
A parametric Type theory

May 6, 2014

Presheaf models of type theory

A group in a presheaf model over a category C can be seen as a functor from Copp to the category of
groups.

One way to present type theory is to use a generalized algebraic theory with 4 sorts: contexts, types,
terms and substitutions. Models of type theory form then a category.

If C is a category we define then a presheaf model over C to be a functory from Copp to the category
of models of type theory. This notion can itself be expressed as a generalized algebraic theory, where
each of the sorts: contexts, types, terms and substitutions is now indexed by an object of C and we add
constants to express the functoriality laws.

One way to think of this is as a kind of “non-standard” extension of type theory. The main application
is that we can now add new constants expressing operations that cannot be expressed in the standard
version. The goal of this note is to provide a concrete example of this phenomena, where we can formulate
laws expressing an internal version of parametricity.

1 A special case

We consider the category which has for objects finite set of symbols I, J, . . . not containing 0 and maps
f : I → J are set-theoretic functions f : I → J ∪ {0} such that f(i) = f(j) implies i = j whenever f(i)
and f(j) are in J . This can also be described as the category of partial bijection. We use the notations
f, g, h, . . . for the maps of this category. The associated presheaf category is equivalent to the category
of “nominal restriction sets” studied in section 9.1 of the book [3].

If x is not in I we write ιx : I → I, x the canonical injection. The map (x0) : I, x→ I which sends x to
0 is a retraction of ιx. It follows that u 7−→ uιx is injective. Any map f can be written as a composition
of “elementary” maps that are (x0), setting x to 0, the maps ιx, and the maps (xy), renaming x to a
fresh variable y.

We are going to describe presheaf models over the opposite of this category.
We believe that this gives a semantics to the parametricity part of the work on “Type Theory in

Colors” [2].

Γ `I
1 : Γ→I Γ

σ : ∆→I Γ δ : Θ→I ∆

σδ : Θ→I Γ

Γ `I A σ : ∆→I Γ

∆ `I Aσ
Γ `I t : A σ : ∆→I Γ

∆ `I tσ : Aσ

() `I
Γ `I Γ `I A

Γ.A `I
Γ `I A

p : Γ.A→I Γ

Γ `I A
Γ.A `I q : Ap

σ : ∆→I Γ Γ `I A ∆ `I u : Aσ

(σ, u) : ∆→I Γ.A

Γ.A `I B
Γ `I Π A B

Γ.A `I B Γ.A `I b : B

Γ `I λb : Π A B

Γ `I w : Π A B Γ `I u : A

Γ `I app(w, u) : B[u]

1



The equations are

1σ = σ1 = σ (σδ)ν = σ(δν)

A1 = A (Aσ)δ = A(σδ) u1 = u (uσ)δ = u(σδ)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u

(Π A B)σ = Π (Aσ) (B(σp, q))

app(w, u)δ = app(wδ, uδ) app(λb, u) = b[u] w = λ(app(wp, q)) (λb)σ = λ(b(σp, q))

We have used the defined operation [u] = (1, u)

So far, this is like describing a collection of models, indexed by the objects I. We add the new rules,
the restriction rules, which connect these models

Γ `I
Γf `J

Γ `I A
Γf `J Af

Γ `I a : A

Γf `J af : Af

σ : ∆→I Γ

σf : ∆f →J Γf

for f : I → J . We add also the equations which express that we have a functor from the category of
names to the category of models of type theory

Γ1 = Γ A1 = A a1 = a (Γf)g = Γ(fg) (Af)g = A(fg) (af)g = a(fg)

σ1 = σ (σf)g = σ(fg) (σδ)f = σf(δf)

(Aσ)f = Af(σf) (aσ)f = af(σf)

(σ, u)f = σf, uf pf = p qf = q

(Π A B)f = Π Af Bf

(λb)f = λ(bf) app(w, u)f = app(wf, uf)

Theorem 1.1 The rule
Γ `I w : Π A B Γ `I u : A

Γ `I app(w, u) : B[u]

is equivalent (modulo the other rules) to

Γ `I w : Π A B Γf `J u : Af

Γf `J app(wf, u) : Bf [u]
f : I → J

Proof. Indeed, if we assume the first rule and we have Γ `I w : Π A B and f : I → J then we get
Γ `J wf : (Π A B)f by restriction. But we also have (Π A B)f = Π Af Bf and if Γf `J u : Af then
we get app(wf, u) : Bf [u].

