
A model of type theory in cubical sets

Marc Bezem∗ Thierry Coquand† Simon Huber‡

March 25, 2014

La théorie singulière classique utilise des simplexes; dans la suite de ce chapitre, nous aurons besoin
d’une définition équivalente, mais utilisant des cubes; il est en effet évident que ces derniers se prêtent
mieux que les simplexes à l’étude des produits directs, et, a fortiori, des espaces fibrés qui en sont la
généralisation. (J.P. Serre, Thèse, Paris, 1951 [20]).

Abstract

We present a model of type theory with dependent product, sum, and identity, in cubical sets. We
describe a universe and explain how to transform an equivalence between two types in an equality. We
also explain how to model propositional truncation and the circle. While not expressed internally
in type theory, the model is expressed in a constructive metalogic. Thus it is a step towards a
computational interpretation of Voevodsky’s Univalence Axiom.

Introduction

In [15], Voevodsky proposes a new axiom in dependent type theory: the Univalence Axiom. This
opens up for many improvements for the encoding in type theory of mathematics in general: function
extensionality, identification of isomorphic structures, etc.

In order to preserve the good computational properties of type theory it is crucial that postulated
constants have a computational interpretation. Concerning univalence, this is an important open prob-
lem. One way of attacking this problem is by constructing a model of the new axiom, in type theory
itself, or at least in a constructive metalogic. The computational interpretation can then be obtained
through the semantics, for example, by evaluating a term of type N (natural numbers) in the model.

The model of type theory with the Univalence Axiom given by Voevodsky [15] is based on Kan
simplicial sets. A problem with a constructive approach to Kan simplicial sets is that degeneracy is in
general undecidable [3]. This problem makes it impossible to use the Kan simplicial set model as it is to
obtain a computational interpretation of univalence.

We present a model of dependent type theory in cubical sets. This can be seen as a generalization
of Bishop’s notion of set [4]. While not expressed internally in type theory, this model is expressed in a
constructive metalogic. It can be seen as a simplification and a constructive version of the Kan simplicial
set model of type theory [15].

The first combinatorial description of homotopy groups by Kan used cubical sets [14]; see [7], [26]
for a more recent account. Our presentation of cubical sets amounts to have a formal representation
of cubes seen as continuous maps [0, 1]I → X, where I is a finite set of symbols, instead of using only
continuous maps [0, 1]n → X. If I = x1, . . . , xn such a continuous map u can be seen as a function of
x1, . . . , xn which vary in the unit interval. We can then consider for instance u(xi = 0), which is the
quantity u where we set xi to be 0, or we can introduce a new symbol y and consider u to be a quantity
as a function of x1, . . . , xn, y, which is actually independent of y. We formalize this by defining a cubical
set to be a covariant presheaf on a suitable base category, where objects are finite sets of symbols and
maps are substitution. This open connections with the theory of nominal sets [17, 18].

Following e.g. [11], we can give a model of type theory where a context is interpreted by a cubical
set. Like for the classical model based on simplicial sets where one restricts the model to Kan fibrations,

∗Department of Informatics, University of Bergen, bezem@ii.uib.no
†Department of Computer Science and Engineering, Chalmers/University of Gothenburg, coquand@chalmers.se
‡Department of Computer Science and Engineering, Chalmers/University of Gothenburg, simonhu@chalmers.se

1

we restrict our model by requiring a certain Kan structure on dependent types. Like in Kan’s original
paper [14], such a Kan structure requires fillers of open boxes. However, in order for this structure to
be preserved—in a constructive metalogic—under all type forming operations, in particular Π, a certain
uniformity condition is required on the choice of the fillers. This structure is essential for validating the
elimination rule of identity types.

The strengthening of the Kan condition is natural given the reformulation of the notion of cubical
sets that we present in the first section, and the connection mentioned above with nominal sets.

In this paper we present the semantics of dependent products, sums, identity types. We also show
how to interpret the universe, but only sketch on one special case how one could define the Kan structure
on the universe. We also only describe how to transform an equivalence between two small types into
a path between these types. Based on the model described in the first version of this paper (a nominal
version of it) C. Cohen, A. Mörtberg and the last two authors have implemented a type checker1 based
on this paper. This implementation supports computing with the univalence axiom and Kan operations
for the universe.

The paper is structured as follows. In the next two section we introduce the category of names and
substitutions and we define cubical sets. In Section 3 we explain the presheaf semantics of type theory in
the special case of cubical sets. In the next two sections we define the uniform Kan condition and we give
examples of cubical sets. In Section 6 we show that Kan cubical sets are a model for dependent types. In
the last section we show how identity types can be interpreted the Kan cubical set model, and describe
the universe as a cubical set (and only indicate how Kan fillings can be given), and how to transform
an equivalence in an equality of types. Finally, we explain how to represent in our model spaces up to
homotopy such as the sphere, and the operation of propositional truncation, giving in particular a new
computational interpretation of the axiom of description [19].

1 The category of names and substitutions

We start by fixing a countable discrete set of names or symbols, hereafter called the name space, such
that 0 and 1 are not names. The objects of C are finite decidable subsets of the name space, and we
denote them by I, J,K, A morphism f : I → J is a map I → J ∪ {0, 1} such that f(i) = f(j) iff
i = j whenever f(i) and f(j) are in J . Notice that {0, 1} is disjoint from J since J is a set of names.
We say that i is in the domain of f , or that f(i) is defined, if f(i) is an element of J2. So the condition
for f being a morphism can be reformulated by saying that f is injective on its domain.

Clearly, 1I : I → I defined by 1I(i) = i for all i ∈ I is a morphism. If f : I → J and g : J → K
are morphisms, we define the composition g ◦ f by (g ◦ f)(i) = g(f(i)) if i is in the domain of f , and
(g ◦ f)(i) = f(i) if f(i) = 0, 1. Clearly, g ◦ f : I → K is a morphism. We shall write fg for the
composition g ◦ f , so first f and then g. It is not difficult to see that composition is associative and that
1If = f = f1J . Hence C is a category. From now on, we may simply write 1 instead of 1I .

Every f : I → J has a unique extension to a map I ∪ {0, 1} → J ∪ {0, 1} that is the identity on
{0, 1}, and this canonical extension respects composition. Together with I 7→ I ∪ {0, 1} we get a functor
C → Set.

We think of f : I → J as a substitution with renaming, where the only values we can substitute are
0 and 1. In particular we have for any x in I two substitutions (x = b) : I → I − x, for b = 0, 1, defined
by y(x = b) = y if y 6= x and x(x = b) = b. These are the face maps. Thus cubical sets have 2n face
maps when I has n elements, that is, in dimension n (where simplicial sets have n+ 1 face maps).

We say that a map f : I → J is a degeneracy map iff all elements in I are in the domain of f .
For instance, if I ⊆ J the canonical inclusion I → J defines a degeneracy map. If x is not in I the
inclusion map I → I, x will be written as ιx. We have two face maps (x = 0), (x = 1) : I, x → I and
we have ιx(x = 0) = ιx(x = 1) = 1I , which is one example of a cubical identity. There are many more
cubical identities, often implicit in the notations. We also have the following result (cf. simplicial sets):
every morphism f has a unique decomposition f = gh where g is a composite of face maps and h is a
degeneracy map.

1Available at: github.com/simhu/cubical
2In a previous attempt, we have been considering the category of finite sets with maps I → J + 2 (i.e. the Kleisli

category for the monad I + 2). This category appears on pages 47–48 in Pursuing Stacks [10] as “in a sense, the smallest
test category”.

2

If f : I → J is defined on x, we write f−x : I−x→ J−f(x) for the map defined by (f−x)(y) = f(y)
if y is in I − x.

If f : I → J and x is not in I and y is not in J , we can extend f to a map (f, x = y) : I, x→ J, y by
sending x to y.

