
Canonicity and normalization for Dependent Type Theory

Introduction

We show canonicity and normalization for dependent type theory with a cumulative sequence of universes
U1 : U2 . . . with η-conversion. We first give the argument in a constructive set theory (CZF extended
with universes) and then as a program transformation in an extension of type theory. The argument
is then “optimal” in the sense that the metatheory used in the argument is as close as possible to the
object theory.

Note that subject reduction is not clear since we consider a system with conversion as judgements)
and we don’t introduce neither a reduction relation in the syntax nor a logical relation in the semantics.

1 Type system

We use conversion as judgements [1, 2]. It is not clear a priori that subject reduction holds.

Γ ` A : Un
Γ, x : A ` () `

Γ `
Γ ` x : A

(x :A in Γ)

Γ ` A : Un Γ, x : A ` B : Un
Γ ` Π(x : A)B : Un

Γ, x : A ` t : B

Γ ` λ(x : A)t : Π(x : A)B

Γ ` t : Π(x : A)B Γ ` u : A

Γ ` t u : B(u)

Γ ` A : Un
Γ ` A : Um

(n 6 m)
Γ ` Un : Um

(n < m)
Γ ` N2 : Un

The conversion rules are

Γ ` t : A Γ ` A conv B : Un
Γ ` t : B

Γ ` t conv u : A Γ ` A conv B : Un
Γ ` t conv u : B

Γ ` t : A

Γ ` t conv t : A

Γ ` t conv v : A Γ ` u conv v : A

Γ ` t conv u : A

Γ ` A conv B : Un
Γ ` A conv B : Um

(n 6 m)
Γ ` A0 conv A1 : Un Γ, x : A0 ` B0 conv B1 : Un

Γ ` Π(x : A0)B0 conv Π(x : A1)B1 : Un

Γ ` t conv t′ : Π(x : A)B Γ ` u : A

Γ ` t u conv t′ u : B(u)

Γ ` t : Π(x : A)B Γ ` u conv u′ : A

Γ ` t u conv t u′ : B(u)

Γ, x : A ` t : B Γ ` u : A

Γ ` (λ(x : A)t) u conv t(u) : B(u)

We consider type theory with η-rules

Γ ` t : Π(x : A)B Γ ` u : Π(x : A)B Γ, x : A ` t x conv u x : B

Γ ` t conv u : Π(x : A)B

Finally we add N2 : U1 with the rules

Γ ` 0 : N2 Γ ` 1 : N2

Γ, x : N2 ` C : Un Γ ` a0 : C(0) Γ ` a1 : C(1)

Γ ` brec (λx.C) a0 a1 : Π(x : N2)C

with computation rules brec (λx.C) a0 a1 0 conv a0 : C(0) and brec (λx.C) a0 a1 1 conv a1 : C(1).

1

We let Typen be the set of expressions that are closed terms of type Un modulo conversion. Similarly
if A ∈ Typen then Elem(A) the set of expressions that are closed elements of type A modulo conversion,
so that Typen = Elem(Un). If A ∈ Typen we let Term(A) be the set of expressions of type A. If e
is in Term(A) we write [e] in Elem(A) the equivalence class of e for conversion. If A ∈ Typen we let
Norm(A) (resp. Neut(A)) be the subset Term(A) of all expressions of type A that are in normal form
(resp. neutral). Note that we have both Term(A) and Elem(A) in U0.

If A ∈ Type and a ∈ Elem(A) then we let Norm(A)|a (resp. Neut(A)|a) be the set of expressions in
Norm(A) (resp. Neut(A)) convertible to a.

2 First Interpretation

We let and U1 be the first Grothendieck’s universe, U2 be the next universe, and so on.
If A ∈ Typen we let Compn(A) be the set of family of sets in Un over Elem(A).
We define CN2

in Comp(N2) by taking CN2
(t) to be the set {0 | t conv 0 : N2} ∪ {1 | t conv 1 : N2}.

