bitonicSort r) is sorted down.

Using the property sorted sortedDown2bitonic, we obtain that
Bitonic (DBin (bitonicSort l) (reverse (bitonicSort r))).

The premises of mergeSorted are now satisfied. Hence we can conclude that
Sorted (merge (DBin (bitonicSort l) (reverse (bitonicSort r)))). �

It only remains to prove that the specific function cmpS satisfies all the prop-
erties (six) that we have assumed for the argument function cmp (in the lemmas
above we just refereed to them as (...)). They are all trivial when the ele-
ments we consider are of type Bool.

We can now establish that our bitonic algorithm sorts sequences of booleans
by applying the lemma bitonicSortSorted to our specific operation cmpS and
to the proofs that cmpS behaves as needed.

5 Bitonic Sort Using Lattice Theory

5.1 Motivations

In this section we use notions from lattice theory, linear orders and monoids for
the formalisation of bitonic sort and its correctness proof. We first give some
heuristic motivations for this approach.

The 0-1 principle is reminiscent of Birkhoff representation theorem [4] that
states that any distributive lattice is a sublattice of a power of the lattice {0, 1}.
Another way to formulate this is to say that an identity between lattice ex-
pressions hold in all lattices if and only if it holds in the lattice {0, 1}. The 0-1
principle can be reformulated as the fact that a sequence of elements in a linear
order D is bitonic if and only if its image by any representation map D → {0, 1}
is bitonic. Now, to say that a sequence of elements xi, i < n in {0, 1} is bitonic
can be formulated as the fact that whenever i < j < k < l < n, we cannot
have neither xi = xk = 1 and xj = xl = 0 nor xj = xl = 1 and xk = xi = 0,

Formalising Bitonic Sort in Type Theory 91

that is the two sequences . . . 0 . . . 1 . . . 0 . . . 1 . . . and . . . 1 . . . 0 . . . 1 . . . 0 . . . are
not allowed. We can express purely lattice theoretically this in the following way

xi ∧ xk ≤ xj ∨ xl xj ∧ xl ≤ xk ∨ xi (∗)

and we can now take this as a characterisation of bitonic sequences in general:
a sequence of elements xi, i < n in a linear order D is bitonic if and only
if whenever i < j < k < l < n the relations (∗) hold. Here, we have used the
notation x∧y (respectively x∨y) to denote the minimum (respectively maximum)
of x and y. Notice that the above definition makes sense in any distributive
lattice D. (The generalisation of sorting to elements in a distributive lattice is
also considered in exercises in [13].) In this way, we find a direct definition of
being a bitonic sequence which does not refer to the consideration of cyclic shift
of a sequence like in Definition 1. Notice that this new definition of bitonic is
invariant in a cyclic permutation of i, j, k, l.

We explain now how to represent mathematically the notion of permutation of
a sequence. We want to formalise the idea that a sequence y1, . . . , yn is obtained
from a sequence x1, . . . , xn only by doing comparison-and-swap operations. It
is actually clearer, to consider the more general case of distributive lattices. A
comparison-and-swap operation consists in replacing elements xi, xj with i < j
by the elements xi ∧ xj , xi ∨ xj . We formalise this using ideas from universal
algebra. We represent that y1, . . . , yn is obtained from a sequence x1, . . . , xn

only by doing comparison-and-swap operation by the equality Σµ(xi) = Σµ(yi)
for all maps µ : D → M in a commutative monoid satisfying

µ(x ∧ y) + µ(x ∨ y) = µ(x) + µ(y) (∗∗)

Such maps, called valuation maps, are important in the theory of distributive
lattices and in measure theory [11, 16]. In the case where D is a linear order, it
can be shown that to have Σµ(xi) = Σµ(yj) for all such maps is equivalent to
the fact that y1, . . . , yn is a permutation of x1, . . . , xn. Usually, for instance in the
reference [16], M is fixed and taken to be the free commutative monoid generated
by the elements µ(x), x ∈ D and the relation (∗∗). However instead of working
with this fixed monoid, it is equivalent and more convenient to work with all
commutative monoids and maps µ satisfying (∗∗). This turns out to be also well-
suited for the formalisation in type theory: to express the notion of “arbitrary”
commutative monoid and “arbitrary” map satisfying (∗∗), we simply introduce
a new variable M , with the axioms that this forms a commutative monoid, and
a new variable µ with the axioms that this satisfies the relation (∗∗). Even in
the case where D is a linear order, this appears to be the right mathematical
way to express that y1, . . . , yn is a permutation of x1, . . . , xn.

