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Introduction

G̊arding and Skau have given a modern account [5] of Abel’s approach to the analysis of solvable
equation. In particular, they present a proof that the degree of any primitive solvable equations
has to be primary (a power of a prime number), and the general form of the root of a solvable
equation of prime degree (see also [4]). This presentation however does not really follow Abel’s
arguments. Instead the approach there is similar to a modification of the argument already
suggested by Sylow in his comments on Abel’s paper [3]. Similarly, H. Edwards more recent
and complete analysis of solvable equations of prime degree [6] does not follow Abel.

The goal of this note is to reconstruct Abel’s argument [3], trying to understand Abel’s
work in terms as close to Abel’s as possible, deviating thus from both Sylow and G̊arding’s
presentations. We feel that this argument gives a better explanation of the form of the root of
solvable equations of prime degree. An analysis of Abel’s approach is also contained in the thesis
of Sørensen [8], which refers to Sylow’s comments on [3]. Sørensen has a discussion on the “highly
computation based mathematical style of the 18th century, to which Abel had also adhered”
which was marked by “lengthy, rather concrete, and painstaking algebraic manipulation”. The
present paper gives such a “computational” analysis of the problem of characterising solvable
equation of prime degree, which can be compared with the modern account of [5]. The key
Lemma is Lemma 5.1, which comes from Abel and shows that, for an irreducible solvable
equation of prime degree, all roots are rational functions of the Lagrange resolvent of the
equation.

1 Some Lemmas about radical extension

Let L be a field of characteristic 0 and q a prime number. We assume that L contains a primitive
qth root of unity αq = 1 and b is an element of L which is not a qth power in L. Abel proves
the following results.

Lemma 1.1 The polynomial Xq − b is irreducible.

Proof. Let P a non constant polynomial of minimal degree in L[X] that divides Xq − b. Then
all polynomials P (αiX) for i = 1, . . . , q− 1 divides also Xq − b and so the polynomials P (αiX)
for i = 0, . . . , q − 1 cannot be all pairwise coprime. So they are all equal to Xq − b.

The extension L[v] = L[X]/〈Xq − b〉 is called a radical extension. The field L[v] is a vector
space over L of dimension [L[v] : L] = q and a basis is 1, v, . . . , vq−1.
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Lemma 1.2 Let P (X, v) be an irreducible polynomial in L[v][X] which is not in L[X]. The
polynomial

Q(X) =

q−1∏
l=0

P (X,αlv)

is in L[X] and is irreducible in L[v]. In particular, if w = a0 + a1v + . . . + aq−1v
q−1 is in L[v]

and not in L the minimal polynomial of w over L is

q−1∏
l=0

(X − (a0 + a1α
lv + . . .+ aq−1α

l(q−1)vq−1))

Proof. All polynomial P (X,αiv) are irreducible for i = 0, . . . , q−1 and they are pairwise distinct
since P (X, v) is not in L[X]. If R is a non constant polynomial in L[X] that divides Q then
R cannot be coprime to all P (X,αiv), so it is divisible by one, and hence by all P (X,αiv), for
i = 0, . . . , q − 1. Since they are coprime, it is divisible by their product Q.

Lemma 1.3 If w is an element in L[v] which is not in L then L[w] = L[v].

Proof. Indeed w is of degree q over L by the previous Lemma. (The elements v, 1, w, . . . , wq−1

that can be written as L linear combinations of 1, v, . . . , vq−1 have a non trivial linear relations,
which gives an expression of v as a L-linear combination of 1, w, . . . , wq−1.)

2 Normal and cyclic polynomials

If g is a irreducible polynomial over K of degree m, we can consider the extension K[r] =
K[X]/〈g〉 where we add formally one root r of g. We say that g is a normal polynomial
iff g has m roots r, r1, . . . , rm−1 in K[r]. In such a situation, we can define the maps
h(r) 7−→ h(ri), which are automorphisms of K[r] for i = 0, . . . , m − 1. (The construction of
similar automorphisms plays a crucial role in the paper [2], and of course, in Galois’ presentation
of his theory, and this is where the notion of irreducibility appears.) If s = h(r) is an element of
K[r] the conjugates of s are the elements s, s1 = h(r1), . . . , sm−1 = h(rm−1). If these elements
are all distinct then we have K[s] = K[r]. Indeed, if q is in K[X] and q(s) = 0 then q(h(r)) = 0
and so q(h(ri)) = 0 for i = 0, 1, . . . , m− 1. It follows that the minimal polynomial of s over
K is

m−1∏
l=0

(X − sl)

