An adequacy theorem for partial type theory

j.w.w. Simon Huber

Göteborg, May 11, 2017
Goals

Agda as a total fragment of a partial type theory

When we write a function without the termination checker we are in the partial fragment

(1) Provide a denotational semantics, so that we can justify program transformation at this level (cf. L. Augustsson’s PhD thesis on the semantics of lazy ML)

(2) Prove subject reduction and inversion rules for this fragment, e.g.

\[\vdash S \; M = S \; M' : N \]
\[\vdash \Pi(x : A)B = \Pi(x : A')B' \]
\[\vdash A = A' \quad \vdash x : A \vdash B = B' \]
An adequacy theorem for partial type theory

Goals

This is part of an adequacy result

E.g. if $[M] = 0$ then $M \rightarrow^* 0$

If $[M] = [M']$ then M and M' have the same observational behavior

In particular if a program transformation is justified semantically it will also be correct operationally
Type system

As in *Constructive mathematics and computer programming* but

- without the identity type and

- with *typed* abstraction $\lambda(x : A) M$

- we add an element $\omega : N$ with $\omega = S \omega : N$

Even without this element, it might be interesting to have a proof of subject reduction in a *weak* metatheory
Domain of values

\[D = [D \rightarrow D] + \Pi D [D \rightarrow D] + U_k + \mathbb{N} + 0 + S D \]

Non lifted sum: abstraction is not a constructor

We define an application operation \(b(a) \) on \(D \), e.g.

\[(\Pi c f)(a) = \bot \text{ and } 0(a) = \bot\]
Finite elements

• \(\perp \) or

• \(U_k, N \) or 0 or

• \(S \ u \) where \(u \) is finite

• \(\Pi \ a \ f \) where \(a \) is finite and \(f \) is a finite function or

• a finite function

and a finite function is of the form \(\perp \) or \((u_1 \mapsto v_1), \ldots, (u_n \mapsto v_n)\)
Among these finite elements we can define the consistent elements

E.g. $(\bot \mapsto 0), (0 \mapsto S \ 0)$ is not consistent

We define a preorder relation and a compatibility predicate

We get a conditional sup semilattice

A (general) element of the domain D is an ideal of this semilattice

Abstraction is not a constructor
Finite elements, examples

\[N \] finite element

\[\bot \mapsto 0 \] represents the constant function 0 (which does not look at its argument)

We can define \[a \to b \] as \(\Pi a (\bot \mapsto b) \)

\[\bot \to N \] and \(N \to \bot \) are compatible and the sup is \(N \to N \)

The \textit{strict} constant function 0 will be an «infinite» element, sup of all

\[0 \mapsto 0, \quad S \ 0 \mapsto 0, \quad S (S \ 0) \mapsto 0, \ldots \]
Typing rules

\[
\begin{align*}
\bot &: U_n \\
\bot &: \bot \\
U_i &: U_j & < j \\
N &: U_j \\
0 &: N \\
S u &: N \\
\bot &: N \\
a &: U_j \\
u_1 &: a \\
t_1 &: U_j \\
\ldots \\
u_n &: a \\
t_n &: U_j \\
\Pi a (u_1 \mapsto t_1) \ldots (u_n \mapsto t_n) &: U_j \\
u_1 &: a \\
v_1 &: f(u_1) \\
\ldots \\
u_n &: a \\
v_n &: f(u_n) \\
(u_1 \mapsto v_1) \ldots (u_n \mapsto v_n) &: \Pi a f
\end{align*}
\]
An adequacy theorem for partial type theory

Typing rules

The relation $t : a$ is *decidable* on finite elements

If $t_0 : a$ and $t_1 : a$ and t_0, t_1 compatible then $t_0 \lor t_1 : a$

If $a \leq b$ and $t : a$ then $t : b$

We *don’t* always have $u : a$ if $u \leq v$ and $v : a$

E.g. we have $(U_1 \leftrightarrow 0) \leq (\bot \leftrightarrow 0)$ and $\bot \leftrightarrow 0 : N \rightarrow N$

but *not* $U_1 \leftrightarrow 0 : N \rightarrow N$
Finitary projections

\[p : D \to D \] such that

\[p \circ p = p \]

\[p x \leq x \]

the image of \(p \) is a Scott domain, \(D(p) = \{ x \in D \mid p x = x \} \)