2 Cubical sets

A cubical set is a functor C → Set. Let X be a cubical set. Then we have sets X(I) and set maps (called
restrictions) X(I)→ X(J), u 7−→ uf for any morphism f : I → J , such that u1 = u and u(fg) = (uf)g.

A cubical set X is a presheaf on the category Cop. Any finite set of directions I represents by the
Yoneda embedding y : Cop → SetC a cubical set yI, which can be thought of as a formal representation
of [0, 1]I . An element of X(I) can then be seen as a formal representation of a “continuous” map
[0, 1]I → X, and it is natural to call an element of X(I) an I-cube.

For finite sets of names we will write commas instead of unions and often omit curly braces; e.g. we
write I, x for I ∪ {x}, I − x for I − {x}, and X(x1, . . . , xn) for X({x1, . . . , xn}).

We think of u in X(I) as meaning that u may depend on the names in I, and only on those names; we
think of uf in X(J) as the element we obtain by performing the substitution f on u, possibly combined
with renaming and/or adding variables. An element of X() represents a point, an element ω of X(x) a
line connecting the points ω(x = 0) and ω(x = 1) in X(). An element in X(x, y) represents a square. We
then follow some notations similar to the ones in first-order logic by writing u = u(x1, . . . , xn) when u is
in X(x1, . . . , xn). This is similar to saying that u may depend at most on the names x1, . . . , xn. In doing
so we always implicitly assume that the names x1, . . . , xn are pairwise distinct; the order of the names
in X(x1, . . . , xn) does not matter. Applying a face map will now be expressed by actually performing
the substitution. For example, we have that u(x = 0) is in X(y) whenever u is in X(x, y):

u(0, 1)
u(x,1) // u(1, 1) u(0, 0)

u(x,0) // u(1, 0)

u(x, y) u(x, 0)

u(0, 0)
u(x,0)

//

u(0,y)

OO

u(1, 0)

u(1,y)

OO

u(0, 0)
u(x,0)

//

u(0,0)

OO

u(1, 0)

u(1,0)

OO

If v is an I−x cube of X then we can consider vιx which is an I-cube of X (we recall that ιx : I−x→ I
is the canonical inclusion). The map v 7−→ vιx is injective (we have vιx(x = 0) = v) and it is natural
to identify v and vιx, thus considering X(I − x) to be a subset of X(I). An example is the degenerated
right square above.

If u is in X(I) and x is in I, there may exist a v in X(I − x) such that u = vιx = v. Intuitively, this
means that x “does not occur” in u, or that u is “independent” of x. One sometimes uses the notation
x#u to express this relation. In general, this relation does not need to be decidable.

If X is a cubical set and a and u are two points (∅-cube) of X we can define a new cubical set IdX a u
by taking an element in (IdX a u)(I) to be an I, x-cube ω of X where x is a fresh variable (i.e. x /∈ I),
such that ω(x = 0) = a and ω(x = 1) = u. The name x is “bound” in this operation so that another
I, x′-cube ω′ is equal to ω iff ω′(x′ = x) = ω. We introduce a new binding operation 〈x〉ω which defines
this I-cube of IdX a u. One way to make this notion precise is to assume a choice function on the set of
names which selects a fresh name for any finite subset and define 〈x〉ω to be ω(x = xI) where xI is the
fresh name given by the choice function. (This is the solution suggested in [21].)

The corresponding category with the same objects and morphisms I → J ∪ {0} has been already
considered as the category of partial injections. It has been shown by Staton that the category of
covariant presheaves over this category is equivalent to the category of nominal sets with one restriction
operation (see [17], exercise 9.7). Using the same method, we can associate in a canonical way a nominal
set to any cubical set. A category equivalent to to the category of cubical sets is presented in [18].

3

3 Cubical sets as a presheaf model

We will now recall how cubical sets, as does any presheaf category, give rise to a model of dependent
type theory. We use Dybjer’s notion of category with families (CwF) to devise such a model [9, 8, 11].
We stress the fact that such a structure is described by a generalized algebraic theory [5]. To give a CwF
is to give:

1. interpretations (as sets) for the sorts of contexts, context morphisms (substitutions), types and
terms;

2. operations;

3. checking equations;

This amounts to validate the rules given in Figure 1. Note that we use polymorphic notation to increase
readability as in [5, 9]; e.g. without this convention we should have written pΓ,A for the first projection
p : Γ.A → Γ. Also, we leave the type parameters implicit, e.g. (Aσ)δ = A(σδ) tacitly assumes the
premises σ : ∆→ Γ, δ : Θ→ ∆ and Γ ` A. These points are also stressed in [25, Sec. 1] and [9].

We will now describe how cubical sets give rise to such a structure. This construction works for
any presheaf category and is described in [11, Sec. 4]. Instead of using contravariant presheaves, we use
covariant presheaves and write composition in diagram order.

A context Γ, written Γ `, is interpreted by a cubical set, and context morphisms σ : ∆ → Γ are
interpreted as cubical set maps (i.e. natural transformations), that is we have (σβ)f = σ(βf) if β is a
I-cube of ∆. A dependent type Γ ` A is given by sets Aα for each I-cube α of Γ together with maps
(also called restrictions) Aα→ Aαf, u 7−→ uf for each f : I → J , satisfying u1 = u and u(fg) = (uf)g.
A section (or term) Γ ` a : A is defined by giving an element aα in Aα for each I-cube α of Γ in such
a way that (aα)f = a(αf) for any f : I → J . The empty context () is given by the cubical set with
exactly one I-cube for each I. Given Γ ` A and σ : ∆ → Γ we define ∆ ` Aσ by (Aσ)α = A(σα) and
the induced maps; likewise, substitution in a term Γ ` a : A is given by (aσ)α = a(σα). If Γ ` A, we
define the cubical set Γ.A by taking as I-cubes of Γ.A pairs (α, u) with α an I-cube of Γ and u in Aα.
For f : I → J we define (α, u)f = (αf, uf). The first projection p : Γ.A→ Γ, p(α, u) = α becomes thus
a context morphism, and the second projection q(α, u) = u a section Γ.A ` q : Ap corresponding to the
first de Bruijn index. For Γ ` A, σ : ∆→ Γ and ∆ ` u : A we give (σ, u) : ∆→ Γ.A by (σ, u)β = (σβ, uβ).
This concludes the description of the CwF without type formers.

We now describe how to interpret Π and Σ. If Γ ` A and Γ.A ` B, we define the type Γ ` ΠAB as
follows. For each I-cube α of Γ, an element w of (ΠAB)α is a family (wf) indexed by f : I → J such
that

wf ∈
∏

u∈Aαf

B(αf, u)

is a dependent function and (wf (u))g = wfg(ug) for g : J → K and u ∈ Aαf . We define the family wf
in (ΠAB)αf by putting (wf)g = wfg, which completes the definition of Γ ` ΠAB. Given Γ.A ` b : B
we interpret Γ ` λ b : ΠAB by ((λ b)α)f (u) = b(αf, u) for u in Aαf . Application Γ ` app(w, u) : B[u]
(where [u] = (1, u) : Γ → Γ.A) of Γ ` w : ΠAB to Γ ` u : A is given by app(w, u)α = (wα)1(uα). We
get app((λ b), u)α = ((λ b)α)1(uα) = b(α, uα) = (b[u])α.

The definition of dependent sums is easier: Γ ` ΣAB for Γ ` A and Γ.A ` B is defined by sums in
each stage, i.e. for an I-cube α in Γ, (ΣAB)α consists of pairs (u, v) with u in Aα and v in B(α, u).
Restrictions are defined component-wise: (u, v)f = (uf, vf) where f : I → J . If Γ ` w : ΣAB and
wα = (u, v), then (w.1)α = u and (w.2)α = v.

We can then verify all the equations of Figure 1.