If θ is the automorphism h(r) 7−→ h(r1) then θ(r) is a root of g, and so are θ2(r), θ3(r), . . .
In the case where this enumerates all roots of h, that is, when all r, θ(r), . . . , θm−1(r) are
distinct, we say that g is a cyclic polynomial. (Abel shows in [2] that a cyclic polynomial is
solvable.)

3 Lagrange resolvent

Let k be a field and K = k[α] the extension of k by a primitive p-root of unity αp = 1, where
p is a prime number. (We can have K = k if k contains already a primitive p-root of unity.)

If σ ∈ Sp is a permutation of 0, . . . , p− 1 we define

uσ =
1

p

p−1∑
l=0

α−lXσ(l)
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This is a polynomial in K[X0, . . . , Xp−1]. We shall see that Abel’s analysis of solvable equations
explains in a natural way why considering this element, the Lagrange resolvent.

We write S0, . . . , Sp−1 the elementary symmetric polynomials in X0, . . . , Xp−1

S0 = X0 + . . .+Xp−1 . . . Sp−1 = X0 . . . Xp−1

Lemma 3.1 If R is a polynomial in k[X] the element

pl =
∑
σ∈Sp

R(uσ)Xσ(l)

is in K[S0, . . . , Sp−1], and the element p0 is in k[S0, . . . , Sp−1].

Proof. It is clear that pl is a symmetric polynomial in X0, . . . , Xp−1 and hence it belongs to
k[α, S0, . . . , Sp−1]. Furthermore, p0 is invariant by the change of α to αi for i = 1, . . . , p− 1 and
hence p0 is in k[S0, . . . , Sp−1].

4 Solvable equations

Let k be a field of characteristic 0 and K the extension of k obtained by adding all roots of
unity. We consider a polynomial equation f(x) = 0 over k. We say that this equation is solvable
iff there exists a sequence of radical extensions

K1 = K[u1], K2 = K1[u2], . . . , Kn = Kn−1[un]

up11 ∈ K, up22 ∈ K[u1], . . . , u
pn
n ∈ K[u1, . . . , un−1]

with p1, . . . , pn prime and ui+1 not in Ki = K[u1, . . . , ui] such that f has a root x0 in Kn.
Ki+1 is a vector space over Ki of dimension [Ki+1 : Ki] = pi and the dimension of Kn over

K is [Kn : K] = pn . . . p1.
Notice that we have an explicit basis of Kn over K which is given by all monomials

ui11 . . . uinn

with i1 < p1, . . . , in < pn.
We have an element x0 in Kn such that f(x0) = 0. If x0 is already in Kn−1 we can shorten

the sequence u1, . . . , un. In this way, we can assume that x0 is in Kn but not in Kn−1.
We can write

x0 = q0 + q1un + q2u
2
n + . . .+ qpn−1u

pn−1
n

with q0, q1, . . . in Kn−1. Since x0 is not in Kn−1, some of the term q1, q2, . . . is 6= 0. We have
Kn−1[un] = Kn−1[qlu

l
n] by Lemma 1.3 if ql 6= 0. Let us write w = qlu

l
n. Since wpn is in Kn−1,

and not in Kn−1, we can write

x0 = c0 + c1w + c2w
2 + . . .+ cpn−1w

pn−1

The equality

c0 + c1w + c2w
2 + . . .+ cpn−1w

pn−1 = q0 + q1un + q2u
2
n + . . .+ qpn−1u

pn−1
n

shows, by comparing the coefficient of uln in both expressions, that we have c1 = 1. Thus, by
replacing un by qlu

l
n, we can thus assume that we can write

x0 = q0 + un + q2u
2
n + . . .+ qpn−1u

pn−1
n
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5 Solvable equations of prime degree

Assume now that the equation f(x) = 0 is monic, irreducible and of prime degree p. Abel
proves in this case that pn = p in the following way.