If A : Un and B(x) : Un (x : A) and CA is in Compn(A) and we have a family CB(a, ν) in Comp(B(a))
for a ∈ Elem(A) and ν ∈ CA(a) we define CT = Π CA CB in Compn(T) where T = Π(x : A)B by

CT (w) = Π(a ∈ Elem(A))Π(ν ∈ CA(a))CB(a, ν)(w a)

To a context Γ we associate Elem(Γ) which is the set of vectors ρ0 = (a1, . . . , an) with ai in
Elem(Ai(a1, . . . , ai−1)) and a family of sets CΓ(ρ) defined by taking CΓ,x:A(ρ0, a) to be the sets of vectors
(ρ1, ν) with ρ1 in CΓ(ρ) and ν in [[A]]ρ(a). We write ρ = ρ0, ρ1.

We define then [[A]]ρ if Γ ` A and [[a]]ρ if Γ ` a : A by the following rules

• [[xi]]ρ = ρ1(x)

• [[c a]]ρ = [[c]]ρ aρ0 [[a]]ρ

• [[λ(x : A)t]]ρ a ν = [[t]](ρ0,a),(ρ1,ν)

• [[Π(x : A)B]]ρ = Π[[A]]ρ((a, ν) 7→ [[B]](ρ0,a),(ρ1,ν))

• [[Un]]ρ = Compn

• [[N2]]ρ = CN2

We define [[brec (λx.C) a0 a1]]ρ as a function f which takes as argument u : N2 and ν in CN2
(u). If

ν = 0 we take f u ν = [[a0]]ρ and if ν = 1 we take f u ν = [[a1]]ρ.

Theorem 2.1 If ` A : Un then [[A]] is a computability structure on A. If ` a : A we have [[a]] ∈ [[A]](a),
and if ` a = b : A we have [[a]] = [[b]].

Proof. We generalize the statements to open terms. If Γ ` A and CΓ(ρ) then [[A]]ρ is of the form C where
C(t) is a set for t in Elem(: Aρ0). If Γ ` A conv B we have [[A]]ρ = [[B]]ρ. If Γ ` a : A we have [[a]]ρ in
CA(ρ) aρ0. Finally if Γ ` a0 = a1 : A we have [[a0]]ρ = [[a1]]ρ.

We then proceed by induction on derivations. We explain the case of the rule

Γ ` a : A Γ, x : A ` b : B

Γ ` (λ(x : A)b) a conv b(a) : B(a)

To simplify the presentation we assume Γ empty. We write t = (λ(x : A)b) a. By induction hypothesis
we have [[a]] ∈ CA(a) and ξ ∈ CB(u, ν)(b(u)) if ν is in [[A]](u) where CA = [[A]] and ξ = [[b]](u,ν). We can
take u = a and ν = [[a]], and then, by the convertibility we have ξ in CB(t).

Corollary 2.2 If ` t : N2 we have t conv 0 : N2 or t conv 1 : N2. Furthermore, we cannot have
0 conv 1 : N2.

2

3 Canonicity argument as a program transformation

If one looks at the argument used for the proof of canonicity one can see that the proof itself can directly
be expressed in an extension of type theory. Note that we use definitional conversion in the meta theory
in order to interpret conversion in the object theory, as advocated in [5] (with the crucial difference that
we allow η-conversion at both levels).

We write Γ `0 a : A for the judgement of the object type theory. The extension is as follows. It is
like the object theory, and we have a cumulative hierarchy of universes U0,U1, . . . but we also have new
base types Typen and Elem(A) for A in Typen. The introduction rules are the following

`0 A : Un
Γ ` Elem(A) ∈ U0

`0 a : A

Γ ` [a] ∈ Elem(A)

A context in this extension has the form ξ1 ∈ T1, . . . , ξn ∈ Tn. If w is in Elem(Π(x : A)B) and u is in
Elem(A) we have w = [c] and u = [a] for some expressions `0 c : Π(x : A)B and `0 a : A and we can
form w u = [c a] in Elem(B(a)).

To any term `0 A : Un of the base theory we associate a term ` [[A]] ∈ Elem(A) → Un of the meta
theory. Similarly, to any term `0 a : A we associate ` [[a]] ∈ [[A]] [a]. Both operations can be seen as
program transformations, simply reading the previous section in a purely syntactical way.

