Presheaf model of type theory

The set theoretic model of type theory interprets universes à la Russell. The (pre)sheaf models do not validate these universes. However we can validate a simpler version than universes à la Tarski, and this is what we present here, in the case of presheaf models.

1 Syntax

We list the rules of type theory, using a name-free syntax.

$$\begin{split} 1\sigma &= \sigma = \sigma 1 & (\sigma\delta)\nu = \sigma(\delta\nu) \\ (\sigma,u)\delta &= (\sigma\delta,u\delta) & \mathsf{p}(\sigma,u) = \sigma & \mathsf{q}(\sigma,u) = u \\ (A\sigma)\delta &= A(\sigma\delta) & A1 = A & (a\sigma)\delta = a(\sigma\delta) & a1 = a \\ \mathsf{app}(w,u)\delta &= \mathsf{app}(w\delta,u\delta) & \mathsf{app}(\lambda b,u) = b[u] & (\lambda b)\sigma = \lambda(b(\sigma\mathsf{p},\mathsf{q})) \\ u,v)\delta &= (u\delta,v\delta) & \mathsf{p}(u,v) = u & \mathsf{q}(u,v) = v & (\mathsf{p}u)\sigma = \mathsf{p}(u\sigma) & (\mathsf{q}u)\sigma = \mathsf{q}(u\sigma) \\ 1 &= (\mathsf{p},\mathsf{q}) & v = \lambda \mathsf{app}(v\mathsf{p},\mathsf{q}) \end{split}$$

We add the following rules for universes.

$$\begin{array}{ll} \frac{\Gamma \vdash A \; \mathsf{type}_n}{\Gamma \vdash |A| : U_n} & \frac{\Gamma \vdash T : U_n}{\Gamma \vdash El \; T \; \mathsf{type}_n} \\ \\ \frac{\Gamma \vdash A \; \mathsf{type}_n}{\Gamma \vdash A \; \mathsf{type}_{n+1}} & \frac{\Gamma \vdash T : U_n}{\Gamma \vdash T : U_{n+1}} \\ \\ \overline{\Gamma \vdash U_n \; \mathsf{type}_{n+1}} \end{array}$$

$$El \; |A| = \; A \qquad |El \; T| = T$$

With this presentation, we can define π T $V = |\Pi$ $(El\ T)$ $(El\ V)|$ if $\Gamma \vdash T : U_n$ and $\Gamma . El\ T \vdash V : U_n$. This satisfies El $(\pi$ T $V) = \Pi$ $(El\ T)$ $(El\ V)$.

2 Presheaf model

If \mathcal{C} is any small category, the presheaf model of type theory over \mathcal{C} can be described as follows.

To simplify the presentation, we don't consider the question of size.

We write X, Y, Z, ... the objects of \mathcal{C} and f, g, h, ... the maps of \mathcal{C} . If $f: X \to Y$ and $g: Y \to Z$ we write gf the composition of f and g. We write $1_X: X \to X$ or simply $1: X \to X$ the identity map of X. Thus we have (fg)h = f(gh) and 1f = f1 = f.

A context is interpreted by a presheaf Γ : for any object X of \mathcal{C} we have a set $\Gamma(X)$ and if $f: Y \to X$ we have a map $\rho \longmapsto \rho f$, $\Gamma(X) \to \Gamma(Y)$. This should satisfy $\rho 1 = \rho$ and $(\rho f)g = \rho(fg)$ for $f: Y \to X$ and $g: Z \to Y$.

A type $\Gamma \vdash A$ over Γ is given by a set $A\rho$ for each $\rho : \Gamma(X)$. Furthermore if $f : Y \to X$ we have $\rho f : \Gamma(Y)$ and we can consider the set $A\rho f$. We should have a map $u \longmapsto uf$, $A\rho \to A\rho f$ which should satisfy u1 = u and (uf)g = u(fg).

An element $\Gamma \vdash a : A$ is interpreted by a family $a\rho : A\rho$ such that $(a\rho)f = a(\rho f)$ for any $\rho : \Gamma(X)$ and $f : Y \to X$.

