
Course Notes in Typed Lambda Calculus

Thierry Coquand
Chalmers University

September 2008

Introduction

Since quite good books [10, 8] or review article [3, 14] are available on typed lambda calculi,
these notes limit themselves to some historical remarks and some points that I consider deli-
cate/important.

1 History of Lambda-Calculus and Types

Both have a common origin in logic. The first notion of types seem to come from Frege: he
revealed the conceptual difference between objects and predicates and considered the hierarchy
built on these notions. At the “bottom” level we have a collection of basic objects. Then we
have properties of these objects. Then we may have properties over these properties. Typically
the quantifiers (introduced by Frege) are of such a nature: to be universally true is a property
of properties. In such a view, it makes no sense for instance to apply a quantifier to an object.

It is thus not possible to apply what is known as Russell’s paradox in this logic. The
predicate of predicates P that do not hold on themselves, that is ¬P (P) hold, cannot simply
be formed in this system! Instead the problem with Frege’s system was that Frege supposed
that for each predicate P there was associated an object P̄ the extension of P . Furthermore,
it was supposed that P̄1 = P̄2 implies that P1(x) and P2(x) are equivalent for any object x. We
can now form the predicate P0(x) defined by

∃Q [[Q̄ = x] ∧ ¬Q(x)]

and prove that P0(P̄0) is equivalent to ¬P0(P̄0), and hence deduce a contradiction.
It seems that the lambda-calculus notation originates from the representation of classes in

Principia Mathematica of Russell and Whitehead. The class, or predicate, of terms x satisfying
a property φ is written there x̂φ. Thus, for instance the class of predicates x that do not satisfy
themselves, used in Russell’s paradox is the class R = x̂¬x(x). Frege had already a notation
for functional abstraction. Church, in the 1930s, analysing Principia Mathematica, introduced
the powerful λ notation, writing λx t instead of x̂ t, and explicited the crucial β conversion rule

(λx t) u = [x/u]t.

Notice that λx φ represents a predicate which is satisfied by the objects a such that [x/a]φ
holds. Thus, the first purpose of λ-terms was clearly to represent formulae and predicates.

Church thought first it would be possible to avoid Russell’s paradox without introducing
types, but by staying within an intuitionistic logic that use only some limited form of the law of
excluded middle [4]. This system was however shown to be inconsistent by his students Kleene

1

and Rosser [13]1. Church formulated then an elegant formulation of higher-order logic, using
simply typed λ-calculus [5], which can be seen as a simplification of the type system used in
Principia Mathematica, but also is in some sense a return to Frege.

2 Definition of Simply Typed Lambda Calculus

2.1 Notation

Lambda calculus introduces a direct notation for functions. In mathematics there is no direct
notation for functions, but we have to refer to them by names. Thus we would say something
like: let f be the map x 7−→ x2 + 3 and use f . Sometimes, one can even refer to f as the
function x2 + 3 but this may be confusing when several variables are involved. For instance
g : x 7−→ x2 + y where y is a parameter. The lambda notation allows to refer directly to these
maps, respectively as λx x2 + 3 and λx x2 + y. (This notation is so convenient that one often
wonders why it is not used in mathematics.)

2.2 Syntax

First we define types: we have a set of basic types, and if α, β are types then α→β is a type.
A convenient notation, when more than two types occur, is to associate to the right, so that we
write α1→α2→α3 for the type α1→(α2→α3). For each α, we suppose given a set Vα of variables
of type α in such a way that Vα and Vβ are disjoint if α 6= β. Next, the set Tα of terms of type
α is defined as follows:

• if x ∈ Vα then x ∈ Tα,

• if t ∈ Tβ and x ∈ Vα then λx t ∈ Tα→β ,

• if t ∈ Tα→β and u ∈ Tα then t u ∈ Tβ .