Since Kn−1[x0] = Kn the minimal polynomial of x0 over Kn−1 is by Lemma 1.2

p−1∏
l=0

(X − (q0 + αlnun + q2α
2l
n u

2
n + . . .+ α(pn−1)l

n qpn−1u
pn−1
n ))

with αpnn = 1.
This polynomial is in Kn−1[X]. We take i1 < n minimal such that it can be written in

Ki1 [X]. Being irreducible in Kn−1[X] this polynomial is irreducible in Ki1 [X] as well, and can
be written Q(X,ui1) with coefficients in Ki1−1. The polynomial

pi1−1∏
l=0

Q(X,αli1ui1)

is irreducible in Ki1−1[X] by Lemma 1.2 and is in Ki2 [X] for some i2 < i1, and of degree pnpi1 .
In this way, one shows that the degree of the minimal polynomial of x0 over K has to be of
the form pnpi1pi2 . . .. But since f(x0) = 0 and f is irreducible of degree p one should have
p = pnpi1pi2 . . .. Since p is prime this is only possible if pn = p and

f(X) =

p−1∏
l=0

(X − (q0 + αlnun + q2α
2l
n u

2
n + . . .+ α(pn−1)l

n qpn−1u
pn−1
n ))

We write α = αn and u = un. In Kn the polynomial f has p roots

xl = q0 + αlu+ q2α
2lu2 + . . .+ qp−1α

(p−1)lup−1

for l = 0, . . . , p− 1. It follows that we have

u =
1

p
(x0 + α−1x1 + . . .+ α−(p−1)xp−1)

We see that u is in k[α, x0, . . . , xp−1]. The element u is the (Lagrange) resolvent of the
equation f(x) = 0. We see that Abel’s analysis explains where this resolvent comes from. We
follow now Abel in showing that x0, . . . , xp−1 are in k[α, u], so that k[α, u] = k[α, x0, . . . , xp−1]
and x0 is in k[u].

If σ ∈ Sp is a permutation of 0, . . . , p− 1 we define

uσ =
1

p

p−1∑
l=0

α−lxσ(l)

5.1 All roots are rational functions of the resolvent

We follow Abel, contrary to Netto [7], who uses Galois theory at this point. The polynomial

P (X) =
∏
σ∈Sp

(X − uσ)

is in k[X] and such that P (u) = 0. If R = P/(X − u) we have R in k[u][X] and we claim that
R(u) 6= 0.
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Lemma 5.1 If uσ = u then σ(l) = l for all l.

Proof. Assume uσ = u. This can be written as

u =
1

p

p−1∑
l=0

α−lxσ(l) =
1

p

p−1∑
l=0

α−l(q0 + ασ(l)u+ q2α
2σ(l)u2 + . . .+ qp−1α

(p−1)σ(l)up−1)

with q0, q2, . . . , qp−1 in Kn−1 and hence, comparing the coefficient of u in both side of this
equality

1 =
1

p

p−1∑
l=0

α−lασ(l)

or

p =

p−1∑
l=0

α−lασ(l)

This equality is only possible if σ(l) = l for all l.

By Lemma 3.1, the element

R(u)xl =
∑
σ∈Sp

R(uσ)xσ(l)

is in k[α], since it is symmetric in x0, . . . , xp−1. Furthermore, also by Lemma 3.1, the element
R(u)x0 is in k.

Corollary 5.2 k[α, u] = k[α, x0, . . . , xn−1] and x0 is in k[u].

We can write

xl = q0(v) + ωlu+ q2(v)ω2lu2 + . . .+ qp−1(v)ω(p−1)lup−1

with qj in k[X] and v = up.
Since

q0(v) =
1

p
(x0 + . . .+ xp−1)

we see that q0(v) = q0 is in k.
We write Ω = k[α, u] = k[α, x0, . . . , xn−1]. In modern term, Ω is a normal extension of k.

Abel’s analysis consists precisely in looking at all conjugates of u in Ω and expressing that

x0 = q0 + u+ q2(v)u2 + . . .+ qp−1(v)up−1

has only p conjugates.