Conversely, if we assume the second rule, in the special case where I = J and f = 1 : I → I we get
the first rule since A1 = A and w1 = w.

If Γ `I A we can think of Γ as a context and A as a type dependent on some quantities represented
by the symbols in I, quantities which may get the value 0.

The maps u 7−→ uιx are injective since ιx(x0) = 1.
We identify systematically Γ with Γιx and A with Aιx and a with aιx and σ with σιx. In particular,

we have Γ `I,x a : A if Γ ` a : A.
If for instance Γ `I A and Γ `I,x u : A and there exists a such that Γ `I a : A and u = aιx = a, we

can express this by saying that a is independent of the symbol x.

If `x A we think of A as a line starting from the type ` A(x0).

2



2 Transforming a predicate in a line

In order to internalize parametricity, we add the following “non-standard” operations

Γ `I A Γ `I P : A→ U

Γ `I,x A×x P
Γ `I a : A Γ `I p : P a

Γ `I,x (a,x p) : A×x P

and
Γ `I,x w : A×x P

Γ `I w.x : P [w(x0)]

with the defining equations

(A×x P )(x0) = A (a,x p)(x0) = a (a,x p).x = p

and
(A×x P )(xz) = A×z P (a,x p)(xz) = a,z p

and
(w.x)(yz) = (w(yz)).x (w.x)(yx) = (w(xz)(yx)).z

The operation A×xP transforms a predicate over the type A to a line starting from A. This is similar
(but much simpler) to the univalence axiom, which transforms an equivalence between two types in a
line joining these types.

We notice that the type A ×x P behaves like a telescope (in deBruijn’s terminology). If we have
t : A×x P → B×xQ then t(x0) : A→ B and if u : A, p : P u then (t (u,x p)).x : Q (t(x0) u). So a term
of type t : A×x P → B ×x Q defines an element in (Σf : A→ B)(Πu : A)P u→ Q (f u).

With these rules, we can internalize parametricity. For instance, using a notation with names for
context, we can build a term of type P (f A a) in the context

f : (ΠX : U)X → X,A : U,P : A→ U, a : A, b : P a

namely the term (f (A×x P ) (a,x b)).x where x is a fresh symbol. Indeed we have

(f (A×x P ) (a,x b))(x0) = f(x0) (A×x P )(x0) (a,x b)(x0) = f A a

In this way, we have a “non-standard” proof of P (f A x). Notice that there is no “standard” proof of
P (f A x) in this context.

Another example is
L = (ΠX : U)X → (X ×x A→ X)→ X

which is such that
L(x0) = N = (ΠX : U)X → (X → X)→ X

Notice that the type L is a possible type for lists of elements in A while N is the type of Church numerals.
For instance if a0 a1 : A then

λXλaλf f (f (a,x a0),x a1)

is an element l : L representing the list [a0, a1] and such that

l(x0) = λXλaλf f (f a)

3 Semantics

A context Γ `I is interpreted by a family of sets Γf for f : I → J with restriction maps Γf → Γfg, ρ 7−→
ρg satisfying ρ1 = ρ and (ρg)h = ρ(gh). A type Γ `I A is interpreted by giving for each f : I → J
and ρ in Γf a set A(f, ρ) with restriction maps A(f, ρ) → A(fg, ρg), u 7−→ ug satisfying u1 = u and
(ug)h = u(gh). The judgement Γ `I a : A is interpreted by giving a family a(f, ρ) in A(f, ρ) such that

3



(a(f, ρ))g = a(fg, ρg). Finally a substitution σ : ∆ →I Γ is interpreted by giving a family of maps
σ : ∆f → Γf such that (σρ)g = σ(ρg).