We define next the notion of free variables of a term: x is free in t iff

• x = t or

• t = t1 t2 and x is free in t1 or t2, or

• t = λy u and x 6= u and x is free in u.

Exercice: We can define like in untyped lambda calculus the notion of term in normal
form. Show that a term in normal form can be written λx1 . . . λxk x M1 . . .Ml where we can
have k = 0 or l = 0 and M1, . . . ,Ml are in normal form.

Use this to enumerate the closed terms of the following types (ι is a ground type)

1. ι→ι,

2. ι→ι→ι,

3. (ι→ι)→ι→ι,

4. ι→(ι→ι)→ι,

1What is remarkable is that they obtained their paradox by a formalisation in Church’s system of Richard’s
paradox about the “least integer definable in less than 100 words.” (Poincare had stressed the importance of this
paradox.)

2

5. (ι→ι)→ι.

6. ((ι→ι)→ι)→ι.

2.3 Models and Conversion

We present here a model theoretic definition of conversion, that avoids subtle syntactical con-
siderations (alpha-conversion, clashes of variables) that are rarely treated rigourously.

2.3.1 Henkin’s Definition

The intended model is the set-theoretic model where we suppose given a set Dι for each base type
ι and where Dα→β is the set of all functions from Dα to Dβ . We define then typed environments
that are finite list of pairs x = a where x ∈ Vα and a ∈ Dα; the variables appearing in ρ form
a set called the domain of ρ and we write xρ the lookup of x in ρ for any x in the domain of
ρ. By induction on t it is possible to give a meaning tρ for any environment ρ whose domains
contain all the free variable of t. It is defined by the laws

1. x(ρ, y = b) = xρ, if x 6= y,

2. x(ρ, x = a) = a,

3. (λx t)ρ = a 7−→ t(ρ, x = a), (∗)

4. (t u)ρ = tρ (uρ).

Henkin generalised this model by starting from a collection Dα of sets indexed by the types,
such that Dα→β is only a subset of the set of all functions from Dα to Dβ . The intuition is that
the objects of the models should be only those functions which preserve some given structure.
Now, in general given such a collection, it is not possible to define the meaning function tρ
because in the clause (∗) it may not be the case that the function

a 7−→ t(ρ, x = a)

belongs to Dα→β.
Henkin defines a model to be such a collection Dα such that this recursive definition of tρ is

possible.
As Henkin noticed himself, this definition has some impredicative flavour.

2.3.2 Alternative Definition

A more algebraic definition of model is the following. We suppose given for each type α a set
Dα with an application map Dα→β×Dα→Dβ that will be written as concatenation. We define
then typed environments that are finite list of pairs x = a where x ∈ Vα and a ∈ Dα. Finally,
we suppose given for each term M ∈ Tα and each environment ρ containing all the free variable
of M an element Mρ ∈ Dα such that the following equations are satisfied:

1. x(ρ, y = b) = xρ, if x 6= y,

2. x(ρ, x = a) = a,

3. (λx t)ρ a = t(ρ, x = a),

4. (t u)ρ = tρ (uρ).

3

These equations are quite natural. The first two equations simply says that xρ is the lookup
of the value of x in the environment ρ while the third equation says that (λx t)ρ can be thought
of as the function a 7−→ t(ρ, x = a), which is the intended semantics of lambda abstraction.
Finally, the last equation interprets application as ordinary function application.

So far, we get only a notion of weak model, which is more general than Henkin’s notion of
model. In order to get back the same notion of models as Henkin’s model, we have to suppose
furthermore the following extensionality condition that f = g ∈ Dα→β whenever f a = g a
for all a ∈ Dα. If the model satisfies this extensionality condition, we can think of Dα→β as a
subset of D

Dβ
α . In this model, it can be checked that the law of η-conversion is valid: if x is not

a free variable of t than for any environment ρ for t

(λx t x)ρ = tρ

because for any a we have

(λx t x)ρ a = (t x)(ρ, x = a) = tρ a.

