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1. Introduction

Building on ideas from Northcott’s book Finite Free Resolutions [5], T. Co-
quand and C. Quitté [3] presented a proof of the fact that if the ideal generated by
some elements a1, . . . , an of a commutative ring has a finite free resolution, there
exists a greatest common divisor of a1, . . . , an. As they mention, the proof is con-
structive, giving an algorithm to compute this greatest common divisor. I wrote an
implementation of this algorithm, and of some other ideas used in the proof, for the
homalg project [4] [2], an algorithmic homological algebra project implemented in
GAP4. In this bachelor thesis, I reproduce the proof for the algorithm and discuss
its implementation.

The code for this implementation is completely contained in the files
ExteriorAlgebra.gd and ExteriorAlgebra.gi in the Modules package [1] of
homalg.

In the following, let R be a commutative ring with one.

2. Regularity

Definition 1. We say that a ∈ Rn is regular if for x ∈ R, ax = 0 implies x = 0.
Similarly, for an R-module E, we say that a ∈ Rn is E-regular if for x ∈ E,

a1x = . . . = anx = 0 implies x = 0.

This definition can be rephrased to give a way to define higher-order regularity.
First we define, again for a ∈ Rn, the map

(1) da : R→ Rn, x 7→ ax.

Given an R-module E, using the tensor product, we also get the map

(2) da : E → En, x 7→ ax.

Obviously, a is (E-) regular exactly if ker da = 0. Now, to define higher-order
versions of these maps, we need the exterior algebra.

3. Exterior Algebra

Let M be an R-module.

Definition 2. The exterior algebra
∧

(M) is the free algebra with a map i : M →∧
(M) satisfying i(x) ∧ i(x) = 0 for all x ∈M .

In this case, all we need is the exterior algebra over a free module M = Rn.
This allows us to concretely represent

∧
(M) as a free R-module of rank 2n: We

write eI , I ⊆ {1, . . . , n} for the 2n elements of the basis of
∧

(M) = R2n , and define

(3) eI ∧ eJ := eI∪J
∏

(i,j)∈I×J

(i, j),

where (i, j) = 1 if i < j, (i, j) = 0 if i = j, and (i, j) = −1 if i > j. This
operation can be extended to

∧
(M) using bilinearity. It is then obvious that the

resulting operation makes
∧

(M) into an associative algebra; and, using i : M →∧
(M), (a1, . . . , an) 7→

∑n
i=1 aie{i}, satisfies Definition 2.

In the following, we will identify a and i(a) for a ∈ Rn.
This construction also makes it obvious that

∧
(Rn) is a graded algebra; each

graded part
∧p

(Rn) is a free R-module of rank
(
n
p

)
, using the elements eI , where

|I| = p, as basis. We will call
∧p

(M) the p-th exterior power of M .
In homalg,

∧p
(M) can be constructed using ExteriorPower(p, M). This

caches the exterior powers of M in the attribute ExteriorPowers. The exterior
powers themselves get the following properties and attributes:
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Attribute Value
IsExteriorPower true

ExteriorPowerExponent p

ExteriorPowerBaseModule M
Table 1. exterior power attributes

Elements of modules marked with IsExteriorPower will then be automati-
cally (using an immediate method) marked as IsExteriorPowerElement. The ∧
operator is implemented in the operation Wedge. Two helper functions,
_Homalg_IndexCombination and _Homalg_CombinationIndex, help converting the
sets used to index the canonical basis of

∧p
(Rn) from and to normal (1-based) nat-

ural number indices.

4. Koszul complex and Grade

It is easy to see that
∧0

(Rn) ∼= R, and
∧1

(Rn) ∼= Rn. Thus, our map da from

Equation 1 could be seen to go from
∧0

(Rn) to
∧1

(Rn). As promised, this gives
us higher-order versions of da:

(4) da,p :
∧p

(Rn)→
∧p+1

(Rn), x 7→ a ∧ x.

Since, for x ∈
∧p

(Rn), (da,p+1 ◦da,p)(x) = a∧ (a∧x) = (a∧a)∧x = 0∧x = 0,
this gives rise to a complex.

Definition 3. The cohomological complex K•(a) := (
∧•

(Rn), da,•) is called the
Koszul complex :

0 −→ R
da,0−−→ Rn da,1−−→

∧2
(Rn)

da,2−−→ · · · da,n−1−−−−→
∧n

(Rn) −→ 0

By taking the tensor product with the R-module E, we obtain the E-valued Koszul
complex K•(a;E) := (

∧•
(Rn)⊗ E, da,•) = (

∧•
(E), da,•).

