Exercices on Typed Lambda-Calculus

Thierry Coquand
Chalmers University

September 2008

Exercice 1: We can define like in untyped lambda calculus the notion of term in normal
form. Show that a term in normal form can be written Azq : 11 ... Az : T * My ... M; where
we can have k =0 or [=0 and My, ..., M; are in normal form.

Use this to enumerate the closed terms of the following types (¢ is a ground type)

1. 1=,

2. 1—1—,

3. (t—=t)—1—u,
4. 1—(1—1)—>u,
(t=t)—

((t—1)—1)—u.

((t—1)—1)—u.

((a=B)—7)—f—-

Exercice 2: Cantor’s theorem can be expressed as follows in higher-order logic: there is

no surjective function H : t—(t—o0). It is enough for this to deduce a contradiction from the
existence of a spliting function A : (t:—0)—, that is a function which satisfies

(V) (V) [f v < H (A f) a].
For this, it is enough to find a function f : :—o0 and an individual z : ¢ such that

fa==(HAS))

A typical unification problem is to find a suitable f and x as terms of simply typed lambda-
calculus. (Cantor’s theorem has been proved automatically in an implementation of logic based
on simply typed lambda-calculus.) For solving this unification problem, enumerate all terms of
type ¢ and of type t—o that are built from the constant

e —:0—0,
e H:1—(1—o0),

o A:(1—0)—1.

These two sets of terms are best described by a mutual inductive definition.

Exercice 3: Show that there exists no term ¢t : B—B which may use the constant 0,1 : B
such that t 0 =1and ¢t 1 = 0.

Exercice 4: (Difficult) This problem illustrates the importance of explicitely typing the
variable. An alternative notation would be to use the same term as in untyped lamba-calculus
(untyped variable). For instance Az z would be both of type t—¢ and (t—t)—t—¢. One can
consider the typed variable as a pair of one untyped variable and a type. It is then possible
to define a map t — |t| that to a typed term associate its “stripped” version where we forget
about type annotations. In the previous example, if we give both terms and types, it is possible
to reconstruct in an unique way a typed term ¢ such that |t| = Az z. Show that this is general
for any untyped term in normal form u that there is at most on typed term ¢ of a given type
such that |t| = u.

Show that this may not the case for an arbitrary term. However, show that if |¢t1| = |t2| and
t1,ts are of the same type then ¢; and ¢o are convertible.

Show that this is always the case for a Al term, by showing that if v reduces by head
reduction to v’ and the u has a unique typed decoration then u has a unique typed decoration,
and using the normalisation theorem for typed lambda calculus.