If we want a model of β-conversion only, we have to replace the extensionality condition by
the weaker so-called Berry condition: we have (λx u)ρ = (λy v)ν iff for any value a we have
u(ρ, x = a) = v(ν, y = a).

2.3.3 Conversion

We can now define conversion at each types: two terms t and u in Tα are convertible iff for any
model D we have tρ = uρ ∈ Dα for any environment giving a value for each free variables in t
and in u.

For instance t = (λx x)y and y are convertible if x, y are of type α because for any model
D and any environment ρ giving a value to x and y we have

tρ = (λx x)ρ (yρ) = x(ρ, x = yρ) = yρ.

In the same way f ∈ Vα→α and λx f x are convertible because for any a ∈ Dα

(λx f x)ρ a = (f x)(ρ, x = a) = f(ρ, x = a) (x(ρ, x = a)) = fρ a.

2.4 Examples of Models

2.4.1 Set Theoretic Model

We take for Dι, where ι is a base type, an arbitrary set and we interpret Dα→β as the set of
all set theoretic functions from Dα to Dβ. (We recall that, in set theory, a function is identified
with a functional relation.) There is then now problem to define tρ by induction on t :

• if t = x then tρ is the lookup of x in ρ,

• if t = t1 t2 then we define inductively tρ as the value of the function t1ρ on the argument
t2ρ,

• if t = λx u then tρ is the function that associates to the value a the value u(ρ, x = a)
which is defined by induction hypothesis.

4

2.4.2 Domain Model

The previous model may be thought of as the intended model. However, in general, the seman-
tics of a term is a functional preserving some structures. (We will see later that the definable
functionals satisfy also remarkable uniformity property.) A typical example is the domain model.
The set Dι, for ι base types, are now partial order sets with a bottom element ⊥ and sups of
increasing chains. The set Dα→β is the poset, for the pointwise ordering, of the set of all increas-
ing maps f : Dα→Dβ preserving the sups of the increasing chains, that is f (∨xn) = ∨(f xn)
for any chain x0 ≤ x1 ≤ x2 . . .

When trying to define the meaning of lambda terms in these domains, there is a difficulty in
the abstraction case, for defining (λx u)ρ, which is typical of the definition of models of typed
lambda calculus. We should define it as the map a 7−→ u(ρ, x = a) where, for each a, we have
defined inductively the value u(ρ, x = a). The difficulty is that we don’t know that this value
depends continuously on a.

In order to solve this problem, we have to express and check inductively that the value of
tρ depends continuously on ρ. Thus, we define inductively on t ∈ Tα a continuous function

(a1, . . . , ak) 7−→ t(x1 = a1, . . . , xk = ak)

from Dα1×. . .×Dαk
to Dα. This formulation incorporates in the induction both the construction

of tρ and the fact that tρ depends continuously on ρ. The problem is reduced to the following
lemma, whose proof is a direct consequence of the definitions.

Lemma: If f : D1 × D2→D is a continuous function then the function a 7−→ λy f(a, y)
from D1 to [D2→D] is a continuous function.

One interest of this model is that there is a fixedpoint operator Yα ∈ D(α→α)→α defined
as Yα f = ∨(fn ⊥). It can indeed been checked that the sequence fn ⊥ is increasing and that
Yα f depends continuously on f .

There is something quite remarkable about the cardinality of the domains Dα, which is
indeed described by Dana Scott as his “first original discovery” in the theory of domains [17].
If we start from domains Dι such that there exists a countable basis Bι ⊆ Dι, that is a subset
such that any element can be written as a sup of an increasing chain of elements in Bι, then
it can be checked that any domain Dα, even at higher types, has a countable basis. It follows
that the cardinality of each domain is at most the one of the continuum. Actually, a rigourous
and satisfactory description of these domains is best done by an explicit construction of each
basis, and this is achieved by the notion of information system, see [20].