This construction is implemented in the Modules package of homalg as the
operation KoszulComplex(a, E); where a is passed as a list.

Note that constructing the Koszul complex is an exact functor in the second
argument, i.e. any map of R-modules E → F induces a chain map K•(a;E) →
K•(a;F ), and if E → F → G is exact, then so is K•(a;E)→ K•(a;F )→ K•(a;G).
Coquand and Quitté make heavy use of this fact and the long exact sequence this
induces (via the zig-zag lemma).

In the following, we will denote the cohomology modules of these complexes by
Hp(a) and Hp(a;E), respectively. Obviously, K•(a) = K•(a;R).

Definition 4. We now define the grade of a on E by requiring that grade(a;E) ≥ k
if Hp(a;E) = 0 for all p < k.

We will write grade(a) for grade(a;R).

In homalg, this is implemented as Grade_UsingKoszulComplex. As we will
show later, the grade depends only on the ideal 〈a1, . . . , an〉; thus, the homalg
operation works both on lists of ring elements and on ideals. For both argument
types, the module E can be passed as a second parameter. This also provides
a method for the homalg operation Grade(I, E), where I is an ideal and E a
module.

This definition gives the desired higher-order regularity:

Remark. Let a = (a1, . . . , an) ∈ Rn.
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(1) grade(a;E) ≥ 1 if and only if a is E-regular.
(2) grade(a;E) ≥ 2 if a is E-regular and for each (x1, . . . , xn) ∈ En with

aixj − ajxi = 0 for all i,j, there exists an x′ ∈ E such that xi = aix
′.

Proof. (1): grade(a;E) ≥ 1 means that H0(a;E) = 0, i.e. ker da,0 = 0.
(2): grade(a;E) ≥ 2 iff additionally H1(a;E) = 0, i.e. im da,0 = ker da,1.
Let x ∈ ker da,1; that means x = (x1, . . . , xn) ∈ En and a ∧ x = da,1(x) = 0.

Looking at the components of a ∧ x in the canonical basis e{i,j}, that is equivalent
to the fact that for all {i, j} ⊆ {1, . . . , n}, we have aixj − ajxi = 0.

On the other hand, x ∈ im da,0 is equivalent to the condition that there is an
x′ ∈ E such that xi = aix

′. �

If we have a, x ∈ Rn satisfying the condition in (2) (i.e., aixj − ajxi = 0 for all
i, j), we call them proportional ; thus, if a and x are proportional and grade(a) ≥ 2,
then x is a multiple of a.

We will make use of this property of grade 2 through the following lemma:

Lemma 1. Let (a1, . . . , an) ∈ Rn be regular and g, b1, . . . , bn ∈ R such that
(a1, . . . , an) = g(b1, . . . , bn). If grade(b1, . . . , bn) ≥ 2, then g is regular and is
the greatest common divisor of a1, . . . , an.

Proof. Were g not regular, there would have to exist an x ∈ R, x 6= 0 such
that xg = 0. But that would imply that xa = xgb = 0, contrary to the assumption
that a is regular.

Now let s ∈ R be another element which divides all ai, i.e. a = sc for some
c = (c1, . . . , cn) ∈ Rn. By the same reasoning as above, s is regular, and thus b and
c are proportional. Since grade(b) ≥ 2, this implies that c is a multiple of b, i.e.
there exists a t ∈ R such that c = tb. We conclude gb = a = sc = stb, and since b
is regular, g = st. �

5. Other operations on the exterior algebra

For the algorithm, we will need several other operations on exterior algebra
elements, which we will define now.

We start with a generalization of the interior product:

Definition 5. For a, b ∈ Rn, we have a · b =
∑
aibi. Using induction on k, we

define

a · ei0...ik := aioei1...ik − ei0 ∧ (a · ei1...ik),

and then a · ω ∈
∧k

(Rn) for ω ∈
∧k+1

(Rn) by linearity.

This immediately gives the following equation, again for a, b ∈ Rn and ω ∈∧k+1
(Rn):

(5) a · (b ∧ ω) = (a · b)ω − b ∧ (a · ω)

Since
∧k

(Rn) has a canonical basis, we can also define the direct analogon to
the dot product in Rn:

Definition 6. For ω =
∑
ωIeI , ν =

∑
νIeI ∈

∧k
(Rn), we define

(ω | ν) :=
∑

ωIνI .