Here is an example. We have ` t : T where t = λ(A : U0)(a : A)a and T = Π(A : U0)A → A. We
compute

[[T]] w = Π(A ∈ Elem(U0))(CA ∈ Elem(A)→ U0)(a ∈ Elem(A))CA(a)→ CA(w a)

and
[[t]] = λ(A ∈ Elem(U0))(CA ∈ Elem(A)→ U0)(a ∈ Elem(A))(ν ∈ CA(a))ν

so that [[t]] is an element of [[T]] [t]. We use the fact that [[t]] a = a in Elem(A) if a is in Elem(A).

4 Normalization

We consider now terms in a context, and we relativize all the previous definitions to the presheaf topos
over the category of contexts and weakening.

We also refine the definition of Compn(A) It is now the set of elements C,α, β where C(t) is a set in
Un for each t in Elem(A) and β in Π(k ∈ Neut(A))C([k]) and α in Π(a ∈ Elem(A)) C(a)→ Norm(A)|a.

We redefine CN2(t) to be the set of syntactical expressions u in Norm(N2)|t such that u is 0 or 1 or
is neutral and αN2(t, ν) = ν and βN2(k) = k.

We define CUn
(A) to be Norm(Un)|A× Compn(A).

Finally αUn
(A, (A′, CA, αA, βA)) = A′ and for K neutral βUn

(K) = (K,C, α, β) where C(t) is
Neut([K])|t and α(t, k) = k and β(k) = k.

Assume that A : Un and B(x) : Un (x : A) is a family of type over A. If EA = (A′, CA, αA, βA) is in
CU (A) and EB(a, ν) = (B′(a, ν), CB(a, ν), αB(a, ν), βB(a, ν)) is in CU (B(a)) for a in Elem(A) and ν in
CA(u), we define Π EA EB = (Π(x : A′)B′(x, βA(x)), C, α, β) where

• C(w) = Π(a ∈ Elem(A))Π(ν ∈ CA(u))CB(a, ν)(w u)

• β(k) a ν = βB(a, ν)(k αA(a, ν))

• α(w, ξ) = λ(x : A′)αB(x, βA(x))(w x, ξ x βA(x))

We define [[Un]] = Un, CUn
, αUn

, βUn
and [[N2]] = N2, CN2

, αN2
, βN2

.

Theorem 4.1 If ` A : Un then [[A]] is in CUn
(A). If ` a : A we have [[a]] in C(a), where (A′, C, α, β) =

[[A]], and if a conv b : A we have [[a]] = [[b]].

It follows that conversion is decidable: if a0 and a1 are of type A we can compute [[A]] = (A′, C, α, β)
and a0 conv a1 : A if, and only if α [a0] [[a0]] = α [a1] [[a1]].

We also can prove that Π is one-to-one for conversions, following P. Hancock’s argument presented
in [4].

3

5 Normalization as program transformation

The idea is now to express type theoretically the presehaf models over the category of contexts and
weakening. We introduce the types Term(A) of terms of type A, so that ∆ ` Term(A) ∈ U0 if ∆ `
A : Term(Un). We also introduce the subtypes Norm(A) (resp. Neut(A)) of normal (resp. neutral)
syntactical expressions representing elements of type A, as well as the subtypes Var(A) of variables of
type A. We also have the type Elem(A) of elements of type A, that are expressions of type A modulo
conversion, so that ∆ ` Elem(A) ∈ U0 if ∆ `0 A ∈ Term(Un) and we have ∆ ` [a] ∈ Elem(A) whenever
∆ ` a ∈ Term(A)

We have for instance the rule

∆ ` A ∈ Norm(Un) ∆, x : Var(A) ` B ∈ Norm(Un)

∆ ` Π(x : A)B ∈ Norm(Un)

∆ ` A ∈ Norm(Un) ∆, x : Var(A) ` b ∈ Norm(B)

∆ ` λ(x : A)b ∈ Norm(Π(x : A)B)

We can define B · a ∈ Elem(Un) if B is in Var(A) → Elem(Un) and a in Elem(A) as well as cȧ in
Elem(B · a) if c is in Elem(Π(x : A)B) and a in Elem(A).