5.2 Formalisation in Type Theory

In order to carry out the actual representation of these mathematical definitions
in type theory, it is simpler to work with sequences as being functions from
a (finite) decidable linear order to an ordered set. (Intuitively, we represent a

92 A. Bove and T. Coquand

sequence as an array of elements.) A decidable linear order DLO consists of a set I
and an inequality relation (<) :: I -> I -> Bool that is irreflexive, transitive
and linear. We denote I0 the linear order whose set contains only one element
tt and such that tt < tt evaluates to false. Given two linear orders L and
R, we define the linear order L + R as the linear order whose set is the disjoint
sum of the sets in L and R, and such that any element in the set of L is smaller
than any element in the set of R. We can now define a function IN from the
Natural numbers into decidable linear order in such a way that IN n contains
2n elements.

IN (n :: Nat) :: DLO = case n of (zero)-> I0
(succ n’)-> IN n’ + IN n’

A lattice consists of a set D, an inequality relation (<=) :: D -> D -> Set
that is reflexive and transitive, and a minimum (/\) :: D -> D -> D and a
maximum (\/) :: D -> D -> D operations with the expected properties. The
lattice is distributive if (/\) and (\/) satisfies the distributive laws.

A monoid consists of a set M, an equivalence relation (==):: M -> M -> Set,
and an associative and congruent operation (+) :: M -> M -> M. The monoid
is commutative is (+) is commutative.

Linear orders, lattices and monoids are defined as signature types in Agda.
Hence, selecting their components is performed with the projection operator (.).

We define sequences as functions from linear orders to distributive lattices

Sequence (DI::DLO) (f::DI.I -> D) :: Set
= (i,j::DI.I) -> i == j -> f i == f j

where the equality relations over linear order and over lattices are defined as
expected.

The predicates that state if a sequence is increasing Incr or decreasing Decr,
and the relation (<<=) stating that all the elements in the first sequence are
smaller than or equal to any element in the second sequences are defined as
expected. For example, (<<=) is defined as:

(<<=) (|DI::DLO) (|DJ::DLO) (|f::DI.I -> D) (|g::DJ.I -> D)
(seqf::Sequence DI f) (seqg::Sequence DJ g) :: Set

= (i::DI.I)-> (j::DJ.I)-> (f i <= g j)

Bitonic sequences are defined as follows:

Bitonic (|DI::DLO) (|f::DI.I -> D) (seqf::Sequence DI f) :: Set
= (i,j,k,l::DI.I) -> (ls_ij::T (i < j)) ->
(ls_jk::T (j < k)) -> (ls_kl::T (k < l)) ->
(f i /\ f k <= f j \/ f l && f j /\ f l <= f i \/ f k)

If seqf is a sequence over the linear order IN (succ n), then selecting the
left and the right sequences of the tree domain produce sequences as a result.
These operation are called leftSeq and rightSeq respectively. In addition,

Formalising Bitonic Sort in Type Theory 93

mergeF (n::Nat) (f::(IN n).I -> D) :: (IN n).I -> D
= case n of (zero)-> f

(succ n’)->
let inlf = leftF n’ f; inrf = rightF n’ f
in conF (IN n’) (IN n’) (mergeF n’ (minF (IN n’) inlf inrf))

(mergeF n’ (maxF (IN n’) inlf inrf))

mergeSeq (n::Nat) (|f::(IN n).I -> D) (seqf::Sequence (IN n) f)
:: Sequence (IN n) (mergeF n f)

= case n of (zero)-> seqf
(succ n’)->

let leftS = leftSeq n’ seqf; rightS = rightSeq n’ seqf
in mergeSeq n’ (leftS /+\ rightS) *

mergeSeq n’ (leftS \+/ rightS)

bitonicSort (n::Nat) (f::(IN n).I -> D) :: (IN n).I -> D
= case n of (zero)-> f

(succ n’)->
let inlf = leftF n’ f; inrf = rightF n’ f
in mergeF (succ n’)

(conF (IN n’) (IN n’) (bitonicSort n’ inlf)
(revF n’ (bitonicSort n’ inrf)))

bitonicSortSeq (n::Nat) (|f::(IN n).I -> D) (seqf::Sequence (IN n) f)
:: Sequence (IN n) (bitonicSort n f)

= case n of (zero)-> seqf
(succ n’)->

let leftS = leftSeq n’ seqf; rightS = rightSeq n’ seqf
in mergeSeq (succ n’) (bitonicSortSeq n’ leftS *

revSeq n’ (bitonicSortSeq n’ rightS))

Fig. 3. Bitonic sort using linear orders and lattices

revSeq seqf produces a sequence in the reverse order. The underneath func-
tions in the definition of the sequences are called leftF, rightF and revF
respectively.

If seqf and seqg are sequences over the same linear order domain DI with
functions f and g, respectively, then, seqf /+\ seqg and seqf \+/ seqg pro-
duce sequences such that, for all i in DI.I, we have that f i /\ g i and
f i \/ g i, respectively. The underneath functions are called minF and maxF
respectively.