In particular here is the interpretation of the rule Γ `I,x A ×x P assuming Γ `I , Γ `I A, Γ `I P :
A→ U . Given f : I, x→ J and ρ in the set Γιxf , we have to define a set (A×x P )(f, ρ). The definition
is by case whether or not f(x) = 0 or not.

If f(x) = 0 then we define (A×x P )(f, ρ) = A(ιxf, ρ).
If f(x) = y then we define (A×x P )(f, ρ) to be the set of pairs (u, v) with u in A(ιxf(y0), ρ(y0)) and

v in P (ιxf(y0), ρ(y0))(u). We use that ρ(y0) is in the set Γιxf(y0).

A similar interpretation holds for Γ `I,x (a,x p) : A×x P . Given f : I, x → J and ρ in the set Γιxf ,
we have to define (a,x p)(f, ρ) which should be an element of the set (A×x P )ρ. The definition is by case
whether or not f(x) = 0 or not.

If f(x) = 0 then we define (a,x p)(f, ρ) to be a(ιxf, ρ).
If f(x) = y then we define (a,x p)(f, ρ) to be the pair a(ιxf(y0), ρ(y0)), p(ιxf(y0), ρ(y0)).

We justify the rule Γ `I w.x : P (w(x0)) for Γ `I and Γιx `I,x w : A×x P . We take g : I → J and ρ
in the set Γg and we have to define (w.x)(g, ρ). We choose y not in J and define (g, x = y) : I, x→ J, y.
We have ριy in the set Γιx(g, x = y) since ιx(g, x = y) = gιy. The element w(ιx(g, x = y), ριy) is of the
form u, v and we define (w.x)(g, ρ) = v.

We justify the rule Γ.A `I if Γ `I A. For this we take f : I → J and we have to define a set (Γ.A)f .
We define this to be the set of pairs ρ, u with ρ in Γf and u in Aρ. If g : J → K we define (ρ, u)g = ρg, ug.

We define next Γ `I Π A B if Γ.A `I B. Given f : I → J and ρ in Γf we define (Π A B)ρ to be the
set of families wg with g : J → K such that

wg ∈
∏

u∈Aρg
B(ρg, u)

and (wg(u))h = w(gh)(uh) if h : K → L.
If Γ.A `I b : B we can then define the interpretation of Γ `I λb : Π A B. Given f : I → J and ρ in

Γf and g : J → L and u in Aρg we define

(λb)(f, ρ)g(u) = b(fg, (ρg, u))

since we have (ρg, u) in (Γ.A)fg.

4 The unit interval

We can introduce a non-standard type I with the rules

Γ `I
Γ `I I

Γ `I
Γ `I 0 : I

Γ `I
Γ `I x : I

x ∈ I

and the equalities

If = I 0f = 0 x(y0) = x x(x0) = 0 x(xy) = y x(yz) = x

5 Nominal presentation

We have defined a family of models MI connected by homomorphisms. We can associate to this one
model M∗. An object of M∗ (which can be a context, or a type, or a term, or a substitution) is a pair
(I, u) where I is a finite set of symbols and u an object of MI . We identify (I, u) and (J, v) if u and v
become equal in MI∪J .

Intuitively an object v of M∗ depends on finitely many symbols. We can define the independence
relation x#v to mean that v = (I, u) for some I not containing the symbol x. The model M∗ has an
endomorphism (x0) for each symbol x, and automorphisms (xy) for x and y distinct symbols.

4



6 Type-checking

We write A,B, . . . for type values and u, v, . . . for values and t, T, . . . for terms. Type-checking is specified
by two relations

I, ρ,Γ ` t ⇓ A I, ρ,Γ ` t ⇑

For the relation I, ρ,Γ ` t ⇓ A we have I, ρ,Γ, t given and A is inferred. For the relation I, ρ,Γ ` t ⇑ we
check that t has the right given type A.