4 The uniform Kan condition

Using these notations we can formulate the Kan condition (cf. [14]) and our strengthening as follows.
Let X be a cubical set. First we define the notion of an open box in X, the equivalent of a horn in a
simplicial set. Let I be a finite set of names and let J, x ⊆ I. The variable x must not be in J and will
be the direction in which the box is open. For every y ∈ J , the open box will have two faces, one with

4

Γ `
1 : Γ→ Γ

σ : ∆→ Γ δ : Θ→ ∆

σδ : Θ→ Γ

Γ ` A σ : ∆→ Γ

∆ ` Aσ
Γ ` t : A σ : ∆→ Γ

∆ ` tσ : Aσ

() `
Γ ` Γ ` A

Γ.A `
Γ ` A

p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` u : Aσ

(σ, u) : ∆→ Γ.A

Γ.A ` B
Γ ` Π A B

Γ.A ` B Γ.A ` b : B

Γ ` λb : Π A B

Γ.A ` B
Γ ` Σ A B

Γ.A ` B Γ ` u : A Γ ` v : B[u]

Γ ` (u, v) : Σ A B

Γ ` w : Π A B Γ ` u : A

Γ ` app(w, u) : B[u]

Γ ` w : Σ A B

Γ ` w.1 : A

Γ ` w : Σ A B

Γ ` w.2 : B[w.1]

1σ = σ1 = σ (σδ)ν = σ(δν) [u] = (1, u)

A1 = A (Aσ)δ = A(σδ) u1 = u (uσ)δ = u(σδ)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u (p, q) = 1

(Π A B)σ = Π (Aσ) (B(σp, q)) (λb)σ = λ(b(σp, q))

app(w, u)δ = app(wδ, uδ) app(λb, u) = b[u] w = λ(app(wp, q))

(Σ A B)σ = Σ (Aσ) (B(σp, q)) (w.1)σ = (wσ).1 (w.2)σ = (wσ).2

(u, v)σ = (uσ, vσ) (u, v).1 = u (u, v).2 = v (w.1, w.2) = w

Figure 1: Rules of MLTT

y = 0 and one with y = 1. Let O+(J, x) consist of pairs (x, 0) and (y, b) for y ∈ J, b = 0, 1. In the
same way we define O−(J, x), but with (x, 1) instead of (x, 0). The idea for both is that one face in the
direction x is missing. We use O(J, x) to denote either O+(J, x) or O−(J, x). An open box, denoted by
~u, is a family of elements (faces) uyb in X(I − y) for each (y, b) ∈ O(J, x) such that

uyb(z = c) = uzc(y = b)

for all (y, b), (z, c) ∈ O(J, x) with y 6= z. The latter condition may be phrased as: the faces of an open box
are adjacent-compatible. If f : I → K is defined on J, x we write ~uf for the vector (~uf)yb = uyb(f − y).

For X to be a (constructive) Kan cubical set, we require to be given operations X↑ and X↓ for every
J, x ⊆ I such that X↑~u and X↓~u are both in X(I). Here ~u is an open box with ux0 and ux1 in X(I − x)
in the respective cases X↑~u and X↓~u. (From now on we will always tacitly assume that the open box
~u is of the right type with respect to X↑, X↓.) The operations X↑, X↓ are to be thought of as a filling
their respective open boxes. Therefore we require for all (y, b) ∈ O(J, x):

(X↑~u)(y = b) = uyb (X↓~u)(y = b) = uyb

The new uniformity condition is: if f : I → K is defined on J, x, we require:

(X↑~u)f = X↑(~uf) (X↓~u)f = X↓(~uf)

5

We refer to the combined condition as the uniform Kan condition for cubical sets, or the Kan condition
for short.

If we only consider the case where I = J, x, that is, no other variables in I, and without the uniformity
conditions, we get back the usual notion of Kan cubical sets [14, Section 4] (adapted to our notion of
cubical sets). For a suggestive description of how to define combinatorially πn(X,u) for each point u of
X if X satisfies the Kan property, see [26].

If X is a Kan cubical set with operations X↑, X↓, we define new operations (see figure below)

X+~u = (X↑~u)(x = 1) X−~u = (X↓~u)(x = 0)

·
X+(ux0,uy0,uy1) // · · ux1 // ·

X↑(ux0, uy0, uy1) X↓(ux1, uy0, uy1)

·
ux0

//

uy0

OO

·

uy1

OO

·
X−(ux1,uy0,uy1)

//

uy0

OO

·

uy1

OO

Let Γ be a cubical set (which does not need to satisfy the Kan condition) and Γ ` A a type over Γ.
A Kan structure on Γ ` A is given by operations Aα↑ and Aα↓ for each α ∈ Γ(I) and J, x ⊆ I, such
that Aα↑~u and Aα↓~u are both in Aα for every open box ~u. Here open box means that uyb ∈ Aα(y = b)
for all (y, b) ∈ O(J, x), and that these faces are adjacent-compatible. Aα↑, Aα↓ must satisfy the same
Kan conditions as X↑, X↓ above. The usual Kan conditions are obtained by simply substituting Aα for
X. Since f : I → K interacts with α, we reformulate the uniformity conditions:

(Aα↑~u)f = Aαf↑(~uf) (Aα↓~u)f = Aαf↓(~uf)

If Γ ` A has a Kan structure with operations Aα↑, Aα↓, we define as before

Aα+~u = (Aα↑~u)(x = 1) Aα−~u = (Aα↓~u)(x = 0)

Notice that if Γ ` A has a Kan structure, then the map p : Γ.A→ Γ is a Kan fibration as in [14, 26].
For Γ ` A with Kan structure and a line α in Γ(x) connecting points ρ0 to ρ1 one can define a map

of cubical sets Aρ0 → Aρ1 as follows. First, consider Aρi as a cubical set with set of points Aρi, set
of lines Aρiιx, and so on. In general, we define AρiιI by taking ιI to be the unique morphism ∅ → I;
restrictions are induced by Γ ` A. Then, the map Aρ0 → Aρ1 is defined by a 7→ Aα+a. The equivalence
a 7→ Aα+a works uniformly and does not distinguish cases in which a is degenerated or not. One can
show that this map is an equivalence (see Section 7.2 and 7.4). This is in contrast to Kan simplicial sets
where classical logic is essential to define such an equivalence [3].

5 Examples of cubical sets

In this section we elaborate the following examples of cubical sets: discrete cubical sets; the unit interval
I; the cubical nerve N of the group Z2 with two elements; the exponential N I. A noticeable difference
between simplicial sets and our cubical sets is that, while N is Kan, N I is not. This is important
motivation for the main result of the next section, implying that BA is a Kan cubical set if both A and
B are.

Every set A gives rise to the discrete cubical set KA via the constant presheaf, i.e. (KA)(I) = A for
each I and all restrictions are the identity map A→ A. Note that in an open box ~u all the components
have to be equal, say u, and this u is also the (unique) filler u = KA↑~u making the discrete cubical set
trivially into a Kan cubical set.

6

5.1 Unit interval

Recall the canonical extension of a map f : J → K in C to a set map J ∪ {0, 1} → K ∪ {0, 1} that is the
identity on {0, 1}. Together with mapping objects J of C to J∪{0, 1}, canonical extension actually forms a
functor C → Set. This covariant functor is called the unit interval, denoted by I. We explore: I() = {0, 1}
(I has two points); I(x) = {0, 1, x} (I has three lines, only x is non-degenerated); I(x, y) = {0, 1, x, y} (I
has four degenerated squares, see the display below); and so on. The square x varies in direction x, but
is constant in direction y, and hence degenerated. Similarly for objects of higher dimension in I. This
completes the description of the unit interval as a cubical set. Note that I ∼= y{x} for a name x (where
y denotes the Yoneda embedding) is another way to describe the interval.

I(x, y) :
0

0

0

0

1

1

1

1

0

0

1

1

1

0

1

0

5.2 Cubical nerve

Recall that a morphism f : J → K in C is a function f : J → K ∪ {0, 1} such that for every y ∈ K
there exists at most one x ∈ J with f(x) = y. Hence every morphism f : J → K defines a function
{0, 1}K → {0, 1}J through precomposition with f . We can view {0, 1}J as a product of posets 0 ≤ 1,
and hence as a category with unique morphisms. Then every morphism f : J → K defines a functor
{0, 1}K → {0, 1}J , as the precomposition preserves the order. We denote this functor also by f .