If DI and DJ are linear orders, and if sf is a sequence over DI and sg is a
sequence over DJ then, sf * sg is a sequence over the linear order DI + DJ with
conF as underneath function.

Let DL be a distributive lattice with set D. Figure 3 presents the formalisation
of bitonic sort using the notions we describe above.

94 A. Bove and T. Coquand

5.3 The Permutation Property

Let L be a lattice with set D and CM be a commutative monoid with set M. Let
mu :: D -> M be a function such that for all a,b::D then
mu a + mu b == mu (a /\ b) + mu (a \/ b) is satisfied. We then define

Sigma (n::Nat) (f::(IN n).I -> D) :: M
= case n of

(zero)-> mu (f tt)
(succ n’)-> Sigma n’ (leftF n’ f) + Sigma n’ (rightF n’ f)

If f,g::(IN n).I -> D, the following properties can be easily proved by in-
duction on n and transitivity of equality:

Sigma n f == Sigma n (revF n f)

Sigma n f + Sigma n g ==
Sigma n (minF (IN n) f g) + Sigma n (maxF (IN n) f g)

It is also immediate to prove that

Sigma (succ n) (conF (IN n) (IN n) f g) == Sigma n f + Sigma n g

We can finally prove that

mergeSigma (n::Nat) (f::(IN n).I -> D)
:: Sigma n f == Sigma n (mergeF n f)

bitonicSortSigma (n::Nat) (f::(IN n).I -> D)
:: Sigma n f == Sigma n (bitonicSort n f)

by induction on n, transitivity of equality and the properties we mentioned above.

5.4 The Sorting Property

Let L be a lattice with set D.
Most of the properties needed on sequences in order to prove that the bitonic

algorithm sorts its input are very easy to prove by induction, case analysis or
almost straightforwardly. A couple of examples of such properties are:

incr2decr_rev (n::Nat) (|f::(IN n).I -> D)
(seqf::Sequence (IN n) f) (up::Incr seqf)
:: Decr (revSeq n seqf)

min_seq_LEq_max_seq (|DI::DLO) (|f,|g::DI.I -> D)
(seqf::Sequence DI f) (seqg::Sequence DI g)
(bit_fg::Bitonic (seqf * seqg))
:: seqf /+\ seqg <<= seqf \+/ seqg

Formalising Bitonic Sort in Type Theory 95

The proof that the result of concatenating an increasing sequence with a
decreasing sequences is a bitonic sequence requires looking into three cases plus
five empty cases (that is, we can derive absurdity from them).

incr_decr2bitonic (|DI::DLO) (|DJ::DLO) (|f::DI.I -> D)
(|g::DJ.I -> D) (seqf::Sequence DI f) (seqg::Sequence DJ g)
(up::Incr seqf) (dw::Decr seqg) :: Bitonic (seqf * seqg)

The proof goes as follows. Given i,j,k,l::(DI + DJ).I such that
ls ij::T (i < j), ls jk::T (j < k) and ls kl::T (k < l) we need to prove
i /\ k <= j \/ l and j /\ l <= i \/ k. We have the following three cases:

– k::DI.I and hence i,j::DI.I: Here i /\k <= i <= j <= j \/ l and
j /\ l <= j <= k <= i \/ k

– k::DJ.I and j::DI.I; hence i::DI.I and l::DJ.I: Here we have that
i /\ k <= i <= j <= j \/ l and that j /\ l <= l <= k <= i \/ k

– k::DJ.I and j::DJ.I; hence l::DJ.I: Here i /\ k <= k <= j \/ l and
j /\ l <= l <= k <= i \/ k �

The properties that show that if a sequence seqf * seqg is bitonic then
both the sequences seqf /+\ seqg and seqf \+/ seqg are bitonic require some
inequality reasoning with easy results from lattice theory. The proofs are not
difficult to perform but they are not too nice either due to the fact that Agda
has no support for inequality reasoning. The type of the first such property is
as follows:

bitonic_min_seq (|DI::DLO) (|f,|g::DI.I -> D)
(seqf::Sequence DI f) (seqg::Sequence DI g)
(bit_fg::Bitonic (seqf * seqg)) :: Bitonic (seqf /+\ seqg)

After a few easy inductive proofs concerning the result of the merge operation,
we are able to establish that both the result of merge and of the bitonic sort are
increasing sequences.

mergeIncr (n::Nat) (|f::(IN n).I -> D) (seqf::Sequence (IN n) f)
(btf::Bitonic seqf) :: Incr (mergeSeq n seqf)

bitonicSortIncr (n::Nat) (|f::(IN n).I -> D)
(seqf::Sequence (IN n) f) :: Incr (bitonicSortSeq n seqf)

Both proofs are performed by induction on n.