This can be seen as a concrete description of what is respectively a fibration and a section of this fibration.

If $\Gamma \vdash A$ we can define a new presheaf $\Gamma.A$ by taking $(\rho, u) : (\Gamma.A)(X)$ to mean $\rho : \Gamma(X)$ and $u : A\rho$. We define $(\rho, u)f = \rho f, uf$.

If we have a map $\sigma: \Delta \to \Gamma$ and $\Gamma \vdash A$ we define $\Delta \vdash A\sigma$ by $(A\sigma)\rho = A(\sigma\rho)$.

If $\Gamma \vdash A$ and $\rho : \Gamma(X)$ we define $|A|\rho$ to be the family $(A\rho f, f : Y \to X)$ with restriction map $A\rho f \to A\rho f g, u \longmapsto ug$ for $g : Z \to Y$.

We define U(X) as the set of families of sets Pf, $f: Y \to X$ together with restriction maps $Pf \to Pfg$, $u \longmapsto ug$ satisfying u1 = u and (ug)h = u(gh). We define then $\Gamma \vdash U$ by taking $U\rho = U(X)$ if $\rho: \Gamma(X)$.

If we have $\Gamma \vdash T : U$ we define $\Gamma \vdash El\ T$ by the equation $(El\ T)\rho = T\rho 1_X$ for $\rho : \Gamma(X)$.

We validate then $|El\ T| = T$ and $El\ |A| = A$.

If $\Gamma \vdash A$ we have $(El \mid A \mid) \rho = |A| \rho 1_X$ and $|A| \rho$ is the family $A \rho f$, $f : \to X$, so that $|A| \rho 1_X = A \rho 1_X = A \rho$. The restriction map $u \longmapsto uf$, $(El \mid A \mid) \rho \to (El \mid A \mid) \rho f$ is the restriction map defined by $A \rho \to A \rho f$. If $\Gamma \vdash T : U$ the family $(El \mid T) \rho f$, $f : Y \to X$ is defined by $T(\rho f) 1_Y = T \rho f$, and so $|El \mid T| = T$.

We can interpret dependent products $\Gamma \vdash \Pi$ A B and sums $\Gamma \vdash \Sigma$ A B if we have $\Gamma \vdash A$ and $\Gamma.A \vdash B$. For $\rho : \Gamma(X)$ we define $(u, v) : (\Sigma A B)\rho$ to mean $u : A\rho$ and $v : B(\rho, u)$. We define (u, v)f = uf, vf for $f : Y \to X$. On the other hand an element of $(\Pi A B)\rho$ is a family w indexed by $h : Y \to X$ with

$$wh: \prod_{u:A\rho h} B(\rho h, u)$$

and such that $\mathsf{app}(wh, u)g = \mathsf{app}(whg, ug)$ if $h: Y \to X$ and $g: Z \to Y$. We define then (wh)f = w(hf). We write w = w1.

We can interpret $\Gamma \vdash \lambda t : \Pi \land B$ whenever $\Gamma.A \vdash t : B$ and $\Gamma \vdash \mathsf{app}(v,u) : B[u]$ if $\Gamma \vdash u : A$ and $\Gamma \vdash v : \Pi \land B$. Here we write [u] the map $\Gamma \to \Gamma.A$ defined by $[u]\rho = \rho, u\rho$. If $\rho : \Gamma(X)$ and $f : Y \to X$ we define $\mathsf{app}((\lambda t)\rho f, a) = t(\rho f, a) : B(\rho f, a)$ for $a : A\rho f$. We take $\mathsf{app}(v,u)\rho = \mathsf{app}(v\rho,u\rho) : B(\rho,u\rho)$. We can then check that we have

$$app(\lambda t, u)\rho = t(\rho, u\rho) = t[u]\rho : B(\rho, u\rho)$$

if $\Gamma.A \vdash t : B$ and $\Gamma \vdash u : A$ and $\rho : \Gamma(X)$, which shows that the model validates the conversion rule $\Gamma \vdash \mathsf{app}(\lambda t, u) = t[u] : B[u]$.