Note that (ω | eI) simply means the component of ω with the index I in the
canonical basis. It is easy (if a bit tedious) to see that

ei · eI =

{
(−1)|{k∈I|k<i}|eI\{i} if i ∈ I
0 otherwise.
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This implies (ei · eI | eJ) = (ei ∧ eJ | eI) = (eI | ei ∧ eJ), which thanks to linearity
then gives

(6) (a · ω | ν) = (ω | a ∧ ν).

Two other operations are left:

Definition 7. Since
∧n

(Rn) is a free module of rank 1, we define for ω ∈
∧n

(Rn)

[ω] := (ω | e{1,...,n}),
i.e. the single component of ω in the canonical basis.

Let p+ q = n. To any ω ∈
∧p

(Rn) we associate

ω∗ :=
∑
|I|=q

[eI ∧ ω]eI ∈
∧q

(Rn).

These two operations are directly used in the algorithm. In Modules, [a] is
implemented as SingleValueOfExteriorPowerElement(a), and a∗ is
ExteriorPowerElementDual(a).

Now we can prove the main tool for the correctness proof of the algorithm. We
first give two lemmata and then prove the main theorem.

Lemma 2. Let v ∈ Rn be orthogonal to u1, . . . , up ∈ Rn. Then u1 ∧ . . . ∧ up is

orthogonal to any v ∧ β for β ∈
∧p−1

(Rn) (i.e., (u1 ∧ . . . ∧ up | v ∧ β) = 0).

Proof. We have v · (u1 ∧ . . . ∧ up) = 0 by induction on p since

v · (u1 ∧ ω) = (v · u1)ω − u1 ∧ (v · ω)

. Thus, (u1 ∧ . . . ∧ up | v ∧ β) = (v · (u1 ∧ . . . ∧ up) | β) = 0. �

Lemma 3. For a1, . . . , an, b1, . . . , bp ∈ Rn, write ri1...ip for the element [a1∧. . .∧an]
where aik is replaced by bk for 1 ≤ i1 < . . . < ip ≤ n. We then have

[a1 ∧ . . . ∧ an]b1 ∧ . . . ∧ bp =
∑

ri1...ipai1 ∧ . . . ∧ aip .

Proof. We show this in the case that R = Z[X]. From this, the general case
follows via tensor product. In this case, we have a fraction field K. The vectors
a1, . . . , an can be assumed to be linearly independent, since otherwise a1∧. . .∧an =
0 and the statement is thus trivial. Hence, a1, . . . , an form a basis of Kn, and
because both sides of the equation are linear in b1, . . . , bp, we just need to check the
case where b1, . . . , bp are basis vectors, i.e. b1 = aj1 , . . . , bp = ajp . In this case, the
equality becomes trivial, since ri1...ip = 0 except when i1 = j1, . . . , ip = jp. �

Theorem 4. Let u1, . . . , up, v1, . . . , vq ∈ Rn pairwise orthogonal, i.e. ui ·vj = 0 for
all i, j, and p+ q = n. Then the elements ω := u1 ∧ . . . ∧ up and β := v1 ∧ . . . ∧ vq
are such that ω and β∗ are proportional.

Proof. ω and β∗ being proportional means that for any two subsets I and J
of Nn with |I| = |J | = p, we have

0 = (β∗ | eI)(ω | eJ)− (β∗ | eJ)(ω | eI)

= [eI ∧ β](ω | eJ)− [eJ ∧ β](ω | eI)

= (ω | [eI ∧ β]eJ − [eJ ∧ β]eI).

Write i1 < . . . < ip ∈ I and j1 < . . . < jp ∈ J . Using Lemma 3, we see that
[eI∧β]eJ = [ei1∧ . . .∧eip∧v1∧ . . .∧vq]ej1∧ . . .∧ejp is a sum of elements of the form
vl∧αl, plus the element r1...pei1∧. . .∧eip = [ej1∧. . .∧ejp∧v1∧. . .∧vq]ei1∧. . .∧eip =
[eJ ∧ β]eI , which is cancelled. From Lemma 2, it follows that ω is orthogonal to
each of these summands and hence the entire sum. �
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6. The inductive definition of grade

In Finite Free Resolutions, Northcott gives a different (but equivalent) defini-
tion of the grade. We need this definition to prove a small lemma.