2.4.3 Recursive Model

I refer here to [14]. Intuitively, this model keeps only the functions and functionals that are
“computable”. It is important to realise that the meaning of computable is quite subtle however.
At type ι→ι, it coincides with the notion of recursive function. At type (ι→ι)→ι, it is not clear
if to be “computable” at this type should imply that it is defined only for computable functions
or on an arbitrary function.

2.4.4 Term Model

This is the free model. Its construction is quite similar is the construction of a polynomial
algebra. An intuitive description is that we build a model in a “syntactical” way, built freely
from an infinite set of parameters Pα at each type α.

5

We suppose given for each type α a countable infinite set Pα of parameters of type α and
we define the set V alα of values of type α by the clauses:

• each element of Pα is a value of type α,

• if M ∈ Tα and ρ a list of pairs x = a where a ∈ Dτ and x ∈ Vτ containing all the free
variables of M then Mρ ∈ V alα,

• if c ∈ V alα→β and a ∈ V alα then c a ∈ V alβ.

The conversion relation a = a′ ∈ Dα is the least equivalence congruence such that

1. x(ρ, y = b) = xρ, if x 6= y,

2. x(ρ, x = a) = a,

3. (λx t)ρ a = t(ρ, x = a),

4. (t u)ρ = tρ (uρ),

5. cρ = c′ρ′ if cρ v = c′ρ′ v where v is a parameter not in ρ, ρ′.

It should be clear that this defines a model. Furthermore, this model has the initial property
that, for any other model (Dα), any system of maps Pα→Dα can be extended to a morphism
fα : V alα→Dα in a unique way. (To be a morphism means that f (w u) = f w (f u) and that
f (tρ) = t(f∗ ρ) where f∗ ρ is defined by x(f∗ ρ) = f (xρ).)

It is then clear that to check if two terms of the same type are convertible, it is enough
to check that they have the same value in this particular model. Furthermore, it is enough to
interpret the free variables of these terms by parameters. This is intuitively clear as shown in
the following example. The terms t1 = (λx y x) z and t2 = y z where y ∈ Vα→α and z ∈ Vα

are convertible, since if w ∈ Pα→α and v ∈ Pα we have, for ρ = (y = w, z = v)

t1ρ = (λx y x)ρ (zρ) = (λx y x)ρ v = (y x)(ρ, x = v) = y(ρ, x = v) (x(ρ, x = v)) = w v = t2ρ

This term model is a nice illustration of Skolem “paradox” since all types are interpreted
by a countable set. In Henkin’s paper [11], where such a construction is first defined, it is
explicitely noted that the existence of a countable model is not clear a priori, given the apparent
impredicativity or circularity of the notion of models (we have to give a set Dα for all types α).
In contrast, both the set-theoretic and the domain models are determined by the choice of the
domains at base types and built by induction on the type hierarchy.

2.4.5 Implementation Model

We extend the language with one fixpoint operator Y : (α→α)→α and we consider weak models
that are models with the property that Y u = u (Y u) for any u ∈ Dα→α.

3 Logical Relations

Given a binary relation Rι on each Dι for ι base type, we extend this relation at higher types
by defining Rα→β(t, t′) to be Rα(u, u′) ⇒ Rβ(t u, t′ u′). We say that two environments ρ and
ρ′ are related iff xρ is defined iff xρ′ is defined and then Rα(xρ, xρ′) for any variable x of type
α. The following result is known as the Fundamental Theorem of Logical Relations:

6

Theorem: for any term t of type α we have Rα(tρ, tρ′) if ρ and ρ′ are related.

Proof: By a direct induction on the term t. If t = x it is Rα(xρ, xρ′) which holds because
ρ and ρ′ are related. If t = t1 t2 then by induction we have Rα2→α(t1ρ, t1ρ

′) and Rα2(t2ρ, t2ρ
′)

and hence Rα(tρ, tρ′). If t is λx.u with α = β→γ then for any a, a′ in Vβ such that Rβ(a, a′)
holds we have, by induction

Rγ(u(ρ, x = a), y(ρ′, x = a′)

since R((ρ, x = a)(y), (ρ′, x = a′)(y)) for any free variable y of u. This implies Rα(tρ, tρ′) as
desired.