5.2 The conjugates of the resolvent

The root of the minimal polynomial F of u over K are called the conjugates of u. They are all
in Ω, since they are among the elements uσ, σ ∈ Sp and x0, x1, . . . , xp−1 are in k[α, u].

If u′ is a conjugate of u we define an automorphism of Ω by extending the map k[u] →
Ω, r(u) 7−→ r(u′) to Ω. For extending this map, we look at the minimal polynomial Q(X,u) of
α and we choose a root α′ of Q(X,u′). The conditions ϕ(u) = u′ and ϕ(α) = α′ defines then
an automorphism of Ω. All automorphisms of Ω/k can be obtained in this way and we get a
complete description of the elements of the group H of automorphisms of the extension Ω/k.
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Via an automorphism u 7−→ u′, α 7−→ α′, the element v = up is sent to the element v′ = u′p.
I claim that we have k[α, v] = k[α, v′]. Indeed, if v′ is not in k[α, v] we have by Lemma 1.3,
k[α, v′] = Ω, since Ω is a radical extension of k[α, v], and this contradicts that u′ is not in
k[α, v′].1.

Let G the minimal polynomial of v over k. We have F (X) = G(Xp). We are going to see
that the degree ν of G divides p − 1. Furthermore, there is a polynomial θ in k[X] such that
the roots of G are exactly the element v, θ(v), . . . , θν−1(v).

Since u′ is in Ω = k[α, u] we can write

u′ = c0 + c1u+ . . .+ cp−1u
p−1

with c0, . . . , cp−1 in k[α, v]. Since u′p is in k[α, v′] = k[α, v] we have by Lemma 1.2 a relation of
the form

αu′ = c0 + c1α
ju+ . . .+ cp−1α

j(p−1)up−1

and so
αc0 + c1αu+ . . .+ cp−1αu

p−1 = c0 + c1α
ju+ . . .+ cp−1α

j(p−1)up−1

It follows that ci = 0 if i 6= l and u′ is necessarily of the form clu
l with jl = 1 mod. p.

Since we have f(x0) = 0 where

x0 = q0 + u+ q2(v)u2 + . . .+ qp−1(v)up−1

it follows that
q0 + u′ + q2(v

′)u′2 + . . .+ qp−1(v
′)u′p−1

is also a root of f and so we have for some k

q0 + u′ + q2(v
′)u′2 + . . .+ qp−1(v

′)u′p−1 = q0 + αku+ q2(v)α2ku2 + . . .+ qp−1(v)αk(p−1)up−1

and since k[α, v′] = k[α, v] and u′ = clu
l it follows that we have cl = ql(v)αkl.

In conclusion, the roots of f can be written

xi = q0 + αiu+ q2(v)α2iu2 + . . .+ qp−1(v)αi(p−1)up−1

and the conjugates of u are necessarily of the form ql(v)ulαj .
Notice that if ϕ(u) = ql(v)ulαj then we have ϕ(x0) = xk such that lk = j mod. p.
Any automorphism ϕ of Ω/k necessarily sends u to an element of the form ϕ(u) = ql(v)ulαj .

If we have another automorphism ψ which sends u to an element ψ(u) = qt(v)utαk, the element
ψ(ϕ(u)) has to be of the form qs(v)usαl and s is the product lt modulo p.

We thus have a group morphism H → (Z/pZ)× of the group of automorphism of Ω/k into
the multiplicative group of the nonzero elements mod. p. Let g be a primitive root modulo p
and choose k = gl mod. p which generates the image of this morphism. We know that l divides
p− 1 and we write lν = p− 1. We have

θ(u) = qk(v)ukαj

and we can assume j = 0 since the conjugates of u are closed under multiplication by α. (We
have used only in a superficial way the modern notion of group of automorphisms to simplify
the exposition, but all these last steps were clear to Abel.)