Lemma 5. Let a = (a1, . . . , an) ∈ Rn. The multiplication by any element x ∈
〈a1, . . . , an〉 kills each H l(a;E).

Proof. Let x ∈ 〈a1, . . . , an〉; then we can write x = b · a for some b ∈ Rn.
Furthermore, let α ∈ H l(a;E), which implies α ∈ ker da,l =⇒ a ∧ α = 0. Using
the generalized interior product, and Equation 5 in particular, we get

xα = b · (a ∧ α) + a ∧ (b · α)

= a ∧ (b · α) ∈ im da,l−1

=⇒ xα = 0.

�

Lemma 6. If x is an E-regular element in 〈a1, . . . , an〉, then we have a short exact
sequence

0→ Hi(a;E)→ Hi(a;E/xE)→ Hi+1(a;E)→ 0.

In particular, grade(a;E) ≥ k + 1 exactly if grade(a;E/xE) ≥ k.

Proof. Since x is E-regular, we have a short exact sequence

0→ E
x−→ E → E/xE → 0.

This induces a short exact sequence of complexes

0→ K•(a;E)
x−→ K•(a;E)→ K•(a;E/xE)→ 0,

to which we can associate a long exact sequence

· · · → Hi(a;E)
x−→ Hi(a;E)→ Hi(a;E/xE)→ Hi+1(a;E)

x−→ Hi+1(a;E) · · · .
Because of Lemma 5, the multiplication with x in this sequence is simply the zero
map, which finally yields

0→ Hi(a;E)→ Hi(a;E/xE)→ Hi+1(a;E)→ 0.

The exactness of this complex implies that

Hi(a;E/xE) = 0 =⇒ Hi+1(a;E) = 0

and
Hi+1(a;E) = Hi(a;E) = 0 =⇒ Hi(a;E/xE) = 0,

which proves grade(a;E) ≥ k + 1 ⇐⇒ grade(a;E/xE) ≥ k. �

As Coquand and Quitté remark, the grade does not change if we add inde-
terminates to the ring. This is useful because of the following theorem, which is
proved in Finite Free Resolutions [5]:

Theorem 7. If a = (a1, . . . , an) ∈ Rn is regular, then for any sequence of distinct
monomials m1, . . . ,mn, the polynomial a1m1 + . . .+ anmn is regular.

Proof. Suppose that f = a1m1 + . . .+anmn is not regular, i.e. a zero divisor.
Then there is a polynomial g = b1l1 + . . . + bklk with monomials li such that
fg = 0. Choose g such that its number of monomials is minimal. We assume that
m1 > m2 > . . . > mn and l1 > l2, . . . , ln in lexicographical order. Then a1b1 has to
be 0. This implies that a1g has fewer monomials than g, and because fa1g = 0, the
polynomial a1g has to be 0. Thus, (f − a1m1)g = 0. This implies a2b1 = 0, and by
repeating this argument, we get a1b1 = a2b1 = . . . = anb1 = 0, which means that a
is not regular. �
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For instance, a1 + a2X + . . .+ anX
n−1 is regular in R[X]. Thus, every regular

ideal (i.e., the ideal 〈a1, . . . , an〉 if a is regular) contains a regular element, at least
in a polynomial extension of R; this is called a latent regular element.

Now we can give the inductive definition of the grade from Finite Free Resolu-
tions:

Theorem 8. The following statements are equivalent:

• grade(a;E) ≥ k + 1
• for all regular elements x ∈ 〈a1, . . . , an〉, we have grade(a;E/xE) ≥ k
• there is a regular (maybe latent) element x ∈ 〈a1, . . . , an〉 such that

grade(a;E/xE) ≥ k.

Proof. This follows directly from Lemma 6, using the latent regular element
from Theorem 7. �

We can now easily show the following lemma, which also implies that the grade
only depends on the ideal 〈a1, . . . , an〉:

Lemma 9. Let b := (b1, . . . , bm) ∈ Rm with b1, . . . , bn ∈ 〈a1, . . . , an〉, and
grade(b;E) ≥ k. Then we have grade(a;E) ≥ k.