6 Conclusions and Related Work

The major challenge and difficulty in this work was to find a suitable represen-
tation of a bitonic sequence that would allow us to prove the needed properties
in a nice way and without the need of considering too many cases.

96 A. Bove and T. Coquand

In our first formalisation (see Section 4), we define labels on the boolean
binary trees to formalise the notion of bitonic sequences. We believe that this
representation gives us a lot of intuition about the properties we will or we will
not be able to prove, since the label of a tree gives us enough information about
the kind of tree we are working with. A disadvantage of this representation is
that, when considering cases on the label of the trees, we must deal with many
cases that do not make sense, as it was explained before.

We believe one might be able to overcome this problem by working in a proof
assistant such as Epigram [9], which provides a more powerful pattern matching
facility than the one implemented in Agda. If this is the case, we could define an
inductive predicate over dependent trees which exactly characterises those trees
that are bitonic. When doing pattern matching on a proof that a tree is bitonic,
we will then only obtain the non-empty cases.

Our second formalisation (see Section 5) used notions from linear orders,
lattice theory and monoids. In general, this formalisation was shorter and more
elegant than the first one.

Finally, it is interesting to point out that, despite of the different approaches
we used in the two formalisations, some of the lemmas we used for proving the
sorting property were needed in the two correctness proofs that we presented.

Related Work

To the best of our knowledge, there are not many formal proofs of bitonic sort.
Couturier [7] performed a formal proof of the sorting property of bitonic sort

in PVS [17] that does not use the 0-1 principle. In his work, Couturier formalised
the general notion of bitonic sequences with an array (represented by a function
from Natural numbers to Natural numbers) and three indexes: the indexes for
the left-most and right-most elements, and the index for the maximum element.
Most of the properties proved in [7] involve multiple indexes and several for-all
statements. He also had to deal with many cases in some of his proofs, in one
proof he deals with 54 cases. In our opinion, it is rather difficult to closely follow
the process in [7] because of the complexity in the type of some of the properties.

The reader is refereed to [5] for a more complete description of the literature
about bitonic sort.

Acknowledgements

We would like to thank Björn von Sydow for many useful discussions on bitonic
sort and on the formalisation we presented here. We would also like to thank an
anonymous referee for his/her valuable comments.

References

1. Agda homepage. http://www.cs.chalmers.se/~catarina/agda
2. Alfa homepage. http://www.cs.chalmers.se/~hallgren/Alfa/

Formalising Bitonic Sort in Type Theory 97

3. K. E. Batcher. Sorting networks and their applications. In Spring Joint Computer
Conference, AFIPS Proc., volume 32, pages 307–314, 1968.

4. G. Birkhoff. Lattice theory. Amer.Math.Soc., Providence, 1967.
5. A. Bove. Formalising bitonic sort using dependent types. Available on the WWW:

www.cs.chalmers.se/∼bove/Papers/dt bit sort.ps.gz, October 2004. Techni-
cal Report, Chalmers University of Technology.

6. T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-
putation, 76:95–120, 1988.

7. R. Couturier. Formal engenieering of the bitonic sort using pvs. In 2nd. Irish
Workshop on Formal Method, Cork, Ireland, 1998.

8. N.A. Day, J. Launchbury, and J. Lewis. Logical abstractions in haskell. In Pro-
ceedings of the 1999 Haskell Workshop, Technical Report UU-CS-1999-28, October
1999.

9. Epigram homepage. http://www.dur.ac.uk/CARG/epigram/
10. Qiao Haiyan. Testing and Proving in Dependent Type Theory. PhD thesis, De-

partment of Computing Science, Chalmers University of Technology, 2003.
11. A. Horn and A. Tarski. Measures in Boolean algebras. Trans. Amer. Math. Soc. ,

(64):467–497, 1948.
12. S. Peyton Jones, editor. Haskell 98 Language and Libraries The Revised Report.

Cambridge University Press, April 2003.
13. D. E. Knuth. The Art of Computer Programming: Sorting and Searching. Addison-

Wesley, 1973.
14. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
15. J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E.A. Ma-

son, editor, Information Processing 83, Proceedings of the 9th IFIP World Com-
puter Congress, pages 513–523, Paris, France, September 1983. North-Holland.

16. G. Rota. The valuation ring of a distributive lattice. In Proceedings of the Univer-
sity of Houston Lattice Theory Conference, pages 574–628, Houston, Tex., 1973.

17. J. Rushby. The pvs verification system. www.csl.sri.com/pvs.html, 1998.

	Introduction
	Brief Description of the Agda Notation
	Functional Bitonic Sort
	Dependently-Typed Bitonic Sort
	The Permutation Property
	The Sorting Property

	Bitonic Sort Using Lattice Theory
	Motivations
	Formalisation in Type Theory
	The Permutation Property
	The Sorting Property

	Conclusions and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