We then define

Compn(A) = Σ(C ∈ Elem(A)→ Un)(Π(a ∈ Elem(A))(C(a)→ Norm(A)|a))×Π(k ∈ Neut(A))C([k])

A computability structure for A ∈ Term(Um) is an element of CUm(A) = Norm(Um)|A× Compm(A).
We define αUn

(A, (A′, CA, αA, βA)) = A′ and for K ∈ Neut(Um) we take β(K) = (K,C, α, β) where
C(t) = Neut(K)|t and α(t, k) = k and β(k) = k.

Assume that B(x) (x : A) is a family of type over A. If EA = (A′, CA, αA, βA) is a computability
structure on A and EB(a, ν) = (B′(a, ν), CB(a, ν), αB(a, ν), βB(a, ν)) is a computability structure on
B · u for u ∈ Elem(A) and ν ∈ CA(u), we define Π EA EB = (Π(x : A′)B′([x], βA(x)), C, α, β) where

• C(w) = Π(a ∈ Elem(A))Π(ν ∈ CA(u))CB(a, ν)(w a)

• β(k) = λ(a ∈ Elem(A))λ(ν ∈ CA(u))βB(a, ν)(k αA(a, ν))

• α(w, ξ) = λ(x : A′)αB([x], βA(x))(w [x], ξ [x] βA(x))

We can define as well Σ EA EB = (Σ(x : A′)B′(x, βA(x)), C, α, β) where

• C(a, b) = Σ(ν ∈ CA(u))CB(a, ν)(w a)

• β(k) = βA(k.1), βB(k.1, βA(k.1))(k.2)

• α(a, b)(ν, δ) = αA(a, ν), αB(a, ν)(b, δ)

We then have Π EA EB ∈ CUn
(Π(x : A)B) if EA ∈ CUn

(A) and EB ∈ Π(a : A)EA.2 a→ CUn
(B a)

We can then formulate the previous results as a program transformation in the style of [3].
If x1 : A1, . . . , xn : An `0 a : A and we fix another context Γ of the base theory with Γ ` ai :

A(a1, . . . , an) we write ρ = ρ0, ρ1 with ρ0 = a1, . . . , an and ρ1 = ν1, . . . , νn with `Γ νi ∈ [[A]]ρ.2 ai.
The program transformation is given by

• [[xi]]ρ = νi

• [[c a]]ρ = [[c]]ρ aρ0 [[a]]ρ

• [[λ(x : A)t]]ρ = λ(a ∈ Elem(Aρ0))λ(ν ∈ [[A]]ρ.2 a)[[t]](ρ0,a),(ρ1,ν)

• [[Π(x : A)B]]ρ = Π[[A]]ρ((a, ν) 7→ [[B]](ρ0,a),(ρ1,ν))

• [[Σ(x : A)B]]ρ = Σ[[A]]ρ((a, ν) 7→ [[B]](ρ0,a),(ρ1,ν))

• [[Un]]ρ = Un, CUn , αUn , βUn

• [[N2]]ρ = N2, CN2
, αN2

, βN2

Theorem 5.1 If x1 : A1, . . . , xn : An `0 a : A then `Γ [[a]]ρ ∈ [[A]]ρ aρ0 and if x1 : A1, . . . , xn : An `0

a conv b : A then `Γ [[a]]ρ = [[b]]ρ ∈ [[A]]ρ aρ0.

4

References

[1] A. Abel and G. Scherer. On Irrelevance and Algorithmic Equality in Predicative Type Theory. In
Logical Methods in Computer Science, 8(1):1-36, 2012.

[2] R. Adams. Pure type systems with judgemental equality Journal of Functional Programming. 16, 2,
p. 219-246, 2006.

[3] J.-Ph. Bernardy, P. Jansson, R. Paterson. Parametricity and dependent types. ICFP 2010: 345-356.

[4] P. Martin-Löf. An intuitionistic theory of types: predicative part. Logic Colloquium ’73 (Bristol,
1973), pp. 73118.

[5] P. Martin-Löf. About Models for Intuitionistic Type Theories and the Notion of Definitional Equality.
Proceedings of the Third Scandinavian Logic Symposium, 1975, Pages 81-109.

5