This theorem deserves its name, for, while its proof is rather simple, most of the results
about lambda calculus can be seen as corollary of this result.

More generally, a simple modification of the definition gives the notion of logical relation
between the elements of two different models. Another generalisation concerns the addition of
constant; one simply then check that each constant has its interpretation related to itself.

3.1 Definability Problem

Given the strong uniformity condition of definable terms, one can ask if conversely, this condition
is enough to ensure that a term is definable. A related question is the definability problem: is
there an algorithm that computes when a given object a ∈ Dα built from given finite sets is
definable? It was shown by Sieber [18] that the answer is positive if α is of order ≤ 2 (where
the order of a ground type is 0 and the order of α→β is the maximum of the order of β and the
successor of the order of α.) A surprising result of Loader is that the answer is not decidable at
order 3! An implementation of Sieber’s algorithm is described in [18] and is a nice application
of logical relation and of representation of inductive definitions in second-order logic.

Exercice: We can easily show that there exists no term t : B→B which may use the
constant 0, 1 : B such that t 0 = 1 and t 1 = 0. Indeed if such a term exists, we would have by
the fundamental theorem of logical relation

(R)[R(0, 0)→R(1, 1)→R(0, 1)→R(t 0, t 1)]

that is
(R)[R(0, 0)→R(1, 1)→R(0, 1)→R(1, 0)].

But this formula is directly seen to be not valid.

Exercice: We describe Stoughton’s algorithm on a simple concrete instance. Suppose that
we want to find a term t of type (B→B)→B where B = {0, 1} such that

t d1 = 0, t d2 = 1

where d1 x = ¬ x and d2 x = x. Furthermore this term should use only as constant 0 and 1.
Notice that we can enumerate all terms of type (B→B)→B: they are of the form λf fk 0

or λf fk 1. But to try them one after the other gives only a semi-decision procedure. It is quite
remarkable that this question is actually decidable.

By the fundamental theorem of logical relations, if such a term exists we have R(t d1, t d2) =
R(0, 1) for any relation R such that

• R(0, 0) and R(1, 1),

• R(x, y)→R(d1 x, d2 y).

7

What is remarkable is that conversely, if we have

(R)[R(0, 0)→R(1, 1)→[(x)(y)R(x, y)→R(d1 x, d2 y)]→R(0, 1)] (∗)

then there exists a term t such that t d1 = 0 and t d2 = 1. This follows by taking for R the
relation

λxλy ∃t [t d1 = x ∧ t d2 = y].

So (*) is actually a necessary and sufficient condition for the existence of a solution. It does
not seem a priori algorithmic, since (*) is expressed with an universal quantification over all
relations. Remark however that we can list all such relations. Furthermore, there is even a
clever reading of (*) that gives an elegant algorithm to test (*): read the relation

λxλy (R)[R(0, 0)→R(1, 1)→[(x)(y)R(x, y)→R(d1 x, d2 y)]→R(x, y)]

as meaning that (x, y) is in the set of pairs generated by the rule

• →(0, 0),

• →(1, 1),

• (x, y)→(d1 x, d2 y).

Check that (0, 1) is in this set, and uses this derivation of (0, 1) to build t.

3.2 Adequacy Theorem

Here is still another application of the notion of logical relation, which is the theoretical foun-
dation of the use of domain theory for proving equivalence of programs.

The adequacy theorem shows that there are good relations between the syntax and the
semantics for ground type. It is stated here for an idealised programming language: simple
typed λ-calculus + a fixed-point combinator Y . We assume that among the base types, there is
a type N of natural numbers, and we take for its semantics the “flat” domain DN = {⊥} ∪N.