This is exactly determined by a set \(S \) of finite elements such that if \(a \) and \(b \) in \(S \) compatible then \(a \lor b \) in \(S \)
Finitary projections

We write $D(p) \triangleleft D$

$D(p)$ is a so-called subdomain of D
Any finite a defines a finitary projection

$$p_a u = \bigvee\{x : a \mid x \leq u\}$$

If we have $a : U_n$ and $f : a \to U_n$ then $\Pi\ a\ f : U_n$ and we have an isomorphism between $D(\Pi\ a\ f)$ and $\Pi(x \in D(a))D(f\ x)$

We have $u : a$ if, and only if, $p_a u = u$

E.g. for $a = N \to N$ we have $p_a (U_3 \mapsto 0) = \bot$ and $p_a (0 \mapsto 0) = (0 \mapsto 0)$
An adequacy theorem for partial type theory

Finitary projections

If \(a : U_k \) we write \(D(a) \) for \(D(p_a) \)

We have \(D(U_n) \cup D(U_{n+1}) \)

The union of all \(D(U_n) \) is a subdomain \(\text{Type} \cup D \)

This is the domain of (partial) types

If \(a \) in \(\text{Type} \) we have \(D(a) \cup D \) domain of (partial) elements of type \(a \)

We define in this way the denotational model of type theory
An adequacy theorem for partial type theory

Semantics

\[
\begin{align*}
[x] \rho &= \rho(x) & [M \ N] \rho &= [M] \rho([N] \rho) \\
[N] \rho &= N & [U_i] \rho &= U_i & [0] \rho &= 0 & [S \ M] \rho &= S ([M] \rho) \\
[\lambda(x : A)M] \rho &= u \mapsto [M](\rho, x : [A] \rho = u) \\
[\Pi(x : A)B] \rho &= \Pi([A] \rho) (u \mapsto [B](\rho, x : [A] \rho = u))
\end{align*}
\]

where $\rho, x : a = u$ means $\rho, x = p_a u$.
We could define the semantics of terms without typing rules

We consider now typing system with judgements $\Gamma \vdash M : A$ and $\Gamma \vdash M = M' : A$

If $\vdash M : A$ then $[M] : [A]$

If $\vdash M = M' : A$ then $[M] = [M']$
An adequacy theorem for partial type theory

Semantics and typing system

The use of finitary projections takes care of eta-conversion

\[\llbracket \lambda(x : N \to N) x \rrbracket = \llbracket \lambda(x : N \to N) \lambda(y : N) x \ y \rrbracket \]

Abstraction cannot be a constructor if we want to validate the rule

\[
\begin{align*}
\vdash f & : \Pi(x : A)B \\
\vdash g & : \Pi(x : A)B \\
x : A & \vdash f \ x = g \ x : B
\end{align*}
\]

\[\vdash f = g : \Pi(x : A)B \]
Adequacy theorem

We define the relation $M \rightarrow M'$ (weak-head reduction)

E.g. $(\lambda(x : A)M) \ N \rightarrow M(x/N)$

This is defined at the level of pure expressions (no need of typing)

We define $M \rightarrow_A M'$ to mean $M \rightarrow M'$ and $M = M' : A$

We define $M \rightarrow_{\text{type}} M'$ to mean $M \rightarrow M'$ and $M = M' \text{ type}$
Semantics and typing system

By induction on a finite element in Type we define a predicate $A|a$ on type expressions.

We also define an equivalence relation $A = A'|a$ on the corresponding subset.

If we have $A|a$ and u finite in $D(a)$ we define a predicate $M : A|u : a$ on expressions of type A.

and an equivalence relation $M = M' : A|u : a$ on the corresponding subset.