Given a small category D, we define its cubical nerve ND as follows. The sets ND(J) are functors
{0, 1}J → D. For every morphism f : J → K, its function ND(J) → ND(K) is defined by precompo-
sition with the functor f . Note that the unit interval is not the cubical nerve of the poset 0 ≤ 1: they
have similar sets of points and lines, but N(0 ≤ 1) has two more squares, both non-degenerated in two
directions:

N(0 ≤ 1)(x, y) :
0

0

0

0

0

0

1

1

1

0

1

0

1

1

1

1

0

0

1

0

1

0

1

1

An element of ND(J) can be viewed as a (hyper)cube with the edges labelled by morphisms of D and
vertices labelled by objects of D, such that all paths commute (or equivalently, all triangles commute).
This completes the description of the cubical nerve of a category.

Consider the group of two elements as a category (groupoid) with one object ? and two morphisms
0, 1 : ? → ?. Let N be the nerve of this groupoid: N has one point and two lines, again denoted by ?
and 0, 1. Note that ?(x) = 0 and 1 ◦ 1 = 1 + 1 = 0. The squares of N are listed as follows, where we only
show the lines:

N(x, y): 0
0

0
0 1

0

0
1 0

1

1
0 1

0

1
0 1

1

0
0 0

1

0
1 0

0

1
1 1

1

1
1 For later: 0

`x
`x

0 0
`1
`0

0 `0
0

0
`1 `y

0

0
`y

Being the nerve of a groupoid, N is Kan (see the next section).
We now show that N I is not Kan. By the Yoneda Lemma we have N I(J) ∼= ((yJ × I) → N), the

latter denoting a set of natural transformations. Defining p ∈ N I(J) means defining maps (index K
omitted) p : yJ(K) → (I(K) → N(K)) for all K, such that (pfu)g = pfg(ug) for every f : J → K,
g : K → L, and u ∈ I(K).

We explore the points of N I and define p ∈ N I() by, first, p() : I() → N() : 0, 1 7→ ?. Then,
pιx : I(x) → N(x) : 0, 1 7→ ?(x) = 0 is forced by naturality, but for pιxx there is a choice. If we choose
0, we must make the same choice for all names x in the name space. The choice 1 for all names x in
the name space would give the only other point. In higher dimensions all arguments are degenerated,
determining the function values, and naturality is compatible with each of the two choices above. We
now fix p with pιxx = 0.

Next we explore lines from p to p in N I, say in direction i, and define ` : p→ p in N I(i) by `(i=b)g = pg
for all b = 0, 1 and g : ∅ → K. For `(i=x) : I(x) → N(x) there is a choice. For the moment we put
`(i=x)c = `c for all c ∈ I(x). Note that we must make the same choices `0, `1, `x for all names x in the
name space. On the next level, there is no choice left. First, `(i=b)g = pg for b = 0, 1 and g = ιxιy.
Moreover, `(i=x)ιy , `(i=y)ιx : I(x, y) → N(x, y) are completely determined by the choices of `0, `1, `x.
Even more so, naturality limits the choice on the lower level. This can be seen by applying `(i=x)ιy

and `(i=y)ιx to both x and y in I(x, y). This results in the four squares displayed above (NB: `x = `y).

7

Since the squares have to commute we get `0 = `1. In higher dimensions all values are determined by
naturality, and naturality is compatible with each of the four possible choices (recall that objects in I
can be non-degenerated in at most one direction). This yields in total four lines from p to p in N I.

In order to show that N I is not Kan, consider lines p, ` : p → p, where p is degenerated (p0 = px =
p1 = 0) and ` is defined by `0 = `1 = 0, `x = 1. Consider an open box as in the picture below, left:

p // p 0
0 // 0 ?

`′0 // ? 1
1 // 1 ?

`′1 // ?

p
p

//

p

OO

p

`

OO

0
0

//

0

OO

0

0

OO

?
0

//

0

OO

?

0

OO

0
0

//

y

OO

0

y

OO

?
0

//

0

OO

?

1

OO

Assume we could fill the box. Call the closing (dotted) line above `′. Applying the first square to the
second results in the third square, yielding `′0 = 0. Applying the first square to the fourth results in the
last square, yielding `′1 = 1. This contradicts `′0 = `′1 for any line p → p. Hence the above box has no
filler.

5.3 The nerve of a groupoid is Kan

Let G be a groupoid, and N its cubical nerve. We sketch a proof that N is Kan. Take I = x, J, z in C,
with J = y1, . . . , yk (k ≥ 0). Taking one variable z instead of z1, . . . , zn simplifies the presentation, but
is otherwise inessential.

Let ~u be an open box indexed by O(J, x), that is, adjacent-compatible faces ux0 ∈ N(I − x) and uyb
in N(I − y). We have to define u ∈ N(I) with faces as given by the open box. For this we define closing
faces ux1,uz0,uz1, such that they are adjacent-compatible with the open box, and show that all squares
commute. This will define u in a unique way. Thereafter we shall verify the uniformity condition.

If J = ∅ (k = 0), the open ‘box’ is a degenerated line ux0. We close by taking ux1 = uz0 = uz1 = ux0,
and u is the doubly degenerated square. If J 6= ∅ (k > 0), we observe that all the points of u are already
given by the open box, so that we can limit attention to the edges. Moreover, if J consists of more
than one variable, all edges are also already present in the open box, which makes the definition of the
closing faces particularly simple. This can be seen as follows. For b = 0, 1, the faces uy1b contain all
edges in which y1 = b, and the faces uy2b contain all edges in which y2 = b. In particular, the two faces
uy2b contain all edges in direction y1. Hence, the four faces uy1b, uy2b together contain all edges. The
groupoid structure guarantees that all squares of the closing face commute.

The most interesting case to elaborate is I = x, y, z, J = y, where we have to define the edges in ux1

in direction y. This situation is depicted below, left, with the new edges as defined right. The new edges
make essential use of the inverses in the groupoid and are uniquely defined.

// g−1
0 ·g1·g2 //__

//

??
g0

__

g1
//

g2
??

ux0

��

//

OO

��

OO

x

��

y //

z

OO

g3��

g4 //

g5 ��

OO

//

OO OO

g−1
3 ·g4·g5

//

OO

The new squares uzb commute as per construction. Moreover, the new square ux1 commutes since it can
be projected down to the commuting square ux0 along edges that are invertible. A similar argument can
be used if J contains more variables. This completes the construction of u ∈ N(I).

Uniformity will be shown to be a consequence of the uniqueness of u constructed above, and the
following easy lemma. This lemma can be useful in other places as well.

8

Lemma 5.1 For all morphisms f : I → K in C defined on x we have (i) (x = b)(f − x) = f(f(x) = b)
and (ii) (x)f = (f − x)(f(x)).

Now let u = N↑(ux0, uy0, uy1) and u′ = N↑(ux0(f−x), uy0(f−y), uy1(f−y)). We have to show u′ = uf .
By the lemma we have ux0(f − x) = uf(f(x) = 0) and uyb(f − y) = uf(f(y) = b). This means that u′

and uf agree on the open box defining u′, so they are equal by uniqueness. Again, a similar argument
can be used if J contains more variables. This completes the proof sketch that the cubical nerve of a
groupoid is Kan.

6 The Kan cubical set model

In this section we will give a refinement of the model given in Section 3. The Kan cubical set model is
given as follows: contexts and contexts morphisms are interpreted as in Section 3, i.e. by cubical sets
and morphisms between cubical sets; a type is given by a type Γ ` A in the sense of Section 3 together
with a Kan structure; terms are given as in Section 3. The Kan structure on types is needed in order to
justify the elimination rules for the identity types (cf. Section 7.2).