1This is the step which is not completely clear in either Netto or Abel [3, 7]. Sylow suggests a modification of
Abel’s argument, which is followed in [5], involving normal closures.
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We know that θ(x0) is a root of the polynomial f . Also, since θ(u) = qk(v)ukω0 we have
necessarily θ(x0) = x0. We have then

θ2(u) = qk2(v)uk2 , θ3(u) = qk3(v)uk3 , . . .

with kn = kn mod. p.
The conjugates of u are then exactly the elements qkn(v)uknαi. Hence u has exactly pν

conjugates and ν is the degree of v.
We have

θ(v) = θ(up) = qk(v)pvk

and the conjugates of v are θ(v), θ2(v), . . . , θν−1(v) and θν(v) = v. We see that v is the root
of a cyclic polynomial of degree ν which divides p− 1.

Let us write (i) for gil. We can write θ(u) = hu(1) and h in k[v] has for conjugates h =
h0, h1, . . . , hν−1. We then have

θ2(u) = θ(h)(θ(u))(1) = h1h
(1)
0 u(2)

and more generally

θ(u) = hu(1), θ2(u) = h1h
(1)
0 u(2), . . . , θν(u) = u = hν−1h

(1)
ν−2 . . . h

(ν−1)
0 u(ν)

We can choose g such that (ν)− 1 = np and n is not divisible by p: if gp−1 − 1 is divisible
by p2, then (g + p)p−1 − 1 is not divisible by p2 and we can change g to g + p. We have

1 = hν−1h
(1)
ν−2 . . . h

(ν−1)
0 vn

and we can then find t and s such that nt+ 1 = ps, so that

v = (vs)pr
(0)
ν−1r

(1)
ν−2 . . . r

(ν−1)
0

with r = ht0. The elements r = r0, r1, . . . , rν−1 have to be pairwise distinct since v is not of
pth power in k[α, v]. It follows2 that we have k[r0] = k[v] and so we can write vs = ψ(r). Also
the element w = u/ψ(r) satisfies

wp = r
(0)
ν−1r

(1)
ν−2 . . . r

(ν−1)
0

We have

v = ψ(r0)
p r

(0)
ν−1r

(1)
ν−2 . . . r

(ν−1)
0 . . . vν−1 = ψ(rν−1)

p r
(0)
ν−2r

(1)
ν−3 . . . r

(ν−1)
ν−1

6 Summary of the analysis

In order to build the roots of a solvable irreducible polynomial of prime degree p, we take a
divisor ν of p − 1 and a cyclic polynomial of degree ν with roots r = r0, r1, . . . , rν−1. We
assume that p− 1 = lν. We choose a primitive root g mod. p. We consider the elements, where
(i) denotes gli

s = r
(ν−1)
0 r

(ν−2)
1 . . . r

(0)
ν−1 s1 = r

(ν−1)
1 r

(ν−2)
2 . . . r

(ν−1)
0 . . . sν−1 = r

(ν−1)
ν−1 r

(ν−2)
0 . . . r

(ν−1)
ν−2

2Netto does not observe that we must have k[v] = k[r] but states this as an extra hypothesis. On the contrary,
Sylow in his analysis of Abel’s paper [3], states that it is easy to see, “on voit facilement”, that r is of degree ν
over k.
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We assume that the element s is not a pth power in K[r] so that the radical extension K[w]
with wp = s is of degree p over K[r]. We write (ν)− 1 = np and we define w1 = w(1)/rn0 so that
wp1 = s1 and

w2 = w
(1)
1 /rn1 = w(2)/r

n(1)
0 rn1 , w3 = w

(1)
2 /rn2 = w(3)/r

n(2)
0 r

n(1)
1 rn2 , . . .

and we have
w

(1)
ν−1/r

n
ν−1 = wwnp/sn = w

The elements w, w1, . . . , wν−1 are linearly independent over K[r] since v is not a pth power
in K[r] by hypothesis. (It follows from this that the elements s, s1, . . . , sν−1 are pairwise
distinct and that s is of degree ν over K.) The elements

x0 = q0 +
ν−1∑
i=0

ψ0(ri)wi +
ν−1∑
i=0

ψ1(ri)w
g
i + . . .+

ν−1∑
i=0

ψl−1(ri)w
gl−1

i

have exactly p conjugates (provided we have ψj(r) 6= 0 for some j).
Furthermore, any solvable polynomial of degree p can be obtained in this way.
Notice that we don’t require that n is not divisible by p.