E.g. $A|\perp$ means that A is a type expression (no information).
An adequacy theorem for partial type theory

Semantics and typing system

$A | N$ means $A \rightarrow^{*}_{\text{type}} N$

$A = A' | N$ means $A \rightarrow^{*}_{U_n} N$ and $A' \rightarrow^{*}_{\text{type}} N$

$M : A | u : N$ is defined by induction on u

$M : A | 0 : N$ means $M \rightarrow^{*}_{A} 0$

$M : A | S u : N$ means $M \rightarrow^{*}_{A} S M' \text{ and } M' : A | u : N$

For instance we have $\omega : N | S^k \bot : N$ for all k.
An adequacy theorem for partial type theory

Semantics and typing system

If $a = \Pi b f$ then $A|a$ means that

- $A \rightarrow^*_{\text{type}} \Pi(x : B)F$ and

- $B|b$ and $N : B|v : b$ implies $F(x/N)|f(v)$ and

- $N_0 = N_1 : B|v : b$ implies $F(x/N_0) = F(x/N_1)|f(v)$
In this case, we define $M : A \mid w : a$ to mean

$-N : B \mid v : b$ implies $M \begin{array}{l} N : F(x/N) \mid w(v) : f(v) \end{array}$ and

$-N_0 = N_1 : B \mid v : b$ implies $M \begin{array}{l} N_0 = M \begin{array}{l} N_1 : F(x/N_0) \mid w(v) : f(v) \end{array} \end{array}$

and we define $M_0 = M_1 : A \mid w : a$ to mean

$-N : B \mid v : b$ implies $M_0 \begin{array}{l} N = M_1 \begin{array}{l} N : F(x/N) \mid w(v) : f(v) \end{array} \end{array}$.
Semantics and typing system

For instance \(a = \Pi \ N \ (0 \mapsto N, \ S \ 0 \mapsto U_3) \)

\(A \vdash a \) means that \(A \rightarrow_{\text{type}}^{*} \Pi(x : B)F' \)

with \(B \vdash N \) that is \(B \rightarrow_{\text{type}}^{*} N \)

and if \(M \rightarrow_{N}^{*} 0 \) and \(M' \rightarrow_{N}^{*} 0 \) then \(F(x/M) = F(x/M')|N \)

and if \(M \rightarrow_{N}^{*} S \ 0 \) and \(M' \rightarrow_{N}^{*} S \ 0 \) then \(F(x/M) = F(x/M')|U_3 \)
The main properties of this relation are of the form

If $b \leq a$ in Type and $A|a$ then $A|b$

If $b \leq a$ in Type and $A|a$ and u in $D(b)$ then $M : A|u : b$ if, and only if, $M : A|u : a$

If $A|a$ and $A|a'$ and a and a' are compatible then $A|a \lor a'$
An adequacy theorem for partial type theory

Semantics and typing system

It follows from this that we can extend the relations $A \vdash a$ and $A = A' \vdash a$ and $M : A \vdash u : a$ and $M = M' : A \vdash u : a$ to a and u infinite element

This defines a logical relation between the initial/term model and the denotational model

Hence we have $A \models [A]$ if A is a type expression and $M : A \models [M] : [A]$ if $M : A$ and $M = M' : A \models [M] : [A]$ if $M = M' : A$
Corollary: If $S \ M = S \ M' : N$ then $M = M' : N$

We can do the same reasoning in an arbitrary, but fixed context.

We interpret the variables of this context by \perp.

We get first that if $\Gamma \vdash \Pi(x : A)B = \Pi(x : A')B'$ then $\Gamma \vdash A = A'$ and $\Gamma \vdash M : A$ implies $\Gamma \vdash B(x/M) = B'(x/M)$.

but the context is arbitrary so we also get

Corollary: If $\Gamma \vdash \Pi(x : A)B = \Pi(x : A')B'$ then $\Gamma \vdash A = A'$ and $\Gamma, x : A \vdash B = B'$.
Applications and refinement

Subject reduction follows from the fact that \(\Pi \) is one-to-one.

We can refine the semantics by adding a token \(T \), with \(T(a) = T \).

It represents the information: to reduce to a neutral term.
We add the following typing rule

\[
\begin{array}{c}
\Pi a f : U_n \\
T : U_m \\
\hline \\
T : \Pi a f \\
\end{array} \]

\[
\begin{array}{c}
T : N \\
T : T \\
\hline \\
\end{array} \]
We define $M = M' : A|T : a$ to mean that M and M' reduce to neutral terms of the «same shape»

Using subject reduction, and reasoning in an arbitrary context one can then show

if $M = M' : A$ then M and M' have the same Böhm tree

If we are in the total fragment of type theory, the Böhm trees are finite and we get a decision algorithm for conversion

Note that all this can be done in a «weak» metatheory (all definitions are by induction on the finite element of the domain D)