It is crucial to note that the Kan structure is part of a type in the Kan cubical set model. Two types
Γ ` A and Γ ` B which have a Kan structure can be equal as cubical sets, but not with their Kan
structure. Thus we have to check whether the equations between types in Figure 1 are preserved for
their Kan structure.

The definition of the model is such that it follows the model described in Section 3, but additionally
we have to define how the Kan structure is given on the types. This is done in the proofs of the following
theorems.

Theorem 6.1 If Γ ` A has a Kan structure and σ : ∆ → Γ, then also ∆ ` Aσ has a Kan structure.
Moreover the definition is such that A1 = A and (Aσ)τ = A(στ) as types with Kan structures.

Proof. For an I-cube α of ∆ recall that (Aσ)α = A(σα) as cubical sets; we define the filling operations
in (Aσ)α to be those in A(σα), i.e. we set (Aσ)α↑~u = A(σα)↑~u. With this definition it is clear that A1
and A have the same filling operations, and similarly for the other equation.

6.1 Dependent product

Theorem 6.2 If both Γ ` A and Γ.A ` B have Kan structures, then so does Γ ` ΠAB. Moreover the
definition of the Kan structure is such that (ΠAB)σ = Π(Aσ)(B(σp, q)).

Proof. We present the argument in the case J = ∅, the general case is not essentially more difficult. Also,
as the cases ↑, ↓ are perfectly symmetric, we restrict attention to ↑. We denote the direction of filling
with a subscript to ↑, ↓,−,+. Let C = ΠAB.

First we will define Cα+
xw ∈ Cα(x = 1) for α an I-cube of Γ, x ∈ I, and w in Cα(x = 0). This

amounts to define a family of dependent functions (Cα+
xw)f in

∏
u∈Aα(x=1)f B(α(x = 1)f, u) for all

f : I − x→ K, such that (
(Cα+

xw)f (u)
)
g = (Cα+

xw)fg(ug). (1)

We will first define (Cα+
xw)f for f = 1: I − x → I − x. For this let u ∈ Aα(x = 1). We use the Kan

fillings to map u down to Aα−x u, apply w (at 1 : I − x→ I − x) and map the result up:

(Cα+
xw)1(u) = B(α,Aα↓xu)+

x (w1(Aα−x u)) (2)

which is in B(α(x = 1), u) as (Aα↓xu)(x = 1) = u. So we have defined (Cα+w)1 for arbitrary α and w.
For general f : I − x→ K we let z be fresh w.r.t. K and set:

(Cα+
xw)f = (Cα(f, x = z)

+
z wf)1 (3)

By the uniformity conditions, this definition does not depend on the choice of z, and we also get by
uniformity and (2) (

(Cα+
xw)1(u)

)
f = (Cα(f, x = z)

+
xwf)1(uf). (4)

9

Note that (3) suffices to get the uniformity conditions for Cα+
xw; (3) together with (4), yields (1) and

thus an element in Cα(x = 1), concluding the definition of Cα+
xw.

Next we define Cα↑xw ∈ Cα; we do so again by first defining (Cα↑xw)f for f = 1: I → I. Let
γ ∈ Aα, u0 = γ(x = 0) and u = γ(x = 1); the definition of (Cα↑xw)1(γ) ∈ B(α, γ) has to satisfy:

(Cα+
xw)1 : u 7−→ (Cα+

xw)1(u)

(Cα↑xw0)1 : γ 7−→ (Cα↑xw)1(γ)

w1

OO

: u0

OO

7−→ w1(u0)

OO

Let y be a fresh name; using the uniform Kan filling for Γ ` A in Aα with J = {y} (denoted by Aα↓x,y)
we construct

θ = Aα↓x,y(u, γ,Aα↓xu),

resulting in a square:

u
u // u

θ

u0

γ

OO

θ(x=0)
// Aα−x u

Aα↓xu

OO

With λ = B(α,Aα↓xu)↑x(w1(Aα−x u)) we get an open box in B(α, θ)

(Cα+
xw)1(u)

(Cα+
xw)1(u) // (Cα+

xw)1(u)

w1u0
wιy (θ(x=0))

// w1(Aα−x u)

λ

OO

where the line on the right hand side is by the defining equation (2). Using the Kan structure of Γ.A ` B
for J = {x} we define

(Cα↑xw)1(γ) = B(α, θ)
−
y,x

(
λ,wιy (θ(x = 0)), (Cα+

xw)1(u)
)

with λ as above. Using the uniformity conditions for Γ ` A and Γ.A ` B, this definition is such that(
(Cα↑xw)1(γ)

)
f = (Cαf↑fxw(f − x))1(γf)

for f : I → K defined on x.
Now, if f : I → K is defined on x, we define (Cα↑w)f = (Cαf↑xw(f − x))1. If f is not defined on

x, we can write f = (x = b)f ′ for some f ′ : I − x→ K. Then we can simply define (Cα↑xw)f = wf ′ for
b = 0, and (Cα↑xw)f = (Cα+

xw)f ′ for b = 1. This defines the element Cα↑w in Cα which satisfies the
uniformity conditions.

To verify that the Kan structure of Π(Aσ)(B(σp, q)) (as defined above) is equal to the Kan structure
for (ΠAB)σ (as defined in the proof of the preceding theorem), assume that above α = σβ for σ : ∆→ Γ;
then Cα = ((ΠAB)σ)β and in equation (2) we have

B(σβ,A(σβ)↓xu)+
x (w1(A(σβ)

−
x u)) = (B(σp, q))(β, (Aσ)β↓xu)+

x (w1((Aσ)β
−
x u))

and the right hand side is the definition of
(
Π(Aσ)(B(σp, q))

+
xw
)

1
(u). Similarly for the other parts of

the definition.

Notice that we make essential use of the uniformity conditions in the above proof in order to verify
that the fillers we define are indeed elements in the dependent product. Moreover, in the general case
the fillings used from Γ ` A are only with J such that |J | ≤ 1.

10

6.2 Sum type

Theorem 6.3 If Γ ` A and Γ.A ` B have Kan structures, then so does Γ ` ΣAB. Moreover the
definition of the Kan structure is such that (ΣAB)σ = Σ(Aσ)(B(σp, q)).

Proof. Given an open box ~p in (ΣAB)α with pyb = (uyb, vyb) for any (y, b) ∈ O+(J, x) we first fill
u = Aα↑~u in Aα, and then set

(ΣAB)α↑~p = (u,B(α, u)↑~v).

This clearly satisfies the uniformity condition as they are satisfied for Γ ` A and Γ.A ` B.
Moreover, if α = σβ for σ : ∆ → Γ, we get u = (Aσ)β↑~u and B(σβ, u)↑~v = (B(σp, q))(β, u)↑~v,

yielding (ΣAB)σ = Σ(Aσ)(B(σp, q)).

7 Extensions

7.1 Inductive types

We can interpret inductive types as discrete Kan cubical sets (see Section 5). E.g. the booleans Γ ` N2

are defined by N2α = {true, false} for each α ∈ Γ(I), and restrictions being the identity map. As in
Section 5 one defines a Kan structure. We interpret the constants Γ ` true : N2 by trueα = true, and
similar for Γ ` false : N2. To interpret the elimination principle

Γ.N2 ` C Γ ` d0 : C[true] Γ ` d1 : C[false] Γ ` b : N2

Γ ` if b then d0 else d1 : C[b]

we define (if b then d0 else d1)α = d0α for bα = true, and (if b then d0 else d1)α = d1α for bα = false.