In these relations Γ gives type values to variables, so Γ is of the form x1 : A1, . . . , xn : An while
ρ gives values to variables and is of the form x1 = u1, . . . , xn = un. The first argument I is a set of
names/symbols i1, . . . , im.

If I is a set of symbols we write idI : I → I the corresponding identity function.
We have an evaluation function t f ρ which takes one term t which has been type-checked using I,

one function f : I → J and one environment of J-values ρ, and which produces a J-value.
The rules are then

x : A in Γ

I, ρ,Γ ` x ⇓ A
I, ρ,Γ ` t0 ⇓ Π A F I, ρ,Γ ` t1 ⇑ A

I, ρ,Γ ` t0 t1 ⇓ F (t1 idI ρ)

I, ρ,Γ ` t0 ⇓ U.i A I, ρ,Γ ` t1 ⇑ A
I, ρ,Γ ` t0 t1 ⇓ U

I, ρ,Γ ` t0 ⇓ (Π A F ).i c I, ρ,Γ ` t1 ⇑ A(i0) I, ρ,Γ ` t2 ⇑ A.i (t1 idI ρ)

I, ρ,Γ ` t0 t1 t2 ⇓ F (t1 idI ρ,i t2 idI ρ)

I, ρ,Γ ` U ⇓ U
I, (ρ, x = X(I)),Γ, x : A ` t : F X(I)

I, ρ,Γ ` λx.t ⇑ Π A F

I, (ρ, x = X(I)),Γ, x : A ` t : U

I, ρ,Γ ` λx.t ⇑ U.i A
I, (ρ, x = X(I), y = Y (I)),Γ, x : A(i0), y : A.i X(I) ` t : (F (X(I),i Y (I)).i (c X(I))

I, ρ,Γ ` λx y.t ⇑ (Π A F ).i c

(I, i), ρ,Γ ` t ⇓ (A,i P )

I, ρ,Γ ` t.i ⇓ P ((t idI,i ρ)(i0))

I, ρ,Γ ` t ⇓ A A = B

I, ρ,Γ ` t ⇑ B
I, ρ,Γ ` T ⇑ U I, (ρ, x = X(I)),Γ, x : T idI ρ ` T ′ ⇑ U

I, ρ,Γ ` Π T (λx.T ′) ⇑ U
I, ρ(i0),Γ(i0) ` t ⇑ A(i0) I, ρ(i0),Γ(i0) ` p ⇑ A.i (t idI ρ(i0))

(I, i), ρ,Γ ` (t,i p) ⇑ A
The evaluation is defined by

x f ρ = ρ(x) (t′ t) f ρ = t′ f ρ (t f ρ)

(t,i p) f ρ = t (f − i) ρ(j0),j p (f − i) ρ(j0)

if f(i) = j and
(t,i p) f ρ = t (f − i) ρ

if f(i) = 0.
We also have an application

(λx.t) f ρ v = t f (ρ, x = v)

A new operation is A.i with

5



References

[1] M.Bezem, Th. Coquand and S. Huber. A model of type theory in cubical sets. Preprint, 2013.

[2] J.P. Bernardy, G. Moulin. Type Theory in Color, internalizing parametricity and erasure in type
theory, ICFP, 2013.

[3] A. M. Pitts. Nominal Sets. Names and Symmetry in Computer Science. Cambridge Tracts in
Theoretical Computer Science, 2013.

[4] A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets.
Manuscript, 17 September 2013.

[5] J. Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic 32
(1986), no. 3, 209–243.

[6] P.L. Curien. Substitutions up to isomorphisms. Fundamenta Informaticae, Volume 19, 1993, p. 51-85.

[7] P. Dybjer. Internal Type Theory. in Types for Programs and Proofs, Springer, 1996.

6