The following Theorem holds for an arbitrary model of typed λ-calculus with fixed-point.

Theorem: let t be a closed term of type N , then t() is convertible to an integer n iff its
denotation t() is equal to n.

One direction is the consistency of the semantics. The other direction is subtler: a priori,
it may well be that the semantics “lies”, it says for instance that t = 1 in the model though t
diverges as a program. The proof is an application of logical relation. Define for each type σ
a relation Rσ between the syntax and the semantics, i.e. between the given model Vσ and the
domain model Dσ. We define RN (u, v) to mean that v =⊥ or else that there exists n such that
v = n and u = n ∈ VN . At higher type Rσ→τ (w, f) means that Rσ(u, v) implies Rτ (w u, f v).
We expect then that for all term t, ρ value environment for t and ρ′ domain environment for t,
if ρ and ρ′ are related, then we have Rσ(tρ, tρ′), where σ is the type of t. This would imply the
theorem when σ is N . By the fundamental theorem of logical relation, extended with constants,
we are reduced to check that R(Y, Y) holds.

Lemma: For each type σ σ, we have

• Rσ(u,⊥) for any u ∈ Vσ,

• if v is the sup of the increasing chain (vn), and R(u, vn) for each n, then R(u, v).

8

The proof of this lemma is rather direct.

Corollary: We have R(Y, Y) that is, if R(u, v) then R(Y u,
∨

vn ⊥).

Proof: By the lemma, it is enough to show R(Y u, vn ⊥) for all n. We show this by
induction on n. The lemma shows the case n = 0. If it is true for n, since R(u, v) we deduce
R(u (Y u), vn+1 ⊥). But Y u is equal to u (Y u), hence the result. 2

This result is important in order to prove operational equivalence: let say that t1 and t2
programs of type σ (that may be functional) are operationally equivalent iff for all context C[]
of type N , C[t1] is convertible to an integer iff C[t2] is convertible to an integer, and in that
case, these integers are equal. The intuition is that we can “test” programs only by embedding
them into programs that are “observable”, and functions, functionals. . . are not really observable
(they are really ideal elements). A direct application of the theorem is the following result.

Corollary: Denotational equality implies operational equivalence.

The derivation of this corollary uses in an essential way the fact that the semantics is
compositional: the semantics of an expression is a function of the semantics of its subpart.
(This is reflected that the definition of the semantics of a term is by structural induction.) This
corollary gives an elegant way of proving the operational equivalence of part of the programs.

Exercice. (Manna) Let G : σ→σ and P : σ→B be arbitrary functions, and F : τ→τ a
strict function. Define the function H = Y K, where

K = λh, x, y if P x then y else F (h (Gx) y).

Show F (H x y) = H x (F y) for all x, y via denotational semantics. It follows that the
programs λx, y F (H x y) and λx, y H x (F y) are operationally equivalent by the adequacy
theorem.

4 Where does this come from?

It is extremely instructive to read Reynolds’ papers [15, 16] to understand one motivation of
the introduction of type variables and logical relations. One wants to represent the idea of type
definitions and type abstractions. The idea is that one can define a type with some operations,
for instance

τ = int, mk : τ = 0, inc : τ→τ = λx x + 1, get : τ→int = λx x

and then uses the type τ and these operations mk, inc, get but, and this is the important point,
without having access to their definitions. This is represented quite naturally in polymorphic
λ-calculus as a term of the form

(λ τ(λ mk : τ)(λ inc : τ→τ)(λ get : τ→int) e) int 0 (λx x + 1) (λx x)

This motivates the introduction of type variables. For motivating logical relations, suppose that
we change the given implementation and we take instead

τ = int, mk : τ = 0, inc : τ→τ = λx x− 1, get : τ→int = λx (−x)

We can prove using logical relation that if we have a term e : int using τ, mk, inc, get as
variables and we consider two close instantions e1 and e2 then we have e1 = e2 : int. In order
to prove this, consider the language where we add a new type constant τ and news operations

9

mk : τ, inc : τ→τ, get : τ→int. A model of this language gives a meaning to the type τ and
the operations mk, inc and get. We give two different models, with the logical relation given by
Rτ (x, y)) iff x + y = 0. Applying the fundamental theorem we get that for any related pairs of
environment ρ1, ρ2 we have Rα(eρ1, eρ2). In particular if α does not mention τ we get eρ1 = eρ2.