7.2 Identity type

We describe the interpretation of Γ ` IdA a b given Γ ` A and Γ ` a : A and Γ ` b : A. Given an
I-cube α in Γ we define (IdA a b)α to be the set of elements 〈x〉ω in Aαιx where x is a fresh variable
not in I, such that ω(x = 0) = aα and ω(x = 1) = bα. The latter situation is conveniently described
by ω : aα →x bα. We recall that ιx denotes the canonical injection I → I, x. The element 〈x〉ω is the
equivalence class of I, x-cubes of Aαιx, x not in I, where ω is identified with ω(x = x′) if x′ is not in
I. This operation 〈x〉ω binds the name x. (One could define 〈x〉ω to be ω(x = xI) where xI is a name
not in I obtained by a choice function.) If f is a substitution I → K we choose a variable y not in K,
extend f to (f, x = y) : I, x→ K, y and define (〈x〉ω)f to be 〈y〉ω(f, x = y), preserving equivalence.

Theorem 7.1 If Γ ` A has a Kan structure, then so does Γ ` IdA a b whenever we have Γ ` a : A and
Γ ` b : A. Moreover the definition is such that (IdA a b)σ = IdAσ aσ bσ as types with Kan structures.

Proof. Let α be an I-cube of Γ and J, x ⊆ I. After a suitable renaming, we can conveniently denote
an open box for (IdA a b)α by a vector 〈y〉~ω with components 〈y〉ωzc ∈ (IdA a b)α(z = c), for all
(z, c) ∈ O(J, x).

We define, with aα, bα the faces in the direction y, omitting subscripts J ,

(IdA a b)α↑x〈y〉~ω = 〈y〉(Aα↑x,y(~ω, aα, bα))

which shows that Γ ` IdA a b satisfies the Kan condition for J, x if Γ ` A satisfies the Kan condition
for J, y, x. The situation in case J = ∅ is depicted below. The uniformity condition follows from the
uniformity of Γ ` A.

11

aα
Aα+

x,y(ω0,aα,bα)
// bα 〈y〉ω1

Aα↑x,y(ω0, aα, bα) (IdA a b)α↑x〈y〉ω0

aα
ω0

//

aα

OO

bα

bα

OO

〈y〉ω0

OO

We give the interpretation of Γ ` Ref a : IdA a a given Γ ` a : A. For any set of directions I, and
any I-cube ρ, we have to give a line aρ → aρ. For this, we choose a direction x not in I and we define
(Ref a)ρ = 〈x〉aριx, which can also simply be written (Ref a)ρ = 〈x〉aρ.

Next we show that we can interpret an elimination operator for the identity type. Suppose Γ ` a :
A, Γ ` b : A, Γ ` u : IdA a b and Γ.A ` P and Γ ` v : P [a]. We will define an operator

Γ ` T(u, v) : P [b].

Let ρ be some I-cube of Γ. Then uρ is of the form 〈x〉ω for some path ω : aρ→x bρ, x not in I, ω ∈ Aρ.
The I, x-cube (ρ, ω) in Γ.A is then a path [a]ρ→x [b]ρ and we define (see the picture below)

T(u, v)ρ = P (ρ, ω)+vρ where 〈x〉ω = uρ

The condition (T(u, v)ρ)f = T(u, v)(ρf) follows from the uniformity condition on the Kan filling opera-
tions.

bρ [b]ρ T(u, v)ρ

ω ρ, ω P (ρ, ω)↑vρ

aρ

OO

[a]ρ

OO

vρ

OO

We have that P (ρ, ω)↑vρ is a line connecting vρ and T(u, v)ρ. In particular for u = Ref a, this gives an
interpretation of an operator

Γ ` H(v) : IdP [a] v T(Ref a, v)

by taking H(v)ρ = 〈x〉P (ριx, aρ)↑vρ. The computation rule for identity is thus only validated by a path
to v via H(v)3.

We finally show that, given Γ ` a : A, the type Γ ` T = Σ A (IdAp ap q) is contractible. For this we
have to find a center of T and a path to this center for any element of T . That is, we have to find two
sections Γ ` t : T and Γ.T ` u : IdTp tp q. We define t = (a,Ref a). Let ρ be some I-cube of Γ and let
(v, 〈x〉α) be some element of Tρ. So v is an element of Aρ and α is a line connecting aρ and v in some
direction x not in I. We introduce a direction y not in I, x and define:

u(ρ, (v, 〈x〉α)) = 〈y〉(Aρ+
x,y(aρ, aρ, α), 〈x〉Aρ↑x,y(aρ, aρ, α))

The fact that the filling operations commute with substitution ensures that this defines a section Γ.T `
u : IdTp tp q.

We summarize the rules we interpret in the Kan cubical set model in Figure 7.2, where we left out
the equations that the operations commute with substitutions, e.g. (IdA a b)σ = IdAσ aσ bσ.

N.A. Danielsson has checked formally in Agda that these properties are enough to develop all basic
propositions of univalent mathematics; this Agda development4 is accompanying the paper [6].

3The validity of the computation rule for identity corresponds to considering only fibrations that are regular in the sense
of Hurewicz [13].

4Available at: www.cse.chalmers.se/~nad/

12

Γ ` A Γ ` a : A Γ ` b : A

Γ ` IdA a b

Γ ` a : A

Γ ` Ref a : IdA a a

Γ ` a : A Γ ` b : A Γ ` u : IdA a b Γ.A ` P Γ ` v : P [a]

Γ ` T(u, v) : P [b]

Γ ` a : A Γ.A ` P Γ ` v : P [a]

Γ ` H(v) : IdP [a] v T(Ref a, v)

Γ ` a : A

Γ ` center (a,Ref a) : ΠT (IdTp(a,Ref a) q)
where T = ΣA (IdApap q)

Figure 2: Rules for Id-types

Let us define the more common elimination operator of C. Paulin-Mohring from the above operations—
with the difference that the usual definitional equality is only propositional. To not make the notation
too heavy we’ll use informal reasoning in type theory; note that the definition can be given internally in
type theory and we don’t refer to the model; this definition follows N.A. Danielsson’s Agda development
(loc. cit.). First note that using the transport operation T one can define composition p ◦ q : IdAa c
of two identity proofs p : IdAa b, q : IdAb c, as well as inverses p−1 : IdAb a. With H one can derive
IdIdAa a(p−1 ◦ p) (Ref a).

Let A be a type, a : A, and C(b, p) a type given b : A, p : IdAa b, such that v : C(a,Ref a); for b : A and
p : IdAa b we define J(a, v, b, p) : C(b, u). We can consider C as a dependent type over T = (Σx : A)IdAa x
via C(pw, qw) for w : T . As we showed in the last paragraph, T is contractible with center (a,Ref a),
and thus we get a witness app(h, (b, p)) : IdT (a,Ref a) (b, p) for h = λu, u as in the above paragraph; now
with T (w.r.t. the type C(pw, qw) for w : T) we can define

J(a, v, b, p) = T(app(h, (a,Ref a))−1 ◦ app(h, (b, p)), v).

Now if p = Ref a, we get that app(h, (a,Ref a))−1 ◦ app(h, (b, p)) is propositionally equal to Ref(Ref a),
and thus using T and H again one gets a witness of IdC(a,Ref a) v J(a, v, a,Ref a).

Even though J doesn’t satisfy the judgmental equality, the model validates a new operation mapOnPaths
which behaves well w.r.t. judgmental equality. Its rule given Γ ` A, Γ ` B, Γ ` a0 : A and Γ ` a1 : A is

Γ ` f : A→ B Γ ` p : IdA a0 a1

Γ ` mapOnPaths(f, p) : IdB (app(f, a0)) (app(f, a1))

whereA→ B is the non-dependent function space ΠA(Bp). Given ρ in Γ(I) we define mapOnPaths(f, p)ρ =
〈x〉app((fρ)1, ω) for pρ = 〈x〉ω. This satisfies the equations

mapOnPaths(id, p) = p

mapOnPaths(f ◦ g, p) = mapOnPaths
(
f,mapOnPaths(g, p)

)
mapOnPaths(f,Ref a) = Ref(app(f, a))

mapOnPaths(λ(bp), p) = Ref b

where now f ◦ g denotes ordinary function composition and λ(bp) is constant.
Notice that some of these equations do not hold if the identity type is defined as an inductive family,

as in [16].