Proof. This is obvious for k = 0.
Let k > 0. grade(b;E) ≥ k implies that there exists a regular (maybe latent)

element x ∈ 〈b1, . . . , bm〉 ⊆ 〈a1, . . . , an〉 such that grade(b;E/xE) ≥ k − 1. By
induction, we then have grade(a;E/xE) ≥ k − 1 and thus grade(a;E) ≥ k. �

7. The Cayley determinant

Now we come to the Cayley determinant of a complex, which will be our great-
est common divisor. The following applies to a complex of free modules

(7) Fm
Am−−→ Fm−1

Am−1−−−−→ Fm−2 → · · · → F1
A1−−→ F0,

where

Fm = Rrm , Fm−1 = Rrm+rm−1 , Fm−2 = Rrm−1+rm−2 , . . . , F1 = Rr2+r1 , F0 = Rr1 .

Also, we require that grade(∆ri(Ai)) ≥ 2 for i = m, . . . , 2 and grade(∆r1(A1)) ≥ 1.
We will see the elements of

∧p
(Rn) as column vectors (in the canonical basis).

In the homalg implementation, this depends on whether Rn is given as a left or
right module; it takes care to switch rows and columns when a complex of left
modules is given.

For a matrix A ∈ Rm×n, we can see the columns of A as column vectors
u1, . . . , un in Rm. We write ∧p(A) for the matrix having the wedge products
ui1 ∧ . . . ∧ uip , 1 ≤ i1 < . . . < ip ≤ n as columns. To help with this calcu-
lation, the function WedgeMatrixBaseImages(A, J, M) was implemented, which
computes the wedge product of the columns (resp. rows for left modules) of the
matrix A indexed by the list J, treating them as elements of the module M. Note
that the matrix ∧p(A) has the p-minors ∆p(A) as its elements. This is easy to see
by checking the definition of the determinant.

The Cayley determinant is the last element of an inductively defined sequence.
We calculate this sequence βm, βm−1, . . . , β1, where βi ∈

∧ri(Fi−1), using the fol-
lowing steps:

• βm := ∧rm(Am).
• To calculate βi for i < m:

(1) Let p := ri+1, q := ri, s := ri−1, and write the columns of the matrix
AT

i as column vectors v1, . . . , vq+s ∈ Fi = Rp+q.
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(2) For every subset J = j1 < . . . < jq ⊆ Nq+s, compute vJ := vj1 ∧
. . . ∧ vjq ∈

∧q
(Fi). Then find a γJ ∈ R such that v∗J = γJβi+1 (we

will prove that such a γJ is guaranteed to exist).
(3) Finally, the element βi is constructed by βi =

∑
γJeJ .

Repeat these steps to calculate βm−1, βm−2, . . . , β1.

Since β1 ∈
∧r1(Rr1), we have an element [β1] ∈ R. This is called the Cayley

determinant of the complex (7). Now, we show that the γJ from step 2 actually
exists:

Lemma 10. With the above definitions, the following holds:

• ∧ri(Ai) = βi(β
∗
i+1)T for i = m, . . . , 1 (setting βm+1 := 1)

• grade(βi) ≥ 2 for i = m, . . . , 2
• γJ exists for all subsets J in every step.

Proof. The first part is trivial for i = m.
Let i < m, and assume ∧ri+1(Ai+1) = βi+1(β∗i+2)T with grade(βi+1) ≥ 2 and

βi+2 regular. We define r := ri+2; thus we have

Rr+p Ai+1−−−→ Rp+q Ai−→ Rq+s.

Since (7) is a complex, we have AiAi+1 = 0. Writing the columns of Ai+1 as vectors
u1, . . . , ur+p, this implies ui ·vj = 0 for all i, j. Using Theorem 4, we get, for subsets
I = i1 < . . . < ip of Nr+p and J = j1 < . . . < jq of Nq+s, that uI := ui1 ∧ . . . ∧ uip
and v∗J = (vj1 ∧ . . . ∧ vjq )∗ are proportional. By assumption, we have

uI = (β∗i+2 | eI)βi+1.

Thus, since β∗i+2 is regular, βi+1 and v∗J are proportional, and since grade(βi+1) ≥ 2,
there exists a γJ such that v∗J = γJβi+1. This is equivalent to vJ = γJβ

∗
i+1, and

(remembering that γJ = (βi | eJ) by definition) hence we get ∧q(AT
i ) = β∗i+1β

T
i ,

i.e. ∧q(Ai) = βi(β
∗
i+1)T .