7 Example: solvable equations of degree 5

7.1 Case ν = 1

We take an arbitrary v in K which is not a 5th power and the general form of the root is

q0 + u+ ψ1u
2 + ψ2u

4 + ψ3u
3

with q0 in K, and ψ1, ψ2, ψ3 in K and u5 = v.

7.2 Case ν = 2

We take a cyclic polynomial of degree 2 and root r, r1 such that r4r1 is not a 5th power in
K[r]. Then if we consider the radical extension w5 = r4r1 and w1 = w4/r3, so that w5

1 = r41r.
For any polynomials ψ0 and ψ1 the element

x0 = q0 + ψ0(r)w + ψ0(r1)w1 + ψ1(r)w
2 + ψ1(r1)w

2
1

has 5 conjugates (provided ψ0(r) 6= 0 or ψ1(r) 6= 0). On the other hand the element w has 10
conjugates of the form αiw and αiw1. If w is sent to αiw then w5 = r4r1 is not modified, so
that r is sent to r and w1 = w4/r3 is sent to α4iw1 and x0 is sent to

xi = q0 + ψ0(r)α
iw + ψ0(r1)α

4iw1 + ψ1(r)α
2iw2 + ψ1(r1)α

3iw2
1

On the other hand, if w is sent to αiw1 then r is sent to r1 and x0 is sent to

x4i = q0 + ψ0(r1)α
iw1 + ψ0(r)α

4iw + ψ1(r1)α
2iw2

1 + ψ1(r)α
3iw2

8



7.3 Case ν = 4

We take a cyclic polynomial of degree 4 and root r, r1, r2, r3 such that r8r41r
2
2r3 is not a 5th

power in K[r]. We consider the radical extension w5 = r8r41r
2
2r3 and

w1 = w2/r3, w2 = w4/r6r31, w3 = w8/r12r61r
3
2

Then for any ψ(r) 6= 0 the element

x0 = q0 + ψ(r)w + ψ(r1)w1 + ψ(r2)w2 + ψ(r3)w3

is of degree 5 over K.
There is in the reference [9] an analysis of the form of the general cyclic equation of degree

4.
Notice that, in his letter to Crelle where Abel gives the general form of solvable equations

of degree 5, Abel seems to limit himself to the case ν = 4. Similarly, Kronecker, in his 1853
note (where he announced what is now known as the Kronecker-Weber theorem), seems to limit
himself to the case where ν = p− 1. (This is pointed out in the reference [6].)

8 Primitive solvable polynomials

Abel’s paper [3] goes further than the analysis of solvable irreducible equations of prime degree.
This is explained in [4, 5], using however Galois theory in an essential way. We think that
the main idea can be explained without using Galois theory, following Sylow’s explanations of
Abel’s paper. This consists in organising the sequence of radical extensions

K, K[u1], K[u1, u2], . . .

in a special way. (This way appears in some drafts of Abel, according to Sylow.) First, we don’t
assume anymore that K contains all roots of unity and we start from the base field k, adding
roots of unity when needed. Second, at each stage, we have a normal extension K of k with a
complete description of all automorphisms of K/k. For the next stage, instead of adding only
one root of Xp−a if a is in K is not a pth power, we add first a primitive p-root of unity αp = 1
(if necessary) and then we add a root for each polynomial Xp − a′ where a′ is a conjugate of a
over k. We thus obtain an extension

L = K[α, u1, . . . , um]

of K[α] of degree pm for some m with umi = ai in K is a conjugate of a. We still have a complete
description of the automorphisms of L/k. Given any automorphism ϕ of K/k, we explain how
to extend it to an automorphism of L/k. First we have to choose ϕ(α) = α′. There are as
many choices as the degree of α over K. Then we choose a root u′1 in L of Xp − ϕ(a1). The
polynomial Xp−ϕ(a2) as no root in K[α′, u′1], since Xp− a2 as no root in K[α, u1]. We choose
a root u′2 in L of Xp − ϕ(a2). We define in this way ϕ(u1) = u′1, ϕ(u2) = u′2, . . .

As noted in [5], the group of automorphisms of the extension L/K[α] is commutative and
isomorphic to (Z/pZ)m.
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