This interpretation of identity satisfies function extensionality (left to the reader).

7.3 Description of a universe

We now describe the interpretation of U as a universe of Kan cubical sets. We give U only as a cubical
set (following [12, 22]) and only indicate how an operation similar to the Kan fillings can be given.

Recall that the Yoneda embedding is denoted by y. An element A of U(I) is a type yI ` A with
Kan structure such that for each f : I → J the set Af is small (we use subscripts to keep the notation

13

separate from the restrictions). Given such a yI ` A and f : I → J the restriction Af of A by f is
defined to be yJ ` A(yf), where yf : yJ → yI is the substitution induced by f ; thus (Af)g = Afg.
This defines U as a cubical set.

Note that the points of U are simply the (small) uniform Kan cubical sets. More precisely, since ∅ is
initial in C, any A in U(∅) becomes a cubical set when we define A(I) as Af for the unique f : ∅ → I.
A line in U between points A and B can be seen as a “heterogeneous” notion of lines, cubes, . . . a→ b
where a is an I-cube of A and b an I-cube of B.

As a first step towards proving that this cubical set satisfies the Kan condition we show how to
compose an A and B in U(I) with x ∈ I assuming A(x = 1) = B(x = 0); we define C = comp(A,B) ∈
U(I) such that C(x = 0) = A(x = 0), C(x = 1) = B(x = 1), and for f : I → J defined on x,
Cf = comp(Af,Bf). (Compare this to the composition of relations.)

We define the sets Cf , f : I → J by case distinction on f(x); in case f(x) = 0, we can write f = (x =
0)f ′ and we have to set Cf = Af as we have to satisfy Cf = (C(x = 0))f ′ = (A(x = 0))f ′ = Af ; similarly,
if f(x) = 1, we set Cf = Bf . In case, f is defined on x, an element of Cf is any pair (a, b) such that
a ∈ Af and b ∈ Bf with a(x = 1) = b(x = 0) in Af(x=1) = A(x = 1)(f−x) = B(x = 0)(f−x) = Bf(x=0).

We still have to define the restrictions Cf → Cfg for g : J → K; in the first two cases from above,
the restrictions are induced by Af and Bf respectively. In case f is defined on x, we look at g(f(x)): if
g(f(x)) = 0, we set (a, b)g = ag; if g(f(x)) = 1, we set (a, b)g = bg; and if g is defined at f(x), we define
(a, b)g = (ag, bg).

It remains to define the Kan fillings for C; it suffices to give them for C1 as Cf is either determined
by Af , Bf , or comp(Af,Bf)1; so let J, x′ ⊆ I, x′ /∈ J , and ~u be a open box in C1, i.e. uyc ∈ C(y=c) for
(y, c) ∈ O+(J, x′) with uyc(z = d) = uzd(y = c). Note that for y 6= x, uyc = (ayc, byc) with ayc ∈ A1

and byc ∈ B1 with ayc(x = 1) = byc(x = 0). We want to define u = C1↑~u. There are three cases. First,
in case x = x′, we set ax0 = ux0 ∈ C(x=0) = A(x=0); this yields an open box ~a in A1 which we can fill

to a = A1↑~a ∈ A1. Now setting bx0 = a(x = 1) yields an open box ~b in B1 which we can fill to get

b = B1↑~b ∈ B1. Note that b(x = 0) = a(x = 1) and thus we can set u = (a, b).
Second, in case x 6= x′ with x ∈ J , we construct an element v ∈ A(x=1) = B(x=0) first. For

(y, c) ∈ O+(J − x, x′) define vyc = ayc(x = 1) (which is also equal to byc(x = 0)). It is readily checked
that this defines an open box in A(x=1) = B(x=0) and thus we get v = A(x=1)↑~v. Now set ax1 = bx0 = v;

this yields open boxes ~a and ~b in A1 and B1, respectively. Thus we can take u = (A1↑~a,B1↑~b).
Finally, in case x /∈ J , we directly have open boxes ~a and ~b in A1 and B1, respectively. Setting

u = (A1↑~a,B1↑~b) gives an element in C1 since

(A1↑~a)(x = 1) = A(x=1)↑(~a(x = 1)) = B(x=0)↑(~b(x = 0)) = (B1↑~b)(x = 0).

This concludes the definition of C = comp(A,B).

7.4 Equivalence and equality of types

We explain in this section how to transform any equivalence σ : A → B between two Kan cubical sets
to an equality path A → B, as defined in the previous section. Let us recall the notion of equivalence
between types (cf. [23, Definition 4.4.1]) using informal notation. For a type A we define the proposition
of being contractible isContrA to be (Σa : A)(Πx : A) IdA a x. The fiber fibσ b of a map σ : A→ B over
b : B is defined as (Σx : A) IdB app(f, x) b. A map σ : A → B is an equivalence if all its fibers are
contractible, i.e. if

(Πb : B) isContr(fibσ b).

This amounts to give ϕ : (Πb : B)(Σx : A)IdB app(f, x) b and ψ : (Πb : A)(Πu : fibσ b) Idfibσ b app(ϕ, b) u.
If we now assume that A and B are Kan cubical sets (which corresponds to types in the empty context),
this definition unfolds to the following data: a map σ : A → B is an equivalence if there is a map
δ : B → A and a map assigning to b a line σδb → b, and a transformation of any equality ω : σa → b,
where a (resp. b) is an I-cube of A (resp. B) to a “square” (really a pair of an I, x-cube of A and an
I, x, y-cube of B)

14

a - δb

σa - σδb

b
?

- b
?

We define from this a path C between A and B in the direction x. For any substitution f : {x} → I
we have to define a set Cf together with substitution maps Cf → Cfg. If f(x) = 0 we take Cf = A(I)
and if f(x) = 1 we take Cf = B(I). If f(x) = y then we define Cf to be the set of pairs (a, b) where
a is an (I − y)-cube of A and b is an I-cube of B and b(y = 0) = σa. It can be then be checked in an
elementary way that if σ is an equivalence, then this “heterogeneous” notion of cube has the uniform
Kan property.

In pictures, the main difficult case is to complete an open box

σa0
- b0

σa1
- b1
?

to a square

a0 σa0
- b0

a1

?
σa1

?
- b1
?

For this, using the fact that σ is an equivalence, we transform the open box in an open box in A

a0
- δb0

a1
- δb1

?

and since A is Kan, it can be filled to a box

a0
- δb0

a1

?
- δb1

?

15

and we can then fill the box in B

a0 σa0
- b0

σδb0 -

-

b0
�

σδb1
?

- b1
?

a1

?
σa1

?
-

-

b1
?

�

Since our model is constructive, this gives a way to effectively transport properties and structures on
a Kan cubical set to one which is equivalent. In particular we can effectively transport properties and
structures of a groupoid to one which is categorically equivalent.

We have only described here a weak corollary of the Axiom of Univalence, but the complete Axiom
can be validated in this model as well.5

7.5 Propositional reflection

We can describe the operation of Kan “completion”. Given a cubical set X we add operations X+, X↑,
X−, X↓ in a free way, i.e. considering these operations as constructors. At the same time one defines
the restrictions of the added operations, resulting in an inductive-recursive definition. The uniformity
condition determine what the restrictions of these elements should. In this way we get a new cubical set
Y , satisfying by definition the Kan extension property, with a map X → Y . Furthermore, if Z is Kan,
and we have a map σ : X → Z there is a map Y → Z extending σ. This map is furthermore unique if
we impose it to commute with the Kan operations. In general however, the maps of Kan cubical sets do
not need to commute with the Kan operations.