This also implies that ∆q(Ai) ⊆ 〈βi〉, and thus by Lemma 9 grade(βi) ≥ 2 if
grade(∆q(Ai)) ≥ 2. �

Since we have that ∆r1(A1) is regular, ∆r1(A1) = ∧r1(A1) = β1(β∗i+1)T and
grade(β∗i+1) ≥ 2, by Lemma 1 [β1] is a greatest common divisor of ∆r1(A1).

In homalg, the inductive step of the above algorithm is implemented in the
global function CayleyDeterminant_Step(beta, d, p, q, s) (beta is the ele-
ment calculated in the previous step, i.e. βi+1 when calculating βi, and d is the
map represented by the matrix Ai). The calculation of vJ is done using the function
WedgeMatrixBaseImages mentioned above. Note that this could be done more effi-
ciently, since many subproducts are calculated several times for different sets J and
could instead be reused. The function then finds the factor γJ by simply dividing
by the first non-zero component of βi+1. Also note that the elements βi are never
really used as exterior power elements in the algorithm itself; only their components
are accessed. For this reason, they are stored simply as lists.

The Cayley determinant itself is then calculated by the operation
CayleyDeterminant(C), which just goes through the morphisms in the complex,
calculating the sequence ri and calling CayleyDeterminant_Step to compute βi.
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8. Application to finite free resolutions

We still need to prove that certain complexes satisfy the conditions given for
the complex (7). This requires some new tools:

Lemma 11. Let (a1, . . . , an) ∈ Rn be regular and J = 〈b1, . . . , bm〉 ⊆ R a finitely
generated ideal. If J = 0 in each localization R[1/ai], then J = 0 in R; and if
(b1, . . . , bm) is regular in each localization R[1/ai], then (b1, . . . , bm) is regular in
R.

Proof. We can assume each ai not to be a zero divisor. Then x ∈ J implies
x = 0 in each R[1/ai], which implies aix

ai
= 0 =⇒ aix = 0 and thus, because of

the regularity of (a1, . . . , an), we get x = 0 in R.
Now let x ∈ R such that xb1 = . . . = xbm = 0; this implies x = 0 in each

localization, and hence x = 0 in R by the same argument as above. �

This directly implies the following lemma:

Lemma 12. Let (x1, . . . , xm) ∈ Rm be regular and grade(a;E) ≥ k in each local-
ization R[1/xi]. Then grade(a;E) ≥ k in R.

Two other statements are required:

Theorem 13. (MacCoy) If A represents an injective linear map Rp → Rq, then
∆p(A) is regular.

Proof. We look at the first column a1, . . . , aq of A. Since A is injective,
(a1, . . . , aq) has to be regular. Thus, using Lemma 11, we just need to check ∆p(A)
over each R[1/ai]. But in this case, the matrix A is equivalent to a matrix of the
form (

1 0
0 B

)
,

where B is injective itself, and ∆p−1(B) = ∆p(A). Thus, ∆p(A) is regular by
induction. �

Lemma 14. If the sequence

E
A−→ F

B−→ G
C−→ H

is exact, and a ∈ R is H-regular, then

E
A−→ F

B−→ G

is exact modulo 〈a〉.

Proof. Let y ∈ F such that By = 0 modulo 〈a〉; i.e. there exists a z ∈ G
such that By = az. This implies CBy = Caz = aCz = 0 =⇒ Cz = 0, since a
is H-regular. Hence, because the first complex is exact, there exists a y1 ∈ F such
that z = By1. We then have B(y − ay1) = 0, which (again because of exactness)
implies that y−ay1 is in the image of A, i.e. y is in the image of A modulo 〈a〉. �

Now we can prove this useful theorem:

Theorem 15. If the sequence

0→ Fm
Am−−→ Fm−1

Am−1−−−−→ Fm−2 → · · · → F1
A1−−→ F0,

with Fi = Rpi , is exact, then either the ring is trivial or we can define the sequence
rm := pm, rm−1 := pm−1− rm, . . . , r0 := p0− r1 with ri ≥ 0 and grade(∆rk(Ak)) ≥
k.
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Proof. By Theorem 13, ∆rm(Am) is regular. Using Lemma 14, we have that

0→ Fm
Am−−→ Fm−1

Am−1−−−−→ Fm−2 → · · · → F1

is still exact modulo any regular element of ∆rm(Am), i.e. ∆rm(Am) is still regular
and thus grade(∆rm(Am)) ≥ 2. We can iterate this argument to get
grade(∆rm(Am)) ≥ m. Now let δ be an rm-minor of Am; then the matrix Am is
over R[1/δ] equivalent to a matrix of the form(

Irm
Bm

)
.