For another example, consider the two implementations

τ = bool, bit : τ = true, flip : τ→τ = not, read : τ→bool = λx x

and
τ = int, bit : τ = 1, f lip : τ→τ = λx − x, read : τ→bool = λx x > 0

then these are two related different implementations of the same abstract structure

(τ, a : τ, f : τ→τ, g : τ→bool).

Here we take R(b, x) iff b = true and x > 0 or b = false and x < 0. Then R(a1, a2) holds
but also R(f1, f2) and R(g1, g2).

Notice that from the adequacy theorem we get as a corollary a purely operational result,
that should be hard to prove in an operational way. This results also holds in presence of a
fixed-point operator.

References

[1] P. Andrews. General Models, Descriptions, and Choice in Type Theory. Journal of Symbolic
Logic, 37 (1972), p. 385-394.

[2] P. Andrews. General Models and Extensionality. Journal of Symbolic Logic, 37 (1972), p.
395-397.

[3] H. Barendregt. Typed Lambda Calculi. In Handbook of Logic in Computer Science, Abram-
sky et al eds, Oxford University Press, 1992

[4] A. Church. A Set of Postulates for the Foundation of Logic. Annals of Mathematics, 33
(1932), p. 346-366.

[5] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5 (1940),
p. 56-68.

[6] S. Fortune, D. Leivant and M. O’Donnell. The expressiveness of simple and second order
lambda calculus. Journal of the ACM 30 (1983), p. 151-185.

[7] R.O. Gandy. On The Axiom of Extensionality, part I. Journal of Symbolic Logic, 21 (1956).

[8] J.R. Hindley and J. P. Seldin. Introduction to Combinators and Lambda Calculus. London
Mathematical Society, London, 1986.

[9] S.C. Kleene. A Theory of Positive Integers in Formal Logic. Part I. American Journal of
Mathematics, 57 (1935), p. 153-173.

[10] J.Y. Girard, Y. Lafont, P. Taylor. Proof and Types. Cambridge Tracts in Theoretical
Computer Science, 7, 1989.

[11] L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15 (1950), p.
81-91.

10

[12] L. Henkin. The discovery of my completeness proof. Bulletin of Symbolic Logic, 2 (1996),
p. 127-158

[13] S.C. Kleene and B. Rosser. The inconsistency of certain formal logics. Annals of Mathe-
matics, 36 (1935), p. 630-636.

[14] J. C. Mitchell. Type systems for programming languages In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 8, p. 367-458, 1990.

[15] J.C. Reynolds. Towards a Theory of Type Structures. In: LNCS 19, p. 408-425.

[16] J.C. Reynolds. Types, abstraction and parametric polymorphism. In: Information Pro-
cessing 83, edired by R.E.A. Mason. Elsevier Science Publishers B.V. (North-Holland), Am-
sterdam, 1983, pp. 513 - 523.

[17] D. Scott. Domains and Logics, extended abstract. In Logic in Computer Science, 1989, p.
4-5.

[18] A. Stoughton. Mechanizing Logical Relations. LNCS 802, p. 359-377, 1994

[19] P. Wadler. Theorems for free! ACM Functional Programming Languages and Computer
Architecture, 1989, 347-359.

[20] G. Winskel. The Formal Semantics of Programming Languages, an Introduction. MIT
Press, 1993.

11