The same idea can be used to define inhX, the proposition stating that X is inhabited. Besides adding
constructors (inhX)+, (inhX)↑, (inhX)− and (inhX)↓, we also add a constructor αx(u0, u1) connecting
formally along the dimension x any two I-cubes u0 and u1 (with x not in I) and constructors for the
Kan filling and composition operations. Thus each I-cube u in inhX is of one of the forms: either u an
I-cube of X; a formal Kan filling, e.g. (inhX)↑~u with ~u an open box in inhX; or of the form αx(u0, u1)
with ui in (inhX)(I − x). At the same time we define the restrictions

αx(u0, u1)(x = 0) = u0 αx(u0, u1)(x = 1) = u1

and, if f is defined on x with y = f(x),

αx(u0, u1)f = αy(u0(f − x), u1(f − x)).

This satisfies the required induction principle of inhX: if we have a map ϕ : X → Y , we can extend
this to a map ϕ̃ : propY × inhX → Y where propY is (Πy0 y1 : Y) IdY y0 y1. For p ∈ (propY)(I) and
u ∈ (inhX)(I) we define ϕ̃(p, u) in Y (I) by induction on u. The difficult case is when u is αx(u0, u1)
with x ∈ I and ui ∈ (inhX)(I − x). By induction hypothesis, we already defined vi = ϕ̃(p(x = i), ui) ∈
Y (I − x). Applying p(x = 0) to both v0 and v1 gives a path 〈x〉ω, where ω ∈ Y (I) connecting v0 to
v1 along x, and we set ϕ̃(p, u) = ω. Note that the choice of p(x = 0) ∈ (propY)(I − x) above is not
canonical.

We can also define the spheres. For instance S1 will be the Kan completion of the cubical set generated
by a point base and a loop loop.

We can then define ∃ A B to be inh(Σ A B). If Σ A B is a proposition we have an inhabitant of
∃ A B → Σ A B and this can be seen as a generalization of the axiom of description since if A set, B
proposition and B is satisfied by at most one element of A then Σ A B is a proposition.

5See the implementation at github.com/simhu/cubical.

16

Acknowledgement

The research for this paper has been started while the first two authors were members of the Institute
for Advanced Study in Princeton, as part of the program Univalent Foundations of Mathematics. We
are grateful for the generous support by the IAS and the Fund for Math.

The last two authors acknowledge financial support from the ERC: The research leading to these
results has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 247219.

The authors wish to thank Jean-Philippe Bernardy, Cyril Cohen, Andy Pitts and Michael Shulman for
stimulating discussions on the topic of this paper. The clear presentation of [26] provided an important
help.

References

[1] S. Awodey and M. Warren. Homotopy theoretic models of identity types. Mathematical Proceedings
of the Cambridge Philosophical Society, 146, p 45–55, 2009.

[2] B. Barras, Th. Coquand and S. Huber. A generalization of Takeuti-Gandy interpretation. Preprint,
2013.

[3] M. Bezem and Th. Coquand. A Kripke model for simplicial sets. Preprint, 2013.

[4] E. Bishop. Foundations of Constructive Analysis. New York Academic Press. 1967

[5] J. Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic 32
(1986), no. 3, 209–243.

[6] Th. Coquand and N.A. Danielsson. Isomorphism is equality. Indagationes Mathematicae 24(4), p.
1105–1120, 2013.

[7] S. Crans. On combinatorial models for higher dimensional homotopies. PhD thesis, 1995.

[8] P.L. Curien. Substitutions up to isomorphisms. Fundamenta Informaticae, Volume 19, 1993, p.
51–85.

[9] P. Dybjer. Internal Type Theory. in Types for Programs and Proofs, Springer, 1996.

[10] A. Grothendieck. Pursuing stacks. Manuscript, 1983.

[11] M. Hofmann. Syntax and semantics of dependent types. Semantics and logics of computation
(A.M. Pitts and P. Dybjer, eds.), Cambridge University Press, p. 79–130, 1997.

[12] M. Hofmann and T. Streicher. Lifting Grothendieck Universes. Unpublished note.

[13] W. Hurewicz. On the concept of fiber space. Proc. Nat. Acad. Sci. U.S.A. 41, p. 956–961, 1955.

[14] D. Kan. Abstract homotopy. I. Proc. Nat. Acad. Sci. U.S.A. 41, p. 1092–1096, 1955.

[15] C. Kapulkin, P.L. Lumsdaine and V. Voevodsky. The Simplicial Model of Univalent Foundations.
Preprint, 2012, http://arxiv.org/abs/1211.2851.

[16] P. Martin-Löf. An intuitionistic theory of types: predicative part. Logic Colloquium, 1973.

[17] A. M. Pitts. Nominal Sets. Names and Symmetry in Computer Science. Cambridge Tracts in
Theoretical Computer Science, 2013.

[18] A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets.
Manuscript, 17 September 2013.

[19] B. Russell. Principia Mathematica, second edition, Introduction. Cambridge University Press, 1925.

17

[20] J.P. Serre. Homologie simgulière des espaces fibrés. Applications. Thèse, Paris, 1951.

[21] A. Stoughton. Substitution revisited. Theoretical Computer Science, Vol. 59, p. 317-325, 1988.

[22] R. Street. Cosmoi of Internal Categories. Trans. Amer. Math. Soc., Vol. 258, p. 271-318, 1980.

[23] The Univalent Foundations Program. Homotopy Type Theory. Institute for Advanced Study, 2013.

[24] V. Voevodsky. Notes on homotopy λ-calculus. Manuscript, started 2006.

[25] V. Voevodsky. The equivalence axiom and univalent models of type theory. Talk at CMU on
February 4, 2010.

[26] R. Williamson. Combinatorial homotopy theory. Preprint, 2012.

Appendix 1: Combinatorial definition of πn(X, x)

Our cubical sets do not have connections, like those in [26]. In [26, III.4.2.10], Williamson raises the
question of a straightforward geometric argument replacing his footnote 19 to exhibit the group structure
of πn(X,x) for Kan cubical sets without connections. Adapting his geometric argument, we can answer
his question positively for our Kan cubical sets. The argument below also works for cubical sets as
presented in [14].

We first explore some consequences of the Kan filling property for a cubical set A. (We shall not need
the uniformity condition.) Using the Kan filling property, we can complete any equality proof ω : a→ u
to a square

a
ω - u

u

ω′

?
- u
?

There is no reason for ω′ to be the same as ω. We show how to use the Kan property to find such a
square where ω′ coincides with ω, the ‘inner’ or ground square in the following diagram.

u - u

a
ω-

�
ω ′

u

-

u

ω

?
- u
?

u
?

-�
u
?

-

Similarly we show that any equality proof ω : a→ u can be completed to a square

a - a

a
? ω - u

ω

?

18

As an application, we can go back and forth between the two squares

a
α - b a

α - b

c

γ

?
- c

β

?
a
? γ - c

β

?

using the cube

a
α - b

a
α-

�

b

-

a
? γ- c

β

?

c

γ

?
-�

γ

c

β

?
-

Using these remarks, we can define π1(X, a) as follows. The elements are homotopy equivalence
classes of paths a→ a and two paths ω, ω′ : a→ b are equivalent iff we can find a square

a
ω - b

a
? ω′ - b

?

Using the Kan condition, one can show that this is an equivalence relation [26].
We define then the composition αβ of two paths α : a → b, β : b → c as being the path obtained by

the Kan filling property

a
α - b

a
?

αβ
- c

β

?

The following diagram shows that composition preserves homotopy equivalence

19

a
α′ - b

a
α-

�

b

-

a
?

αβ
- c

β

?

a
?

α′β′
-�

c

β′

?
-

The following diagram shows that composition satisfies associativity

a
α - b

a
α-

�

b

-

a
?

γ
- c

β

?

a
?

ε
-�

d

η

?

δ

-

It is then possible to show in a purely combinatorial way [26] that this defines a group. The unit is
the homotopy equivalence class of a→ a.

Since it is clear how to define combinatorial the loop space Ω(X, a) we get in this way a simple
combinatorial definition of π2(X, a) = π1(Ω(X, a), 1a), . . .

20