The matrix Am−1 is then of the form (0 Bm−1), which gives the exact sequence

Rrm−1
Bm−1−−−−→ Fm−2 → . . .→ F1

A1−−→ F0.

By induction, we then have grade(∆rm−1(Am−1)) = grade(∆rm−1(Bm−1)) ≥ m− 1
and grade(∆ri(Ai)) ≥ i for i = m − 2, . . . , 1. Since this holds in R[1/δ] for any δ
and ∆rm(Am) is regular, it follows in R via Lemma 12. �

This gives the following corollary:

Theorem 16. Let I = 〈a1, . . . , an〉 be an ideal with a finite free resolution

0→ Fm → · · · → F1
(a1,...,an)−−−−−−→ I → 0,

with Fm = Rpm , then the elements a1, . . . , an have a greatest common divisor which
is regular.

Proof. Using Theorem 15, the complex

Fm → · · · → F1
(a1,...,an)−−−−−−→ R

satisfies the conditions to have a Cayley determinant. This gives a greatest common
divisor of ∆1(a1, . . . , an) = (a1, . . . , an). �

Thus, we really have a way to calculate greatest common divisors using the
Cayley determinant: first compute a finite free resolution of the ideal using syzygies,
and then its Cayley determinant. I implemented the homalg function
Gcd_UsingCayleyDeterminant to do just this.
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9. Performance measurements

To get an idea of the performance characteristics of this algorithm, I conducted
some quantitative comparisons with Singular’s gcd function. For several combi-
nations of monomial count m and variable count v, polynomials were computed by
generating m random monomials (per polynomial) of degree up to 5 and with vari-
ables x1, . . . , xv and adding them. These polynomials were split into triples f, g, h
to get pairs fg, fh with non-trivial greatest common divisor. Then, the greatest
common divisor of each of the resulting 100 pairs was computed using Singular’s
gcd and using my implementation, but still using Singular as the backend CAS
for the syzygy calculation. Obviously, this methodology is not flawless, but it did
at least yield some surprising first measurements: While Singular’s algorithm is
consistently faster for low variable count, it became slower when handling some
polynomials with 8 or 10 variables, while the Cayley determinant-based algorithm
didn’t show as severe slowdowns.

Variables Monomials Homalg mean Singular mean Homalg σ Singular σ
6 5 23 6.2 10.1 6.8
8 5 29 7.0 12.6 9.5
10 5 28 2.3 8.7 4.3
6 10 65 152.0 23.6 290.8
8 10 72 496.7 29.0 1205.5
10 10 69 599.7 17.6 2368.2
6 15 129 235.7 95.6 786.4
8 15 186 1550.3 254.2 3901.7
10 15 146 13501.0 62.2 18508.3
6 20 200 312.0 114.7 1056.0
8 20 242 525.0 141.9 2264.3
10 20 1169 5346.0 5031.1 14096.8

Table 2. Measured gcd calculation times and standard devia-
tions, in ms

The following figures show the distribution of the calculation times for 6, 8 and
10 variables.
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[3] Thierry Coquand and Claude Quitté. Constructive finite free resolutions. manuscripta math-
ematica, pages 1–15, 2011.

[4] The homalg project authors. The homalg project, 2003-2011. (http://homalg.math.

rwth-aachen.de/).
[5] Douglas Geoffrey Northcott. Finite free resolutions. Cambridge Univ. Press, Cambridge [u.a.],

1976.

15

http://homalg.math.rwth-aachen.de/index.php/core-packages/modules
http://homalg.math.rwth-aachen.de/index.php/core-packages/modules
http://arxiv.org/abs/math.AC/0701146
http://homalg.math.rwth-aachen.de/
http://homalg.math.rwth-aachen.de/

	1. Introduction
	2. Regularity
	3. Exterior Algebra
	4. Koszul complex and Grade
	5. Other operations on the exterior algebra
	6. The inductive definition of grade
	7. The Cayley determinant
	8. Application to finite free resolutions
	9. Performance measurements
	Bibliography

